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ABSTRACT 

 

Cyclic-3’,5’-guanosine monophosphate (cGMP) is a fundamental intracellular 

signalling molecule that regulates vascular homeostasis through the tight 

control of vascular smooth muscle cell (VSMC) reactivity (i.e. 

vasoconstriction/relaxation) and proliferation. Aberrant VSMC growth and 

sustained vasoconstriction are hallmarks of cardiovascular disease, exemplified 

by pulmonary hypertension (PH). Multidrug resistance proteins (MRPs) are 

membrane bound transporters that facilitate cGMP cellular export thereby 

representing a potential mechanism that regulates intracellular cGMP-driven 

signalling. C-type natriuretic peptide (CNP) is an important vasoactive peptide 

released from the endothelium that maintains vascular homeostasis. CNP binds 

to natriuretic peptide receptor-B (NPR-B), generating cGMP, and NPR-C, which 

acts as a clearance receptor removing CNP from the circulation and a signalling 

pathway regulating vascular function via a cGMP-independent mechanism.  

 

Herein, I investigated two separate hypotheses: that MRPs play an important 

role in maintaining vascular homeostasis, and that endothelium-derived CNP 

and its cognate receptor, NPR-C, protects against the development of PH.  

 

The role of MRPs in regulating vascular homeostasis was investigated using 

organ bath pharmacology, human VSMC (hVSMC) proliferation and measuring 

mean arterial blood pressure (MABP) in conscious and anaesthetised mice. To 

investigate the role of endothelium-derived CNP and NPR-C in PH, male and 

female CNP and NPR-C knockout (KO) mice were used in two experimental 

models of PH: hypoxia plus Sugen5416 (SU5416) and bleomycin-induced. The 

severity of PH was measured using right ventricular systolic pressure (RVSP), 

MABP, right ventricular hypertrophy (RVH) and pulmonary vascular 

remodelling.  

 

MRP inhibition resulted in concentration-dependent vasorelaxation of mouse 

aorta per se and increased the potency of cGMP-dependent vessel relaxation 

in response to activation of both particulate and soluble guanylate cyclases 

(pGC and sGC). MRP inhibition alone also caused concentration-dependent 



IV 

 

attenuation of hVSMC proliferation, and enhanced cGMP-mediated attenuation 

of hVSMC growth via pGC and sGC activation. MRP inhibition per se did not 

decrease MABP in either anaesthetised or telemeterised mice. However, MRP 

inhibition did dose-dependently enhance reductions in MABP due to pGC 

activation in anaesthetised mice.  

 

Deletion of endothelial cell-derived CNP (ecCNP KO) in male and female mice 

did not result in any significant differences in RVSP, RVH or pulmonary 

vascular remodelling between WT and KO in the hypoxia plus SU5416 model of 

PH. However, global deletion of NPR-C in both male and female mice caused a 

significant increase in RVH but not RVSP or vascular remodelling when 

compared to WT. Both male and female NPR-C KO mice developed 

significantly increased RVSP compared to WT in the bleomycin-induced model 

of PH. However, only females exhibited a significant increase in RVH and lung 

weight in addition to RVSP.  

 

In conclusion, MRP inhibition demonstrates potential therapeutic utility to treat 

cardiovascular diseases by potentiating the vasodilatory and VSMC anti-

proliferative actions of natriuretic peptides and nitric oxide. Endothelial cell-

derived CNP is not essential to host protection against PH, whereas its cognate 

receptor NPR-C demonstrates a cardioprotective capacity. NPR-C attenuates 

bleomycin-induced PH in both males and females, with a greater effect 

observed in females. Overall, NPR-C agonism could potentially be used to 

ameliorate the cardiac and vascular pathology associated with PH. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Cardiovascular disease 

 

Cardiovascular disease (CVD) is defined by dysfunction of the homeostatic 

mechanisms that regulate the circulatory system (heart and vasculature). As 

this encompasses a huge multifaceted system, a plethora of diseases are 

incorporated into the general umbrella term of CVD, including coronary heart 

disease (CHD) which can lead to a myocardial infarction (MI; “heart attack”), 

hypertension, stroke, heart failure and atherosclerosis. CVD is the biggest 

cause of mortality globally; in 2012 31 % of all deaths (~17.5 million people) 

were due to CVD (WHO, 2015). Within the same year, the most common CVD 

was CHD, accounting for 7.4 million deaths, followed by stroke (6.7 million 

deaths); as such, these two disorders give rise to approximately 75 % of the 

total mortality due to CVD (WHO, 2015).  

 

In the United Kingdom (UK), CVD is the second highest cause of mortality 

behind cancer (Townsend et al., 2015). From 2012 to 2014 CVD dropped from 

being the highest cause of mortality in the UK; despite this CVD still accounts 

for over a quarter of all deaths (155,000 people), with similar rates in males (28 

%) and females (26 %). Of these, CHD is the biggest single cause of mortality, 

responsible for 15 % and 10 % of deaths in males and females, respectively 

(~69,000 deaths in total). Mirroring the global situation, the second most 

common cause of CVD mortality is stroke, accounting for around 39,000 deaths 

(6 % and 8 % men and women respectively; Townsend et al., 2015). Despite 

CVD being a substantial cause of mortality in the UK, age-standardised death 

rate from CVD has continuously decreased since 1961 demonstrating an 

increasing ability to combat these disorders (Scarborough et al., 2011). 

 

In addition to the unacceptably high mortality, the morbidity associated with 

CVD is substantial. In 2014, CVD accounted for 1.7 million in-patient episodes 
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in all National Health Service (NHS) hospitals in the UK (Townsend et al., 

2015). The number of people in the UK living with a CVD is approximately 2.29 

million for CHD, 1.18 million for stroke, 9.25 million for hypertension and 

493,000 for heart failure. This equates to more than 370 million prescriptions 

dispensed for CVD in the UK, including anti-platelet, lipid-lowering, anti-

hypertensive and heart failure drugs. This equates to a £4.3 billion cost for the 

treatment and management of CVD (Townsend et al., 2015). However, 

healthcare cost is not the entire financial burden. Cardiovascular disease 

causes huge losses in productivity in those of working age through a 

combination of death and illness which greatly impedes UK economics. The 

Centre for Economics and Business Research (CEBR) published a report in 

2014 which states an estimated £11.3 billion total healthcare cost, with a cost 

from lost work days being £3.9 billion due to mortality and £151.6 million from 

morbidity. In total, the annual cost of CVD to the UK economy is £15.2 billion, 

which is predict to increase to £18.7 billion in 2020 (Townsend et al., 2015). 

 

In summary, CVD is a massive global health and economic problem, and a 

major drain of resources to publically-funded healthcare systems. The most 

disturbing fact is that most CVDs can be prevented by altering lifestyle 

behaviours, for example smoking (tobacco), alcohol abuse, unhealthy diet and a 

lack of physical activity. Whilst public health initiatives have helped to curb 

these precipitating factors, new medicines that target novel pathways 

responsible for preserving cardiovascular health, or prevent those precipitating 

CVDs, are a significant unmet medical need. 

 

1.2 Cyclic guanosine-3’,5’-monophosphate 

(cGMP) signalling 

 

Cardiovascular disease results from an imbalance in many complex and 

dynamic homeostatic mechanisms. The human circulatory system was 

originally described by London based physician William Harvey, in 1628, who 

described the structure of a unidirectional, double circulatory system enforced 
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by valves, with blood being driven by the heart and transported through arteries, 

then veins, and returning to the heart (Harvey, 1628). This intricate organ 

system is regulated by a range of different cells that work together to maintain 

homeostatic physiology, which in turn are regulated by a multitude of inter- and 

intra- cellular mechanisms which react to external stimuli leading to a cascade 

in intracellular signalling, culminating in a specific cellular response. In 1958, 

Earl Sutherland discovered what is now appreciated as a central player in these 

homeostatic mechanisms; the intracellular second messenger, cyclic 

adenosine-3’,5’-monophosphate (cAMP; Rall & Sutherland 1958, Sutherland & 

Rall 1958). As a result of his work on cAMP and the actions of hormones, Earl 

Sutherland was the solo winner of the Nobel Prize in Physiology or Medicine in 

1971 (Nobel Media AB 2014, 2016). Following the identification of cAMP, a 

sibling molecule, cyclic guanosine-3’,5’-monophosphate (cGMP) was 

synthesised and hypothesised to act in a similar manner to cAMP because of its 

ability to be enzymatically hydrolysed (Smith et al., 1961). Subsequently, cGMP 

was also found to occur endogenously by a group that isolated and identified 

the molecule in rabbit urine (Ashman et al., 1963). The enzyme responsible for 

hydrolysing the 3’,5’-phosphodiester bond in both cGMP and cAMP was first 

identified in 1964 (Kuriyama et al. 1964; Figure 1). Since then a family of 

analogous enzymes which hydrolyse these second messengers have been 

identified and characterised; phosphodiesterases (PDEs; see 1.4.1; Bender & 

Beavo 2006). Since their discovery over half a century ago, cGMP and cAMP 

have been at the centre of research that has led to several Nobel Prizes in 

Physiology or Medicine; furthermore we are still discovering new roles of these 

fundamental intracellular second messengers. 

 

We now know that spatio-temporal changes in intracellular cGMP 

concentrations are responsible for controlling a broad range of physiological 

mechanisms that require a fine-controlled balance between cGMP production 

and degradation.   
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Figure 1. An illustration of the molecular structural changes to cGMP 

during generation and degradation. 

Cyclic guanosine-3',5'-monophosphate (cGMP) is generated from guanosine-5'-

triphosphate (GTP) by the enzyme guanylyl cyclase (GC). Cyclic GMP is 

degraded to guanosine-5'-monophosphate (GMP) by the enzyme 

phosphodiesterase (PDE).  
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1.3 Cyclic GMP production 

 

Cyclic guanosine-3’,5’-monophosphate is generated from guanosine-5’-

triphosphate (GTP) by a family of enzymes termed guanylyl cyclases (GCs; 

Price et al. 1967; Figure 1). GCs are further divided according to structure and 

membrane localisation; cytosolic or soluble GC (sGC) and membrane-bound or 

particulate GC (pGC). Although, there is now evidence to suggest that 

chaperone proteins facilitate the membrane-association of sGC (e.g. heat-shock 

protein90; Hsp90; Agullo et al. 2005,Venema et al. 2003). 

 

1.3.1 Soluble guanylyl cyclase (sGC) 

 

Soluble GC is a heterodimeric protein formed of two subunits, α and β (Giuili et 

al. 1992, Giles et al. 2003). Two isoforms of each subunit exist, α1, α2, β1 and β2, 

with the most commonly studied and physiologically relevant combination being 

an α1β1 dimer, that is ubiquitously expressed in mammals (Budworth et al., 

1999). Each subunit is composed of the same distinct domains; an N-terminal 

H-NOX (haem-nitric oxide and oxygen binding family) domain, a Per/Arnt/Sim 

(PAS) domain, a amphipathic helix region and a C-terminal catalytic domain 

(Derbyshire and Marletta, 2012). Although, both α and β monomers have an N-

terminal H-NOX domain, only the β subunit coordinates a haem iron (Fe2+) 

capable of binding nitric oxide (NO; Zhao and Marletta, 1997). NO is the major 

ligand for sGC and upon binding to the haem domain leads to over a 200-fold 

increase in cGMP production (Stone & Marletta 1994; Figure 2). Soluble GC, 

and specifically the β1 subunit, is essential to life demonstrated by the 

generation of knockout (KO) mice for this protein which die within 3-4 weeks 

after birth due to intestinal dysmotility. However, these animals also have 

catastrophic detrimental cardiovascular characteristics, exemplified by 

dysfunctional platelet aggregation and aortic vasorelaxation, plus systemic 

hypertension. Moreover, in sGC KO mice NO donors demonstrate a complete 

inability to relax pre-contracted isolated vessels and lower blood pressure (BP) 

in vivo compared to wild-type (WT) littermates, illustrating the importance of 
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sGC to orchestrate the cardiovascular effects of NO (see 1.3.2; Friebe et al., 

2007). These unfavourable cardiovascular traits in sGC KO mice are mirrored in 

the human population, in which mutations in the genes that encode the sGC β 

or α subunits are also linked to the development of cardiovascular disease 

(Ehret et al., 2011). Soluble GC expression exhibits anti -proliferative and -

migratory effects on vascular smooth muscle cells (VSMCs). For instance, 

increased expression of sGC in rats using recombinant adenoviruses, increases 

cGMP production in aortic smooth muscle cells, and decreases carotid 

neointima formation, in a balloon-induced vascular injury model compared to 

controls (Sinnaeve et al., 2001).  

 

1.3.2 Nitric oxide (NO) 

 

NO was originally discovered to be an endogenously produced, physiologically 

important signalling molecule during the hunt to identify the elusive 

endothelium-derived relaxing factor (EDRF) in the 1980s (Katsuki et al. 1977, 

Ignarro et al. 1987, Ignarro et al. 1986, Ignarro et al. 1982, Furchgott & 

Zawadzki 1980, Arnold et al. 1977). The discovery of NO led to Louis Ignarro, 

Ferid Murad and Robert Fuchgott being awarded the 1998 Nobel Prize in 

Physiology or Medicine (Nobel Media AB 2014, 2016). The powerful 

cardiovascular effects of NO were initially illustrated as a vasorelaxant (Palmer 

et al., 1987) and inhibitor of platelet aggregation (Radomski et al., 1987a) and 

adhesion (Radomski et al., 1987b), of leukocyte adhesion (Kubes et al., 1991), 

and anti-proliferative mediator in VSMCs (Garg & Hassid 1989). Subsequent to 

these impressive early findings further work has substantiated the 

cardiovascular-protective role of NO/sGC/cGMP signalling. 

 

NO is generated enzymatically by nitric oxide synthase (NOS; Alderton et al., 

2001). NOS is found in mammals expressed as three different isoforms, 

neuronal NOS (nNOS or NOS1), inducible NOS (iNOS or NOS2) and 

endothelial NOS (eNOS or NOS3). These enzymes generate NO through the 

same process but differ in their activation, cellular localisation and expression. 

NOS proteins are homodimers, with each monomer containing two different 
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catalytic regions, an oxygenase and a reductase domain (Crane et al., 1998). 

NO is generated via a two-step, 5 electron oxidation of the amino acid L-

arginine. Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is 

oxidised by the reductase domain enabling electrons to be transferred to the 

cofactors flavin adenine dinucleotide (FAD) then flavin mononucleotide (FMN), 

present within the same region, and subsequently transported to a haem 

present in the oxygenase domain (Noble et al. 1999; Klatt et al. 1996). Binding 

of calmodulin, from elevated intracellular calcium (Ca2+) concentrations, to the 

reductase domain increases the flow of electrons to the haem, and represents a 

key mechanism of activation (Abu-Soud and Stuehr, 1993). The haem binds O2 

and L-arginine, and in addition to the transferred electrons, hydroxylates L-

arginine in the first step to produce an intermediate compound, NG-hydroxy-L-

arginine, which is in turn oxidised to L-citrulline and NO. This occurs in the 

presence of an essential cofactor, tetrahydrobiopterin (BH4), which maintains 

enzyme structural integrity, facilitates L-arginine binding, and acts as an 

electron donor (Nishimura et al. 1995; Crane et al. 1998; List et al. 1997; 

Alderton et al. 2001; Figure 2).   
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Figure 2. An illustration of the activation of sGC by endothelium-derived 

NO. 

cGMP in vascular smooth muscle cells is generated by sGC, activated by NO, 

produced by eNOS expressed in vascular endothelial cells. 

Cyclic guanosine-3',5'-monophosphate (cGMP), guanosine-5'-triphosphate 

(GTP), endothelial nitric oxide synthase (eNOS), soluble guanylyl cyclase 

(sGC), oxygen (O2), inorganic pyrophosphate (PPi), nicotinamide adenine 

dinucleotide phosphate (NADPH), flavin adenine dinucleotide (FAD), flavin 

mononucleotide (FMN), tetrahydrobiopterin (BH4), calmodulin (CaM), Fe2+ 

(haem).   
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Endothelial NOS is considered the predominant NOS isoform of the 

cardiovascular system because of its abundant expression in endothelial cells 

(ECs) which intuitively enables the enzyme to utilise NO to maintain 

cardiovascular homeostasis (Pollock and Fiirstermanna, 1993; Pollock et al., 

1991). In addition to elevated intracellular calcium concentrations, another 

important cardiovascular dependent-mechanism that can activate eNOS is fluid 

shear stress. This mechanism occurs through phosphorylation of serine 

(Ser1177, Ser633), threonine (Thr495) and/or tyrosine (Tyr81, Tyr657) residues 

present in the eNOS enzyme. Kinases that are known to do this include Akt 

(activated by oestrogen, vascular endothelial growth factor; VEGF and insulin), 

Ca2+/calmodulin-dependent protein kinase II (CaMKII; triggered by bradykinin), 

and most notably protein kinase-A (PKA; stimulated by fluid shear stress; Boo 

et al., 2002; Fulton et al., 1999; McCabe, 2000; Schleicher et al., 2009). To 

illustrate the importance of eNOS in the cardiovascular system, each of the 

different eNOS KO mice generated to date is hypertensive (Huang et al., 1995; 

Shesely et al., 1996; Thoonen et al., 2013). Moreover, NO generated 

specifically from ECs is essential to the maintenance of vascular homeostasis 

by inhibiting VSMC proliferation (Garg and Hassid, 1989; Nakaki et al., 1990; 

Rudic et al., 1998), platelet aggregation (Alheid et al., 1987; Busse et al., 1987) 

and leukocyte recruitment (Arndt et al., 1993; Zeiher et al., 1995). Patients with 

hypertension demonstrate significant endothelial dysfunction; for example, 

impaired vascular relaxation to acetylcholine (ACh), which activates eNOS, 

generating NO (Panza et al. 1990). Furthermore, in humans mutations to genes 

that encode eNOS are associated with cardiovascular disease (Johnson et al., 

2011; Kathiresan et al., 2005; Mitchell et al., 2007; Salvi et al., 2012). These 

data demonstrate clearly the importance of EC-derived NO in maintaining 

vascular function and protection against cardiovascular diseases. 

 

Neuronal NOS is highly expressed throughout the central nervous system 

(CNS), in the periphery (within non-adrenergic, non-cholinergic [NANC] nerves) 

as well as skeletal muscle (Nakane et al., 1993). Nitric oxide generated by 

nNOS acts as an important neurotransmitter regulating cognition (memory, 

learning, neurogenesis/plasticity; Zhou & Zhu 2009) and non-vascular smooth 

muscle tone (i.e. gastrointestinal tract; Lefebvre, 2002; Tøttrup et al., 1991). 
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Some evidence also points to a direct nNOS-derived NO effect on VSMCs, and 

thus a cardiovascular role, independent of endothelium-generated NO (Melikian 

et al. 2009). Although, mice rendered genetically-deficient in nNOS don’t 

develop hypertension, in contrast to eNOS KO animals (Melikian et al., 2009; 

Nelson et al., 1995). Neuronal NOS KO mice subjected to middle cerebral 

artery (MCA) occlusion (a model of ischaemic stroke), develop significantly 

smaller infarct sizes and improved neurological outcome than wild-type (WT) 

animals, illustrating a pathological neurodegenerative role of nNOS derived NO, 

alongside it’s physiological neuronal signalling function (Huang et al., 1994; 

Lipton et al., 1993; Malinski et al., 1993). This is in contrast to eNOS KO mice, 

which develop larger infarct sizes compared to WTs in ischaemic stroke models 

because of significantly reduced blood flow, lending support to the notion that 

eNOS is the predominant homeostatic NOS isoform in the cardiovascular 

system (Huang et al., 1996; Lo et al., 1996). 

 

Inducible NOS was originally identified in macrophages when exposed to 

inflammatory stimuli such as bacterial liposaccharide (LPS) or cytokines 

(Bergmann et al., 1992). Inducible NOS isn’t basally expressed but can be 

induced in a variety of cell-types, under a multitude of inflammatory conditions, 

such as exposure to infectious agents (human immunodeficiency virus; HIV; 

helicobacter pylori; mycobacterium tuberculosis), in human autoimmune and 

chronic inflammatory diseases due to increased production of cytokines (e.g. 

interleukin-1; IL-1; IL-6), and other conditions including Alzheimer’s, 

Parkinson’s, tumours and MI (Kröncke et al., 1998). Although, it should be 

noted that iNOS is constitutively expressed in airway epithelial cells because of 

continuous exposure to toxins (Guo et al., 1995). NO is a free radical, this 

characteristic enables it to form part of the body’s defensive repertoire, where it 

is utilised to combat infection from microbes and parasites, through its ability to 

inhibit cellular enzymes, especially those containing a haem domain (Green et 

al., 1990). In addition, NO can decrease the stability of deoxyribonucleic acid 

(DNA) and proteins, non-specifically, contributing to its anti-microbial affect. 

However, as a result of this chemistry, excessive production of NO can cause 

host necrosis and promote tumorigenesis (Kröncke et al., 1991; Wink et al., 

1991). In contrast to nNOS and eNOS, iNOS is constitutively active once 
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expressed because of its unique ability to bind calmodulin irreversibly at low 

intracellular calcium concentrations (Cho et al., 1992). Constitutively active 

iNOS results in high-output production of NO and contributes to the life-

threatening hypotension found in patients suffering from septic shock 

(MacMicking et al., 1995; Wei et al., 1995; Wong and Billiar, 1995). 

 

1.3.3 Particulate guanylyl cyclases (pGCs) 

 

In addition to sGC, cyclic GMP is generated by membrane-bound guanylyl 

cyclase (pGC). There are seven known pGCs in mammals, GC-A, GC-B, GC-C, 

GC-D, GC-E, GC-F and GC-G; in humans GC-D and GC-G are pseudogenes 

and therefore not thought to be expressed or functionally active (Manning et al., 

2002). GC-C is highly expressed in the intestinal epithelial cells and is activated 

by the endogenous ligands guanylin and uroguanylin, which regulate colonic 

epithelial cell proliferation. GC-C is also activated by bacterial heat stable 

enterotoxins, which causes intestinal epithelial cells causes increased Cl− 

secretion in intestinal epithelial cells leading to enhanced intestinal water 

content and diarrhoea (Potter, 2011). GC-E and GC-F are expressed on rods 

and cones in the retina and facilitate the conversion of photons into electrical 

signals allowing light to be perceived (Potter, 2011). However, the most 

important pGC enzymes in the context of cardiovascular homeostasis and 

disease are GC-A and GC-B, which are cognate receptors for a family of 

natriuretic peptides (NPs; see 1.3.4); as such, these pGCs are also known as 

natriuretic peptide receptor (NPR)-A and NPR-B, respectively. There is a third 

receptor that binds all three NPs, NPR-C (see 1.3.4.4), but this should not be 

confused with GC-C since NPR-C does not contain a GC domain and therefore 

cannot generate cGMP (Fuller et al., 1988).  

 

NPR-A and NPR-B are homodimers composed of an extracellular ligand 

binding domain, followed by a transmembrane domain, then an intracellular 

portion consisting of a kinase-like domain (no known kinase activity), followed 

by a hinge region and finally the GC domain (Garbers & Lowe 1994; Figure 3). 

In some ways the structures of NPR-A and NPR-B are homologous to sGC due 
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to their shared GC domain and thus cGMP generating capability (Potter, 2011). 

Arguably outside the shared GC functionality their structure is quite different 

(Chinkers and Garbers, 1989; Chinkers et al., 1989; Lowe et al., 1989; Thorpe 

and Garbers, 1989). Similar to NPR-A and NPR-B in its extracellular region, 

NPR-C differs in its intracellular domain which lacks catalytic activity. As a 

result, this NPR was traditionally thought of as a clearance receptor with no 

signalling capability; however the receptor is now known to signal as a G-

protein coupled receptor (GPCR; Fuller et al. 1988; Koh et al. 1992; 

Nussenzveig et al. 1990; Figure 3). 

 

1.3.4 Natriuretic Peptides (NPs) 

 

NPR-A and NPR-B are activated by a family of endogenous ligands, the NPs. 

Each of the three principal mammalian NPs have a very similar structure, 

sharing a 17 amino acid ring of which 11 amino acids are conserved; the 

structural differences determine their specific receptor affinities (Potter et al. 

2006; Figure 4; Table 1). The dissociation constants for each of these ligands 

binding to NPR-A, -B, and -C were originally published by Bennett et al., (1991; 

Table 1). The ligand selectivity of NPR-A is ANP≥BNP≫CNP, whereas for 

NPR-B it is CNP≫ANP≥BNP; and finally for NPR-C: ANP≥CNP>BNP (Bennett 

et al. 1991; Koller et al. 1991; Suga et al. 1992; Table 1). In sum, ANP and BNP 

are the predominant ligands for NPR-A; CNP is the principal ligand for NPR-B, 

and NPR-C binds ANP, BNP and CNP almost equally with a slight preference 

toward ANP.   
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Figure 3. An illustration of natriuretic peptide cellular signalling. 

Atrial natriuretic peptide (ANP), Brain natriuretic peptide (BNP), C-type 

natriuretic peptide (CNP), natriuretic peptide receptor-A;-B;-C (NPR-A;-B;-C), 

phospholipase-C (PLC), adenylyl cyclase (AC), cyclic adenosine-3',5'-

monophosphate (cAMP), cyclic guanosine-3',5'-monophosphate (cGMP), 

guanosine-5'-triphosphate (GTP), G protein-coupled inwardly-rectifying 

potassium channel (GIRK), ligand binding domain (LBD), transmembrane 

domain (TMD), kinase homology domain (KHD), guanylyl cyclase domain 

(GCD).  
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 ANP BNP CNP Summary 

NPR-A 1.9 pM 7.3 pM >500 nM ANP≥BNP≫CNP 

NPR-B 5.4 nM 30 nM 13 pM CNP≫ANP≥BNP 

NPR-C 2.6 pM 13 pM 10.8 pM ANP≥CNP>BNP 

 

Table 1. A table describing the affinity of each natriuretic peptide for their 

respective receptors. 

Dissociation constants (Kd) of natriuretic peptides for each natriuretic peptide 

receptor (Bennett et al., 1991) and summary of preferential ligand binding 

(Koller et al., 1991; Suga et al., 1992a). 

 

1.3.4.1 Atrial Natriuretic Peptide (ANP) 

 

Atrial natriuretic peptide was first identified from atrial myocardial extracts in 

1981 by de Bold and colleagues (de Bold et al., 1981). Although, a clue as to 

the physiological effects of ANP was alluded to before the actual discovery; 

balloon distension of canine atria correlated with urine production (Henry et al., 

1956). Later, de Bold and colleagues showed that ANP released from atrial 

myocardial extracts reduced BP through natriuresis and diuresis (Flynn et al., 

1983). We now know that ANP is first synthesised as a preprohormone, 

preproANP (151 amino acid peptide) that is cleaved to form proANP (126 amino 

acid peptide) the predominant form of the peptide, synthesised and stored in 

atrial cardiomyocyte granules (Hosoda et al., 1991; Oikawa et al., 1984). The 

transmembrane cardiac serine protease, corin, is highly expressed on the 

extracellular surface of atrial cardiomyocytes, and responsible for the 

conversion of proANP to its physiologically active form ANP (28 amino acid 

peptide; Yan et al. 2000; Figure 4). The physiological relevance of corin was 

established by generation of the corin deficient mouse that has no detectable 

endogenous ANP and therefore develops a phenotype dependent on ANP-

deficiency; hypertension (enhanced with dietary salt) and increased cardiac 

hypertrophy compared to WT littermates (Chan et al., 2005). Of note, proANP in 

the kidney can be processed into a longer, related protein, urodilatin (32 amino 
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acid peptide), and acts as a local paracrine signal increasing natriuresis and 

diuresis (Forssmann, 2001; Saxenhofer et al., 1990). Atrial natriuretic peptide is 

an integral regulator of cardiovascular homeostasis through a number of 

different effects. The most obvious of these is in response to increased 

intravascular volume (hypervolaemia), which stimulates the release of proANP 

from atrial cardiomyocytes due to wall stretch; ANP is secreted into the 

circulation, reducing intravascular volume by acting directly on the kidneys, 

increasing natriuresis and diuresis (de Bold et al., 1981). Natriuretic peptide 

receptor-A is expressed in many tissues including brain, lung, kidney, adrenal, 

adipose, heart, vascular endothelium and smooth muscle (Goy et al., 2001; 

Lowe et al., 1989; Nagase et al., 1997; Sabrane et al., 2005; Wilcox et al., 

1991). ANP is active throughout the body, promoting natriuresis and diuresis 

through a number of different mechanisms. ANP inhibits the release of 

antidiuretic hormone (ADH; vasopressin) from the hypothalamus, increasing the 

glomerular filtration rate (GFR) and renal plasma flow (RPF) in the kidney 

(Samson et al., 1987). ANP also modulates the renin-angiotensin aldosterone 

system (RAAS), specifically by lowering renin and aldosterone secretion from 

the kidneys and adrenal gland, respectively, thereby reducing production of 

angiotensin-II (Ang-II; a potent vasoconstrictor) and attenuating sodium re-

uptake and water reabsorption (Bianchi et al., 1986; Burnett et al., 1984; Cogan 

et al., 1986; Fried et al., 1986; Kurtz et al., 1986; Shi et al., 2001, 2003). 

However, the powerful cardiovascular effects of ANP go beyond this single 

mechanism (intravascular volume); ANP is a potent vasodilator (Currie et al., 

1983), inhibitor of: VSMC proliferation (Sharma et al., 2002), endothelial 

permeability (Sabrane et al., 2005) and cardiac hypertrophy independent of BP 

(Knowles et al., 2001). Finally, in humans, depression of ANP expression as a 

consequence of single nucleotide polymorphisms in the NPPA gene is 

associated with the development of hypertension (P. Arora et al., 2013; Newton-

Cheh et al., 2009). Anaritide (Carperitide), a synthetic version of ANP, is 

prescribed in Japan for the treatment of acute decompensated heart failure 

(ADHF) and is effective in lowering BP (Morita et al., 2012).  



16 

 

 

Figure 4. An illustration of the structure of ANP, BNP and CNP. 

Atrial natriuretic peptide (ANP), Brain natriuretic peptide (BNP), C-type 

natriuretic peptide (CNP). Black amino acids are conserved across all three 

peptides.  
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1.3.4.2 Brain Natriuretic peptide (BNP) 

 

Brain natriuretic peptide was originally named due to its initial discovery in 

porcine CNS, however it is now known to be an important cardiac hormone, and 

the major source of BNP is ventricular cardiomyocytes (Hosoda et al., 1991; 

Mukoyama et al., 1991, 1990; Sudoh et al., 1988). Mirroring the bioactivation of 

ANP, preproBNP (134 amino acid peptide) is converted to proBNP (108 amino 

acid peptide), which is then cleaved to BNP (32 amino acid peptide; Figure 4) 

by corin (Ichiki et al., 2011). Although secreted by ventricular cardiomyocytes, 

unlike ANP, BNP is not stored in granules, instead BNP gene transcription 

increases rapidly “on demand,” in response to stimuli such as cardiac wall 

stretch (Grépin et al., 1994; Nakagawa et al., 1995; Thuerauf et al., 1994). Both 

ANP and BNP are elevated in patients who suffer from cardiovascular diseases; 

indeed, BNP (and its N-terminal fragment, NT-proBNP) is used as a biomarker, 

and increased plasma concentrations of this peptide correlates with poor 

prognosis (Burnett et al., 1986; Mark Richards et al., 2004). BNP plasma 

concentrations increase substantially more than ANP, due to differences in their 

plasma half-life (Mukoyama et al., 1991). The half-life of BNP (~20 min; 

Richards et al. 1993) is much longer than ANP (~2 min; Yandle et al. 1986; 

Nakao et al. 1986). This is underpinned by differences in degradation and 

clearance between these two NPs; ANP has a higher affinity for NPR-C and is 

cleared quicker than BNP (Matsukawa et al., 1999) and although both are 

broken down by neutral endopeptidase 24.11 (neprilysin; NEP), BNP requires 

prior cleavage by meprin A (a metalloprotease present in the kidney), slowing 

degradation as a whole (Pankow et al., 2007). Both NPs generate cGMP by 

activating NPR-A but interestingly they have very different biological effects. 

Mice that have the NPPA gene disrupted develop hypertension and cardiac 

hypertrophy (Melo et al., 1999; Newton-Cheh et al., 2009; Steinhelper et al., 

1990); however, disruption of the BNP gene (NPPB), does not result in 

hypertension or left ventricular hypertrophy but rather a significant increase in 

cardiac fibrosis (Tamura et al., 2000) that is due in part to the ability of BNP to 

promote the degradation of collagen in cardiac fibroblasts (Kapoun et al., 2004; 

Tsuruda et al., 2002). Although, NPPB over expression in mice reduces blood 

pressure, however this may be due to cross-activation of the NPR-B receptor 
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instead of NPR-A from enhanced (10-100 fold) plasma levels of BNP compared 

to WT littermates (Ogawa et al., 1994), this also leads to significant skeletal 

overgrowth characteristic of CNP/NPR-B signalling (Suda et al., 1998; Yasoda 

et al., 1998). However, the cardiovascular effects of BNP being limited to 

protection against cardiac fibrosis are likely to be underestimated. There is 

strong evidence supporting a more prominent role of BNP in cardiovascular 

homeostasis; in humans, mutations in the NPPB gene are associated with the 

development of cardiovascular disease including hypertension (Newton-Cheh et 

al., 2009). Furthermore, nesiritide, a synthetic version of BNP, that is prescribed 

for the treatment of ADHF, produces significant reductions in blood pressure 

both in the systemic and pulmonary circulation (Colucci et al., 2000; Morita et 

al., 2012). Overall, the evidence demonstrates differential cardiovascular effects 

of NPR-A activation by BNP compared to ANP; this difference may reflect 

temporal variations in the production of the two NP ligands depending on the 

disease. 

 

1.3.4.3 C-type Natriuretic Peptide (CNP)  

 

C-type natriuretic peptide is the third member of the natriuretic peptide family 

but in contrast to its kin, ANP and BNP, CNP is not a cardiac-derived peptide 

but rather a prominent EC-derived vascular autocrine/paracrine signalling 

peptide. First isolated from porcine brain (Sudoh et al. 1990), now known to be 

expressed in the kidney and gastrointestinal tract (Komatsu et al., 1991), 

VSMCs (Casco et al., 2002; Kelsall et al., 2006; Mendonca et al., 2006; Naruko 

et al., 2005, 1996; Suga et al., 1998; Woodard et al., 2002), fibroblasts 

(Chrisman and Garbers, 1999; Horio et al., 2003), cardiomyocytes (Del Ry et 

al., 2011), brain and CNS (Totsune et al., 1994), macrophages (Casco et al., 

2002), chondrocytes (Hagiwara et al., 1994), and ECs (Stingo et al., 1992; Suga 

et al., 1998). In contrast to ANP, but similar to BNP, CNP is synthesised on 

demand. Indeed, under basal conditions CNP levels are low but increase 

substantially when exposed to pro-inflammatory stimuli such as tumour necrosis 

factor (TNF; Suga et al. 1993) and IL-1β (Suga et al. 1993), LPS (Suga et al. 

1993), and transforming growth factor-β (TGF-β; Suga, Nakao, Itoh, et al. 
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1992), basic fibroblast growth factor (bFGF; Woodard et al. 2002), or shear 

stress (Chun et al., 1997). The dogma governing CNP production is similar to 

the other NPs; CNP is first translated into preproCNP (126 amino acid peptide), 

which is cleaved to proCNP (103 amino acid peptide), then converted to CNP-

53 (53 amino acid peptide) by furin (a ubiquitous proprotein convertase; Wu et 

al. 2004; Thomas 2002). This peptide is further processed by an unknown 

mechanism, to yield the predominant biologically active form of CNP: CNP-22 

(22 amino acid peptide; CNP; Stingo et al. 1992; Figure 4).  

 

The cGMP-dependent biological effects of CNP are mediated via activation of 

NPR-B (Chrisman et al., 1993; Drewett et al., 1995). NPR-B consists of the 

same structural domains as NPR-A, possessing an intracellular guanylyl 

cyclase capable of generating cGMP but differs slightly in its extracellular ligand 

binding domain eliciting an altered preferred substrate-binding profile (Figure 3; 

Table 1). Natriuretic peptide receptor-B has a similar tissue expression profile 

as its ligand. This receptor is expressed in many tissues including bone 

(Yasoda et al., 1998), brain (Herman et al., 1996; Langub et al., 1995), 

fibroblasts (Chrisman and Garbers, 1999), kidney (Yoshimoto et al., 1996), 

heart (Del Ry et al., 2011; Dickey et al., 2007), lung (Bryan et al., 2006; Nagase 

et al., 1997), ECs (Del Ry et al., 2011) and VSMCs (Abbey and Potter, 2002; 

Casco et al., 2002).  

 

CNP/NPR-B signalling has a number of roles within the cardiovascular system. 

Firstly, like ANP, CNP is a potent vasodilator of conduit vessels; the ability of 

the peptide to cause vasodilation via NPR-B has been well characterised using 

pre-contracted vessels in the absence and presence of the NPR-A/B antagonist 

HS-142-1, suggesting a prominent role in regulating vascular tone (Drewett et 

al., 1995; Madhani et al., 2003; Wennberg et al., 1999; Wiley and Davenport, 

2001). Further, and similar to NPR-A activation, CNP/NPR-B signalling inhibits 

VSMC proliferation through the production of cGMP (Doi et al., 2001; Furuya et 

al., 1995, 1991; Hutchinson et al., 1997). Moreover, CNP/NPR-B signalling is 

essential for vascular homeostasis by sustaining the integrity of the 

endothelium; CNP promotes EC proliferation even after injury, thereby 

preventing the underlying SMC from being exposed to pro-mitogenic factors, 
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present in the circulation, which may result in pathological VSMC proliferation 

(Ohno et al., 2002; Yamahara et al., 2003). From this data one might expect to 

find clear effects of CNP/NPR-B signalling in reducing BP in vivo, however, this 

data is currently controversial. One of the most definitive methods to investigate 

the physiological effect(s) of CNP/NPR-B signalling is through the generation of 

transgenic animals. Both CNP (Komatsu et al., 2002) and NPR-B KO (Tamura 

et al., 2004) mice have been generated, and uncovered a striking biological role 

for CNP/NPR-B signalling; these animals were significantly shorter than WT 

littermates because of severe bone growth retardation. In both types of 

transgenic mice, this is due to blunting of endochondral ossification resulting in 

a reduction in longitudinal vertebra and limb-bone growth, dependent on cGMP 

generation triggered by CNP/NPR-B activation. The importance of CNP/NPR-B 

signalling in bone growth is mirrored in humans; loss of function mutations of 

NPR-B cause a specific type of dwarfism called acromesomelic dysplasia, type 

Maroteaux (AMDM; Bartels et al. 2004). In addition, members of the general 

population with a single defective allele of NPR-B are on average shorter than 

others (Olney et al., 2006). Surprisingly however, in these studies both CNP 

and NPR-B KO mice do not have significantly higher BP compared to WT 

littermates even when given high-salt diet (Komatsu et al., 2002; Tamura et al., 

2004). Indeed, no difference in the cardiovascular system were reported. 

Although, the characteristic bone growth retardation observed in NPR-B and 

CNP KO mice may have impeded investigations into the cardiovascular system 

(Chusho et al., 2001; Komatsu et al., 2002; Tamura et al., 2004).  

 

To overcome this caveat and better investigate the cardiovascular effects of 

CNP/NPR-B signalling Langenickel et al. (2006) generated a transgenic rat 

expressing a dominant negative NPR-B resulting in “knockdown” of the receptor 

leading to significantly blunted cGMP generating capacity dependent on NPR-B 

activation. These rats only develop modest skeletal abnormalities and so can be 

used to investigate cardiovascular parameters. Again, these NPR-B ‘deficient’ 

animals did not develop significantly altered haemodynamic capacity measured 

using telemetry in conscious animals. The rats also exhibited no changes in 

diuresis or natriuresis, a prominent characteristic of NPR-A activation. However, 

the animals did develop significant cardiac hypertrophy which was exacerbated 
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with chronic volume overload, independent of BP, suggesting an important role 

of NPR-B in cardiac remodelling. This finding has been substantiated by other 

groups. Using a model of congestive heart failure in mice (trans-aortic banding), 

Dickey et al. (2007) found CNP/NPR-B activity was twice as high compared to 

ANP/NPR-A activity in failing hearts, and Wang et al., (2007), using CNP over-

expression in mice, significantly reduced left ventricular hypertrophy developed 

following ischemia/reperfusion (I/R) injury. Such observations provide further 

evidence for an essential role of CNP/NPR-B signalling in protection against 

cardiac hypertrophy. However, despite experimental evidence in vivo 

demonstrating the inability of CNP/NPR-B signalling to reduce blood pressure, 

one study involving dosing healthy human volunteers with synthetic CNP 

caused irrefutable reductions in BP, mirrored by significant increases in plasma 

cGMP concentration, urinary excretion, diuresis and natriuresis, and a reduction 

in aldosterone secretion (Igaki et al., 1998). This effect is also observed in 

healthy rats, dogs and primates, again, with concomitant increases in cGMP 

(Aizawa et al., 2008; Clavell et al., 1993). In the context of cardiovascular 

disease plasma CNP levels are increased in both heart failure patients (Kalra et 

al., 2003; Tarazón et al., 2014; Wright et al., 2004) and patients with pulmonary 

hypertension (Kaiser et al., 2015).  

 

In sum, CNP/NPR-B signalling plays an important role in conduit vessel 

relaxation, inhibiting SMC proliferation, promoting the re-endothelialisation of 

damaged vessels, protection against cardiac hypertrophy and reducing BP in 

vivo. However, although it is clear CNP infusions significantly reduce blood 

pressure, deletion of NPR-B does not cause a significant increase in BP, which 

suggests CNP may be acting through an additional mechanism to regulate 

blood pressure, possibly within the resistance vasculature and not conduit 

vessels. This hypothesis is reinforced by HS-142-1, having almost no effect on 

CNP induced relaxations in isolated rat mesenteric arteries (Chauhan et al., 

2003).  
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1.3.4.4 Natriuretic Peptide Receptor-C (NPR-C)  

 

A third member of the natriuretic peptide receptor family, NPR-C, binds all three 

NPs with similar affinities (Table 1). NPR-C also plays a key role in the 

regulation of cardiovascular homeostasis but is not a guanylyl cyclase-coupled 

protein. NPR-C has a similar structure to NPR-A and NPR-B, in that it has a 

extracellular ligand binding domain that binds all NPs, followed by a 

transmembrane domain, but it lacks a C-terminal guanylyl cyclase domain and 

only contains a 37 amino acid long intracellular portion (Fuller et al., 1988; 

Porter et al., 1990). NPR-C is expressed throughout the body including the 

heart, kidney, brain, fibroblasts, adrenal gland, VSMCs, ECs, adipose, lung and 

platelets (Anand-Srivastava, 2005; Anand-Srivastava et al., 1990; Casco et al., 

2002; Fujishige et al., 1998; Fuller et al., 1988; Huntley et al., 2006; Jeffery et 

al., 2005; Nagase et al., 1997; Porter et al., 1990; Sun et al., 2001; Tsuruda et 

al., 2002; Xing et al., 2012). NPR-C was originally thought of as only a 

clearance receptor internalising and degrading all three NPs with relatively 

uniform binding affinities. When a NP binds to NPR-C, the peptide is removed 

from the extracellular space by peptide/receptor internalisation, followed by 

degradation of the peptide by lysozymes, after which the receptor is recycled 

back to the membrane (a phenomenon not found to occur with NPR-A and -B 

receptors; Cohen et al., 1996; Fan, 2005; Nussenzveig et al., 1990)  

 

The importance of NPR-C as a clearance receptor was made apparent by the 

generation of NPR-C KO mice which develop significantly elongated spine and 

limbs, hypotension (in males), and an inability to concentrate urine (Matsukawa 

et al., 1999). The skeletal effects are thought to be due to excessive local CNP 

concentrations in the vicinity of bone resulting from a deficient clearance 

mechanism. This hypothesis is supported by the reverse phenotype (dwarfism) 

observed in both CNP and NPR-B KO mice where endochondral ossification is 

impaired from reduced CNP/NPR-B signalling (Komatsu et al., 2002; 

Matsukawa et al., 1999). Natriuretic peptide receptor-C KO mice generate 

significantly higher urinary cGMP concentrations suggesting enhanced NPR-A 

and/or NPR-B activation, and decreased ANP clearance (BNP and CNP were 
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not reported). However, plasma levels of ANP and BNP (CNP plasma levels 

were not reported) were not significantly elevated refuting the rationale that 

reducing the expression of NPR-C leads to significantly higher levels of NPs, in 

the circulation at least. This led the authors to reasonably infer that NP 

signalling is enhanced at the local level (D’Souza et al., 2004). NPR-C KO mice 

have a significantly elevated haematocrit, compared to their age matched WT 

littermates, suggesting NPR-C KO mice have lower intravascular volume. 

Moreover, NPR-C KO mice have significantly elevated urinary output. 

Therefore, the absence or reduction in NPR-C, in the kidney specifically, leads 

to a blunted clearance of ANP (a potent diuretic), increased availability, 

activation of NPR-A, causing an enhanced GFR, and increased urinary cGMP 

and urinary output. This hypothesis was supported by water loading NPR-C KO 

mice which demonstrated an impaired ability to concentrate urine compared to 

WT littermates, and with the pharmacological use of cANF4-23 (a ring-deleted, 

truncated ANP which acts as an NPR-C partial agonist; Maack et al., 1987)  

 

The notion that NPR-C can additionally behave as a direct signalling pathway 

was first eluded to by Anand-Srivastava & Cantin (1986) who treated cultured 

rat neonatal atrial and ventricular myocytes with ANP and found it to inhibit, 

concentration-dependently, inherent adenylyl cyclase activity (lowering cAMP). 

In addition, adenylyl cyclase activators (e.g. forskolin and isoproterenol) were 

also inhibited by ANP. This same group determined the mechanism behind this 

phenomenon by utilising Pertussis toxin (PT), a known antagonist of inhibitory 

guanine nucleotide regulatory proteins (Gi/o), which abolished the inhibitory 

effects of ANP on cAMP generation in rat aorta (Anand-Srivastava and Cantin, 

1986). The effects of ANP were mimicked using cANF4-23 in rat VSMCs, 

showing specifically that NPR-C agonism leads to decreases in intracellular 

cAMP without changing intracellular cGMP, ruling out inhibitory effects of cGMP 

production (Anand-Srivastava et al., 1990). Building on this work, using an 

antibody raised against the intracellular 37 amino acid cytoplasmic domain of 

NPR-C, the authors were able to block the action of Gi/o (Anand-Srivastava et 

al. 1996).   



24 

 

In addition to cANF4-23, CNP itself has been found to activate NPR-C signalling. 

Villar et al. (2007), using the NPR-C antagonist M372049, demonstrated that in 

the resistance vasculature (rat mesentery) vessel relaxations elicited by CNP 

were dependent on NPR-C activation. In addition, relaxations by ANP and the 

NO donor Spermine NONOate (Sp-NO) were not affected confirming two 

independent relaxant mechanisms. This characteristic was specific to the 

resistance vasculature as M372049 had no effect on CNP, ANP and Sp-NO –

induced relaxations in rat aorta. Interestingly, M372049 also blocked the 

vasoactivity of endothelium-derived hyperpolarising factor (EDHF). 

Endothelium-derived hyperpolarising factor, as the name suggests, is a 

mediator(s) released from the endothelium which acts on VSMCs causing 

vessel relaxation via cell hyperpolarisation (Chen et al., 1988). EDHF is the third 

endothelium-derived factor to be identified after NO and prostacyclin (PGI2); 

EDHF has been found to be the predominant mechanism underpinning vessel 

relaxation in the resistance vasculature (Shimokawa et al., 1996). EDHF causes 

hyperpolarisation by one of two mechanisms, or both; by activating G protein-

coupled inwardly rectifying K+ channels (GIRK) or Na+/K+ ATPase (Chauhan et 

al., 2003). Chauhan et al., (2003) & Villar et al. (2007) found CNP/NPR-C-

dependent relaxations of mesenteric resistance arteries were inhibited by 

barium (Ba2+), a GIRK inhibitor, and M372049, illustrating the importance of 

endothelial-derived CNP in resistance vessel relaxation, and that CNP acts as 

an EDHF through NPR-C signalling. Furthermore, Hobbs et al. (2004) 

demonstrated the effectiveness of targeting CNP/NPR-C signalling in the 

protection against cardiovascular disease; specifically, CNP and cANF4-23 acting 

through NPR-C significantly reduced infarct size and coronary perfusion 

pressure following I/R injury.  

 

Substantiation of the cardiovascular importance of this novel vascular 

mechanism (i.e. CNP/NPR-C signalling) came in 2014 with a publication by 

Moyes et al., (2014). The authors generated an endothelial cell specific CNP 

KO mouse (ecCNP KO), and along with global NPR-C KO mice demonstrated a 

key function of this pathway in protecting against the development of endothelial 

dysfunction and hypertension (females only), atherogenesis, and aneurysm 

(males only). CNP/NPR-C signalling inhibits VSMC proliferation and promotes 
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the proliferation of ECs explaining, at least in part, why ecCNP KO mice 

develop atherosclerosis (Khambata et al., 2011). Overall, these data suggest 

that the preferential female cardiovascular protective effect of EDHF described 

by Scotland et al., (2005), is predominantly derived from the release of CNP 

from the endothelium, to protect against cardiovascular pathogenesis.  

 

1.3.4.5 Proteolysis of natriuretic peptides (NPs) 

 

In addition to clearance by NPR-C, NPs undergo proteolytic degradation. There 

are several different proteases that are known to degrade NPs. One of those is 

neutral endopeptidase-24.11 (NEP; neprilysin; EC 3.4.24.11; enkephalinase; 

common acute lymphoblastic leukemia antigen; CD10), a type-II integral 

membrane metallopeptidase (Turner and Tanzawa, 1997). NEP is a membrane-

bound zinc-dependent enzyme, which degrades all three NPs but has a 

preference for ANP over BNP and CNP (Dussaule et al., 1993; Kenny et al., 

1993; Okolicany et al., 1992; Watanabe et al., 1997). NEP inactivates all three 

NPs in a similar way; several different peptide bonds are hydrolysed across the 

ring structure causing the shape to open up, thus inactivating it (Potter, 2015). 

NEP is expressed throughout the body including kidney, lung, ECs, VSMCs, 

cardiomyocytes, fibroblasts, neutrophils, brain, and adipose tissue (Erdös and 

Skidgel, 1989; Graf et al., 1995; Kerr and Kenny, 1974a, 1974b; Malroy et al., 

1978; Shima et al., 1988; Standeven et al., 2011). This protease does not just 

hydrolyse NPs but instead has a broad substrate profile, consisting of both 

vasodilators and vasoconstrictors including angiotensin I, II and III (Ang-I, II, III), 

endothelin-1 (ET-1), bradykinin (BK), substance P, as well as ANP, BNP and 

CNP (Emoto and Yanagisawa, 1995; Stephenson and Kenny, 1987; 

Vijayaraghavan et al., 1990). NEP inhibition has been a focus of attention in 

terms of a novel therapy for cardiovascular disease for many years. NEP 

inhibition increases circulating ANP concentrations to levels that should be of 

clinical benefit (Bevan et al., 1992; Okolicany et al., 1992; Olins et al., 1989); 

however, clinical trials using the NEP inhibitor candoxatril revealed that NEP 

inhibition does not lower BP, presumably due to simultaneous increases in 

vasoconstrictors (Bevan et al., 1992; Richards et al., 1993). To circumvent this 
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caveat combining NEP inhibition with inhibitors of certain vasoconstrictors (e.g. 

with an angiotensin receptor blockers in the molecule LCZ696) provides greater 

efficacy (Mangiafico et al., 2013; Vardeny et al., 2014). Although NEP inhibition 

significantly increases plasma ANP concentrations, mice deficient in NEP do 

not develop skeletal deformities like NPR-C KO mice suggesting NEP 

dependent degradation of CNP is not as crucial compared to NPR-C dependent 

clearance (Lu et al., 1995).  

 

There are other proteolytic enzymes that degrade NPs such as insulin-

degrading enzyme (IDE) and exopeptidase dipeptidyl-peptidase IV (DPP 

IV/CD26; EC 3.4.14.5). IDE is a zinc metalloprotease found in both cytoplasmic 

and membrane fractions, and hydrolyses all three NPs with a preference for 

ANP, suggesting another potential target for increasing circulating NPs for 

therapeutic gain (Müller et al., 1992; Potter, 2015; Volpe, 2014). DPP IV is a 

cell-surface protease, also present in the plasma in soluble form, is found 

expressed throughout the cardiovascular system including ECs (Silva Júnior et 

al., 2015). DPP IV has a broad substrate profile but only degrades BNP out of 

the NPs (Brandt, 2006; Volpe et al., 2014),  

 

1.4 Cyclic GMP degradation 

 

1.4.1 Phosphodiesterases (PDEs) 

 

Phosphodiesterases (PDEs) are a superfamily of metallophosphohydrolases 

that selectively hydrolyse the 3’,5’-cyclic phosphate moiety of both cAMP and 

cGMP generating the inactive forms of these cyclic nucleotides, 5’-AMP and 5’-

GMP (Butcher and Sutherland, 1962; Figure 1). PDEs are either membrane-

bound or cytosolic enzymes composed of 16 α-helices containing 3 subdomains 

that define where substrates bind (Conti and Beavo, 2007; Jin et al., 1992). In 

total there are 11 families of PDEs; however, splice variants exist within each 

family bringing the number of known PDEs to >100 (Bender and Beavo, 2006). 

The first report of PDE activity was noted in 1961, almost at the same time as 
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the discovery of cyclic nucleotides themselves, and established by the 

identification of PDE inhibitors caffeine and theophylline, forms of 

methylxanthine (Butcher and Sutherland, 1962; Smith et al., 1961, 1958). The 

11 PDE families can be organised by their substrate specificity; cGMP specific 

PDEs (PDE5, 6 and 9), cAMP specific PDEs (PDE4, 7 and 8) and dual 

substrate specificity PDEs (PDE1, 2, 3, 10 and 11; Bender & Beavo 2006; Table 

2). This specificity is based on their affinity for each substrate (cGMP and 

cAMP), and cellular localisation; these characteristics are very important in 

tightly regulating the local concentration of cAMP and cGMP within the cell. 

Moreover, compartmentalisation of cyclic nucleotide signalling is crucial in 

determining the spatial and temporal generation of cGMP (and cAMP) in vivo 

and thus specific physiological effects (K. Arora et al., 2013). This phenomenon 

was first identified 40 years ago in isolated perfused hearts where different 

contractile responses were observed using two different agonists; prostaglandin 

E1 (PGE1; a prostanoid receptor agonist) and isoproterenol (a β-adrenergic 

receptor agonist). Both increased intracellular cAMP and activated the same 

down-stream signalling molecule (i.e. PKA), but isoproterenol activated 

membrane-bound fractions, compared to PGE1 that activated cytosolic 

fractions, explaining the functional differences (Brunton et al., 1979; Corbin et 

al., 1977). Ten years later, other studies using PDE inhibitors in guinea pig 

perfused hearts showed that using isoproterenol to generate intracellular cAMP, 

and therefore improve contraction, could then be significantly enhanced when 

combined with 3-isobutyl-1-methylxanthine (IBMX; a non-specific PDE inhibitor) 

or milrinone (a PDE3 inhibitor) without affecting the activity of known 

downstream signalling molecules (PKA) despite significant increases in global 

intracellular cAMP (Rapundalo et al., 1989; Weishaar et al., 1987). In the 

context of cGMP generation in ECs, concentrations of cGMP generated by sGC 

(cytosolic) are smaller and more brief than concentrations of cGMP generated 

by pGC (membrane-bound), but it is sGC stimulation that is more efficient in 

relaxing ECs, measured as changes of planar cell surface area, compared to 

pGC stimulation leading to the conclusion that sGC excitation-relaxation 

coupling is more efficient (Rivero-Vilches et al., 2003). This same cGMP 

signalling dichotomy (pGC v sGC) has also been observed in cardiac myocytes 

(Castro et al., 2006). Cell signalling compartmentalisation can be observed 
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using fluorescence resonance energy transfer (FRET) allowing the generation 

and degradation of intracellular cAMP and cGMP to be visualised in real-time 

(Honda et al., 2001; Ponsioen et al., 2004; Stangherlin and Zaccolo, 2012; 

Zaccolo et al., 2000). It is also been possible to observe cGMP signalling 

coupled with in vivo physiological responses using intravital microscopy and 

transgenic mice expressing FRET based markers for cGMP (Thunemann et al., 

2014, 2013). Using these techniques scientists are now able to observe that 

upon generation, cGMP forms “pools” or “clouds” in specific areas of the cell, 

which is prevented from spreading by the action of PDEs.  

 

There are three cGMP specific PDEs: PDE5, PDE9. PDE6 is known as a 

photoreceptor PDE because it is widely expressed throughout the mammalian 

retina and plays an important role in mediating the conversion of a light into a 

photoresponse (Bender and Beavo, 2006). Until recently little was known about 

the function of PDE9, despite having a broad tissue expression profile (Bender 

and Beavo, 2006). Recently the role of PDE9 has been clearly described in 

hypertrophic heart disease (Lee et al., 2015). The authors of this paper showed 

that PDE9 inhibition protects against pressure-overload stress in heart 

myocytes and muscle, and reverses pre-established heart disease by 

increasing cGMP levels, preferentially favouring pGC generated cGMP (since 

specific sGC generated cGMP had no affect; Lee et al., 2015). Arguably the 

most well-known cGMP-specific PDE is PDE5, which is expressed widely in the 

body (e.g. VSMC, heart, lung, brain, kidney and platelets; Giordano et al., 2001; 

Kotera et al., 2000; Loughney et al., 1998; Stacey et al., 1998; Yanaka et al., 

1998). Inhibitors of this enzyme were originally designed to treat hypertension 

but, during clinical trials, were soon found to produce penile erection in males; 

these inhibitors, exemplified by sildenafil (Viagra), are now widely prescribed to 

treat erectile dysfunction. More recently, using vascular reactivity studies, 

sildenafil has been shown to significantly potentiate the cGMP-dependent 

vasodilatory effect of ANP in the pulmonary, but not systemic circulation (Baliga 

et al., 2008). In addition, PDE5 expression is significantly increased in the lungs 

of PH patients and in preclinical models; in accord, clinical evaluation has 

proven efficacy of sildenafil (and other PDE5 inhibitors) in patients with PH and 

is now licensed for this indication (Sastry et al., 2004; Wharton et al., 2005). 
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cGMP specific cAMP specific Dual specificity 

PDE5 PDE4 PDE1 

PDE6 PDE7 PDE2 

PDE9 PDE8 PDE3 

  PDE10 

  PDE11 

 

Table 2. A table describing cyclic nucleotide degradation specificity of all 

11 phosphodiesterases (PDEs). 

 

1.4.1.1 Dual specificity PDEs (PDE2 and PDE3)  

 

PDE2 is expressed widely in mammals including the brain, heart, platelets, 

ECs, adrenal glomerulosa cells (Bender and Beavo, 2006). Known as a dual 

substrate enzyme and present in both the membrane and cytosol, PDE2 not 

only degrades the cAMP and cGMP signal but also acts as an effector protein 

because the binding of cGMP to an allosteric site stimulates the activity of the 

enzyme. Through this phenomenon this enzyme mediates both “cross-talk” 

between the two signalling pathways (cGMP and cAMP), and provides a 

negative feedback mechanism. Activation of the allosteric site increases the 

rate at which PDE2 hydrolysis either cAMP or cGMP and therefore its effect is 

dependent on the local concentration of either cyclic nucleotide at the time. 

Moreover, in areas of high cGMP concentration, PDE2 will be stimulated and 

act has a negative feedback mechanism; however, in areas of high 

concentrations of cAMP, PDE2 can be activated by low concentrations of cGMP 

(the allosteric site has a ~10-fold higher affinity for cGMP compared to cAMP) to 

hydrolyse cAMP. An example of this “cross-talk” is from the addition of ANP to 

adrenal glomerulosa cells which increases the breakdown of cAMP by PDE2 to 

inhibit aldosterone production (MacFarland et al., 1991). PDE2 is also important 

in the heart as a negative feedback mechanism; PDE5 is a cGMP specific PDE 

and controls cGMP levels generated in the cytosol of cardiomyocytes, whereas 

membrane produced cGMP is degraded by PDE2, this is another example of 
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cGMP signalling compartmentalisation (Fischmeister et al., 2006). These 

phenomena have been demonstrated functionally in a rat disease model of PH, 

where PDE2 inhibition (BAY 60-7550) potentiates the therapeutic benefit of 

NPs, NO and the PGI2 analogue treprostinil, suggesting a new therapeutic 

target for the treatment of this disease (Bubb et al., 2014). 

 

PDE3 is also a membrane-bound and cytosolic, dual substrate, enzyme 

hydrolysing both cAMP and cGMP (Bender and Beavo, 2006). Unlike PDE2, 

which is activated by cGMP, PDE3 is inhibited by cGMP and thus another 

cGMP effector protein (Bender and Beavo, 2006). Although, PDE3 binds to 

cAMP and cGMP with similar affinities, the concentration at which PDE3 is 

saturated (Vmax) when hydrolysing cAMP is 10-fold higher than it is for cGMP, 

therefore at higher concentrations of cGMP, cAMP degradation is lower (Bender 

and Beavo, 2006). PDE3 is expressed in platelets, VSMCs, cardiac myocytes 

and adipose tissue (Shakur et al., 2001). The PDE3 inhibitors milrinone, 

cilostamide, cilostazol, and trequinsin, attenuate platelet aggregation, VSMC 

proliferation and vasodilation (Maurice and Haslam, 1990; Shakur et al., 2001). 

 

1.4.2 Multidrug resistance proteins (MRPs) 

 

In addition to the well-established degradative pathways conveyed by PDEs, 

efflux of cGMP (and cAMP) has been hypothesised to play a role in dynamically 

regulating the signalling attributed by both cyclic nucleotide second 

messengers. Originally, efflux as a mechanism of regulating intracellular cyclic 

nucleotide concentrations was not deemed important because of its small 

magnitude compared to degradation by PDEs (Mercapide et al., 1999). 

However, recently there has been an abundance of evidence demonstrating 

cyclic nucleotide efflux as an important regulator of physiological function.  

 

Cellular efflux of cyclic nucleotides was first observed around the same time as 

their discovery; hormones stimulating the generation of cAMP led to 

concomitant increases in extracellular cAMP (Davoren and Sutherland, 1963; 

Sutherland and Rall, 1958). Indeed, for many years plasma and urinary cAMP 
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and cGMP concentrations have been used as a routine measure for this 

phenomenon without knowledge of the mechanisms responsible (Hamet et al., 

1989). It was not until 1999 that the first multidrug resistance protein (MRP4) 

capable of transporting nucleotide analogues was identified (Schuetz et al., 

1999). This was soon followed by identification of MRP5 which has the ability to 

export cGMP and cAMP (Jedlitschky et al., 2000). MRP5 is part of a family of 

MRPs which are members of the large ABC (ATP-binding cassette) superfamily 

of energy-dependent, transmembrane transporters, and is also known by the 

name ABCC5. The subfamily C of the ABC superfamily, in other words the 

“ABCC” proteins, is composed of 13 separate transporters (Deeley et al., 2006; 

Table 3); these comprise of 10 MRPs, two sulfonylurea receptors (SUR) and the 

cystic fibrosis transmembrane-conductance regulator (CFTR; Dean et al. 2001; 

Table 3). The general structure of ABC transporters consists of two membrane 

spanning domains (MSDs) and two intracellular nucleotide binding domains 

(NBDs; Deeley et al. 2006; Figure 5). MRP4, 5, 8 and 9 have the usual ABC 

transporter structure but MRP1, 2, 3, 6 and 7 have an extra transmembrane 

domain (three in total; Deeley et al. 2006). ABCC family transporters, as a 

whole, have a hugely diverse substrate profile; this includes chemotherapeutics 

which, in 1992, was how the first MRP (MRP1) was identified, because of its 

contribution to multidrug resistance (MDRs) in a human lung cancer cell line 

(Cole et al., 1992; Mirski et al., 1987). MRPs have specific properties; they are 

unidirectional (transport from intracellular to extracellular) that can operate 

against substantial concentration gradients, ATP-dependent, inhibited by 

compounds such as probenecid (an organic anion transporter protein inhibitor; 

OAT) and prostaglandins, and have saturable kinetics (Campbell and Taylor, 

1981; Doore et al., 1975; Finnegan et al., 2011; Rindler et al., 1978). Multidrug 

resistance proteins vary in their ability to export individual substrates but as a 

family they transport, either on their own or as glucuronide (GSH) or glutathione 

disulphide (GSSG) conjugates, a huge array of substrates which makes them 

crucial in the protection against accumulation of cytotoxic xenobiotics (Cole and 

Deeley, 1998; Deeley et al., 2006; Slot et al., 2011). MRPs are known to export 

arachidonic acid derivatives (e.g. PGE2, PGE1, leukotriene C4; LTC4), steroids 

and conjugates (e.g. bilirubin glucuronide, glycocholic acid, oestradiol 

glucuronide), purine nucleotide/nucleoside analogues, pyrimidine nucleoside 



32 

 

analogues, nucleobase analogues, cyclic nucleotides (e.g. cAMP, cGMP), folic 

acid analogues (e.g. methotrexate), antibiotics, endobiotics, xenobiotics (e.g. 

paracetamol, morphine, adefovir), tyrosine kinase inhibitors (TKI; e.g. imatinib, 

nilotinib, erlotinib) and many more substrates (Borst et al., 2007; Deeley et al., 

2006; Slot et al., 2011; Sodani et al., 2012).  

 

Figure 5. An illustration of multidrug resistance protein substrate efflux. 

Multidrug resistance protein (MRP), adenosine-5'-triphosphate (ATP), 

adenosine-5'-diphosphate (ADP), inorganic phosphate (Pi), transmembrane 

domain (TMD), nucleotide binding domain (NBD).  
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Subfamily C of the 
ABC superfamily 

Alternative 
name 

Export cGMP 
(Yes/No) 

Export cAMP 
(Yes/No) 

ABCC1 MRP1 No No 

ABCC2 MRP2 No No 

ABCC3 MRP3 No No 

 

ABCC4 

 

MRP4 

Yes$ 
Km = 9.69 ± 2.3 µM 
Vmax = 2.01 ± 0.34 

pmol/mg/min 

Yes$  
Km = 44.5 ± 5.8 µM 
Vmax = 4.14 ± 0.40 

pmol/mg/min 

 

ABCC5 

 

MRP5 

Yes# 
Km = 2.1 ± 0.2 µM 

Vmax/Km = 2100 µl x 
mg-1 protein x min-1 

Yes# 
Km = 379 ± 24 µM;  
Vmax/Km = 90 µl x 

mg-1 protein x min-1 

ABCC6 MRP6 No No 

ABCC7 CFTR No No 

ABCC8 SUR1 No No 

ABCC9 SUR2A/2B No No 

ABCC10 MRP7 No No 

ABCC11 MRP8 Yes Yes 

ABCC12 MRP9 No No 

ABCC13 MRP10 No No 

ABCG* BCRP* Yes No 

Table 3. A table describing the members of the ABC superfamily that 

transport cyclic nucleotides.  

A table describing the members of the ABC superfamily that transport cGMP 

and cAMP (ABCC4/MRP4, ABCC5/MRP5 and ACC11/MRP8), plus 

ABCG/BCRP. Sulfonylurea receptors SUR, cystic fibrosis conductance 

regulator (CFTR), multidrug resistance protein (MRP), breast cancer resistance 

protein (BCRP; Dean and Allikmets, 2001; Dean et al., 2001). *BCRP/ABCG is 

a member of the ABC superfamily but not subfamily C, rather subfamily G. 

$MRP4 Km value expressed as mean ± SEM (Chen et al., 2001). #MRP5 Km 

value expressed as mean ± standard deviation (SD; Jedlitschky et al. 2000). 
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There are three MRPs that transport both cAMP and cGMP with varying 

affinities: MRP 4, 5 and 8 (Slot et al., 2011; Table 3). The human breast cancer 

resistance protein (BCRP; ABCG) is also a member of the ABC superfamily but 

subfamily G (rather than subfamily C); its role in chemotherapy resistance is 

well characterised but it has only recently been identified to transport cGMP. 

Little is known about its cGMP-dependent function although it has recently been 

found expressed in the heart suggesting a possible cardiovascular role (de Wolf 

et al., 2007; Evans et al., 2008; Meissner, 2006).  

 

MRP4 is ubiquitously expressed in the mammalian body, found in the adrenal 

glands, brain, heart, lung, kidney, erythrocytes, platelets, VSMCs and ECs 

(Mitani et al., 2003; Ritter et al., 2005; Sager and Ravna, 2009; Slot et al., 2011; 

Tagami et al., 2010). MRP4 exports both cGMP and cAMP leading to the 

rationale that this protein may play a role in cardiovascular homeostasis (Chen 

et al. 2001; Cheepala et al. 2011; Wielinga et al. 2003; Table 3). In 2008, Sassi 

et al. established for the first time a definitive link between cyclic nucleotide-

dependent decreases in VSMC proliferation due to MRP inhibition. The authors 

of this study, using cultured human coronary smooth muscle cells (hCASMC), 

found a MRP4 specific silencing ribonucleic acid (siRNA) significantly inhibited 

proliferation with a concomitant increase in both cAMP and cGMP 

intracellular/extracellular ratios. This effect was further enhanced upon addition 

of the non-specific PDE inhibitor IBMX, suggesting MRPs are used as a 

compensatory cyclic nucleotide “degradative” mechanism in the absence of 

functional PDE. Interestingly, the authors found that MRP4 expression at the 

mRNA and protein level was significantly enhanced in proliferating hCASMCs 

suggesting a possible therapeutic target in pathological VSMC proliferation. 

Furthermore, using an in vivo model, rat carotid artery balloon injury, treatment 

with an adenoviral vector expressing short-hairpin RNA (shRNA) against rat 

MRP4 resulted in a significantly reduced intima thickening (i.e. VSMC 

proliferation). However, despite significant increases in intracellular/extracellular 

ratios of both cGMP and cAMP, it appeared that this was predominantly a 

cAMP-dependent mechanism because only inhibition of PKA, and not PKG, re-

established VSMC proliferation. The authors of this study concluded that MRP4, 

in this context, acted as a predominantly cAMP extrusion mechanism (Sassi et 
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al., 2008). These findings led to further studies from this same group in a 

preclinical model of PH (Hara et al., 2011). The authors found that MRP4 

expression was significantly increased, in both VSMCs and ECs, at the mRNA 

and protein level in lungs from patients with PH compared to controls. This 

finding was mirrored in mice exposed to chronic hypoxia (5 weeks, 10 % O2) in 

which MRP4 expression was significantly increased in the pulmonary arteries 

compared to normoxic control mice. Furthermore, these authors used the MRP 

inhibitor MK571 and MRP4 KO mice to implicate this MRP isoform in the 

pathogenesis of PH, and as a potential therapeutic target. Mice administered 

MK571 or deficient in MRP4 had significantly reduced right ventricular systolic 

pressures (RVSP), right ventricular hypertrophy (RVH) and muscularised 

pulmonary vessels, all hallmarks of PH. Interestingly, in lung lysates the activity 

PKA and PKG were significantly increased in mice treated with MK571, 

suggesting MRP inhibition was eliciting its therapeutic action by significantly 

increasing cAMP and cGMP levels. This observation was mirrored in cultured 

human pulmonary artery smooth muscle cells (hPASMCs), treated with an 

MRP4 specific siRNA, in which the activity of PKA and PKG were also 

significantly increased (as shown by significantly elevated 

intracellular/extracellular ratios of both cAMP and cGMP). Notably, the effect of 

MRP inhibition was accentuated in the presence of sildenafil, suggesting that in 

the absence of PDE degradation, MRP activity is significantly elevated, which 

enhances cGMP concentrations, subsequently increasing cAMP levels, possibly 

via PDE3 inhibition. Indeed, genetic deletion of MRP4 leads to significantly 

increased heart weight, cardiomyocyte size, left ventricular wall thickness and 

interventricular septum with a concomitant increase in cardiac ANP gene 

expression (Sassi et al., 2012). These mice also have extended bleeding times 

demonstrating that MRP4 promotes platelet aggregation by decreasing 

intracellular cAMP and cGMP (Borgognone and Pulcinelli, 2012; Decouture et 

al., 2015). Such observations substantiate a cardiovascular homeostatic role for 

this protein, and cAMP/cGMP efflux. 

 

To further investigate a possible the link between MRP4 and cGMP efflux in the 

vasculature, Krawutschke et al. (2015) used a FRET based system to visualise 

in real-time the generation of cGMP in primary VSMCs. In this setting, the 
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authors used MK571 as an “MRP4-specific” inhibitor, which enhanced the 

magnitude and duration of cGMP generated from increasing concentrations of 

CNP, ANP and the NO donor S-nitroso-L-glutathione (GS-NO). Although, the 

authors concluded this was a MRP4 specific phenomenon, MK571 has also 

been shown to inhibit MRP5 (Reid et al., 2003). 

 

In sharp contrast to MRP4, little or nothing is known about the function of MRP5 

in the context of cyclic nucleotide transport. MRP5 is not ubiquitously expressed 

and appears to have a more specific expression profile in brain, heart, 

fibroblasts, erythrocytes, VSMCs and ECs (Borst et al., 2007; Dazert et al., 

2003; Meissner et al., 2007; Mitani et al., 2003; Sager, 2004; Slot et al., 2011). 

MRP5 exports both cAMP and cGMP making it a prime candidate, alongside 

MRP4, for regulating cardiovascular homeostasis; however, the actual role of 

MRP5 is not fully understood (Cheepala et al., 2011; Jedlitschky et al., 2000; 

Reid et al., 2003; Slot et al., 2011). Sassi et al., (2008) consider MRP5 as an 

endothelial specific protein because minimal expression of this MRP can be 

found in VSMCs. However, this is in contrast to other evidence showing 

significant MRP5 expression in VSMCs (Dazert et al., 2003; Meissner et al., 

2007; Mitani et al., 2003; Xu et al., 2004). MRP5 is highly expressed in 

throughout the human heart, in cardiac ECs and VSMCs, atrial and ventricular 

cardiomyocytes, and the endocardium (Dazert et al., 2003). Interestingly, MRP5 

expression is also increased in the hearts of patients suffering from ischemic 

(ICM) and dilated (DCM) cardiomyopathy, suggesting MRP5 may be 

contributing to the pathology and that inhibition of MRP5 might be an attractive 

target to increase beneficial intracellular cyclic nucleotide concentrations 

(Dazert et al., 2003). Notably, MRP5 KO mice do not have an overt phenotype, 

and this is the same for the MRP4/MRP5 double KO (Borst et al., 2007). This is 

at odds with the adverse cardiovascular phenotype in MRP4 KO mice, and 

more in-depth and rigorous cardiovascular investigations need to be performed 

to discern differences (Sassi et al., 2012).  

 

Even less is known about the physiological role of MRP8; it is known to export 

both cAMP and cGMP, and is found in a variety of tissues including the brain, 

lung, liver and kidney (Bera et al., 2001; Slot et al., 2011; Tammur et al., 2001; 
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The Human Protein Atlas, 2008; Yabuuchi et al., 2001). However, there is no 

evidence describing its role in the cardiovascular system. Interestingly, a single 

nucleotide polymorphism exists in the human gene that codes for MRP8; this 

mutation is commonly found in East Asian populations and causes dry earwax 

because of its role in determining the type of earwax (cerumen) produced by the 

ceruminous apocrine glands through secretion of the aliphatic or aromatic 

hydrocarbon constituents, although it is not known whether cyclic nucleotides 

are involved in this phenomenon (Martin et al., 2010; Yoshiura et al., 2006). 

 

1.5 Pulmonary hypertension (PH)  

 

1.5.1 Classification 

 

One cardiovascular pathology in which modulation of cGMP signalling has 

proven particularly fruitful in terms of therapeutics, and in understanding the 

cardio- and vaso- protective mechanisms proffered by cyclic nucleotides, is 

pulmonary hypertension (PH).  

 

PH is a syndrome per se, manifested by a large collection of diseases that 

mainly affect the cardiorespiratory system. PH is defined by a single diagnostic 

haemodynamic feature: mean pulmonary artery pressure >25 mm Hg, at rest 

(PAPm >25 mm Hg, at rest; Hoeper et al., 2013). Patients diagnosed with PH 

are categorised into a subgroup based on identifiable causes and risk factors, 

and similar pathological findings, hemodynamic characteristics and treatment 

management. Group 1: pulmonary arterial hypertension (PAH); Group 2: 

pulmonary hypertension due to left heart disease; Group 3: pulmonary 

hypertension due to lung diseases and/or hypoxia; Group 4: chronic 

thromboembolic pulmonary hypertension (CTEPH); Group 5: pulmonary 

hypertension with unclear multifactorial mechanisms (Simonneau et al. 2013; 

Figure 6). Group 1 PH or pulmonary arterial hypertension (PAH) is clinically 

defined by a pulmonary artery wedge pressure (PAWP) ≤15 mm Hg and 

elevated pulmonary vascular resistance (PVR) >3 wood units (WU), in addition 
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to PAPm ≥25 mm Hg, at rest and in the absence of other known causes of PH 

(Hoeper et al. 2013; Figure 6). The Registry to Evaluate Early and Long-term 

Pulmonary Arterial Hypertension Disease Management (REVEAL Registry) 

conducted in the United States of America (USA) includes, to date, the largest 

cohort of PH patients (3,515) of any such study, and found the median survival 

for patients diagnosed with PAH to be seven years (Benza et al., 2012; McGoon 

et al., 2013). Although this is a major improvement on the median survival of 

patients diagnosed with PAH in 1991 (2.8 year), and reflects the substantial 

improvement in treatment strategies. In addition, PAH demonstrates a 

significant sex-difference; within the REVEAL study cohort, around 80 % of 

patients were female (McGoon et al., 2013). Even with modern therapies 

patients suffer from a 15 % mortality rate within the first year of receiving 

treatment, demonstrating that PAH is still a severe unmet medical need and 

would benefit from novel effective therapies (Alonzo et al., 1991; Benza et al., 

2012; Thenappan et al., 2007).   
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Figure 6. Current classification of pulmonary hypertension.  

Bone morphogenic protein receptor type II (BMPR); caveolin-1 (CAV1); 

endoglin (ENG); human immunodeficiency virus (HIV); pulmonary arterial 

hypertension (PAH); mothers against decapentaplegic 9 (Smad9); activin-like 

receptor kinase-1 (ALK1); bone morphogenic protein receptor type 2 (BMPR2); 

potassium channel super family K member-3 (KCNK3). 
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1.5.2 Pathogenesis 

 

PAH is a complex and severe pan-vasculopathy with increased PAP resulting 

from a combination of sustained vasoconstriction, progressive vascular 

remodelling and thrombosis in situ, primarily affecting the pre-capillary arterioles 

(<100 µm diameter; Archer et al., 2010; Intengan and Schiffrin, 2000; Tuder et 

al., 2013). A loss of vascular luminal cross-sectional area restricts flow, 

increasing pulmonary vascular resistance (PVR), generating a compensatory 

increase in RVSP; the right ventricle (RV) remodels to sustain high pressures 

through adaptive RVH, which eventually leads to maladaptive right ventricular 

hypertrophy (RVH), failure, and ultimately death (Voelkel et al., 2012, 2006; 

Vonk-Noordegraaf et al., 2013).  

 

It is thought that endothelial dysfunction or injury initiates PAH pathogenesis; 

however, the cause(s) of the deficit is yet to be determined (Rabinovitch, 2012). 

Examples of endothelial dysfunction are chronically impaired production of the 

vasodilators PGI2 and NO, and/or a shift to production of vasoconstrictors 

thromboxane A2 (TXA2), ET-1 and 5-hydroxytryptamine (5-HT; Christman 1992; 

Zakrzewicz et al. 2007; Giaid & Saleh 1995; Bauer et al. 2002; Behr & Ryu 

2008; Yu et al. 2004; Hervé et al. 1995; Stewart et al. 1991; Tuder et al. 1999; 

Rubens et al. 2001). In addition, expression and activity of cGMP degrading 

PDEs (e.g. PDE1 and PDE5) is increased in PAH, further impairing the 

beneficial effects of cGMP signalling (Baliga et al., 2008; Klinger et al., 2006; 

Rabe et al., 1994). In addition to effects of vascular tone, endothelial 

dysfunction/injury promotes proliferation in pulmonary VSMCs leading to the 

characteristic histopathological features medial hyperplasia and hypertrophy 

(Pietra et al., 2004; Stacher et al., 2012). Pulmonary VSMC proliferation is 

promoted in a number of different ways; the vasoconstrictors ET-1 and 5-HT 

promote growth (Davie et al., 2002; Eddahibi et al., 2006), altered expression 

and function of K+ and Ca2+ channels can lead to membrane depolarisation and 

an increase in intracellular Ca2+ triggering cell-cycle progression and 

proliferation (Burg et al., 2008; Yu et al., 2004; Yuan et al., 1998). Increased 

expression of tyrosine kinase receptors (e.g. vascular endothelial growth factor 
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receptor 2; VEGFR-2) as well as secretion of growth factors (e.g. VEGF, bFGF, 

TGF-α, PDGF; epidermal growth factor; EGF) act as potent mitogens of 

fibroblasts, ECs and VSMCs (Archer et al., 2010; Benisty et al., 2004; Geiger et 

al., 2000; Izikki et al., 2009; Kranenburg et al., 2005; Tuder et al., 2001). During 

the later stages of the disease, there is an appearance of complex plexiform 

arteriopathy, commonly known as “plexiform lesions” (Abe et al., 2010; Archer 

et al., 2010; Pietra et al., 2004). These lesions are a hallmark of PAH and lead 

to vessel occlusion and obliteration (Tuder et al. 2007; Heath & Edwards 1958; 

Abe et al. 2010; Stacher et al. 2012; Figure 7). This is illustrated experimentally 

where inhibition of VEGFR combined with hypoxic conditions causes apoptosis 

of ECs and gives rise to a pro-survival and anti-apoptotic EC phenotype, 

leading to the development of the characteristic lesions (Abe et al., 2010; 

Taraseviciene-Stewart et al., 2001).  
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Figure 7. Examples of pulmonary vascular remodelling in PH. 

Plexiform lesion (B) with high magnification of proliferated endothelial cells (A; 

arrowhead marks a luminal projection, and arrows mark cellular core). Atypical 

endothelial cell (B; arrowheads) with a myxoid component organised as 

concentric layers of smooth muscle cells (arrow). Abnormal endothelial cells 

(arrowhead) and the myxoid sub-endothelial layer (arrow; D). Intimal projection 

(arrowhead; E). Intimal projection (arrowhead), endothelial cells (arrowheads) in 

the intima, myxoid subintimal layer (arrow; F). Plexiform lesion, endothelial cells 

(arrowhead) smooth muscle-like cells (arrow; G; adapted from R M Tuder et al., 

2007).  
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1.5.3 Pharmacotherapy 

 

Until the 1990’s PAH was historically considered a vasoconstrictive disease with 

treatment being predominantly calcium (Ca2+) channel blockers based on 

retrospective experience and uncontrolled studies (Fuster et al., 1984; Rich and 

Brundage, 1987; Rich, 1988; Rich et al., 1992; Rubin, 1985; Sitbon et al., 2005; 

Weir et al., 1989). This treatment focused on the symptom of the disease, 

vasoconstriction, rather than the cause, vascular remodelling (Packer, 1985). 

Progression arrived when evidence based research developed a synthetic 

version of PGI2, epoprostenol (Christman, 1992; Tuder et al., 1999). 

Epoprostenol along with PGI2 analogues were not only found to improve 

vascular tone but also reverse vessel remodelling, raising hopes for a treatment 

that targets the cause of the disease (Akagi et al., 2014; Barst et al., 1996; 

Clapp et al., 2002; Kuhn et al., 2003; Sitbon et al., 2002). However, the 

effectiveness of epoprostenol and PGI2 analogues in attenuating pulmonary 

vascular remodelling is controversial. One example is of a single patient treated 

long-term (18 year) with epoprostenol, which prolonged life (the patient 

ultimately died of colon cancer) but did not halt the progression of vascular 

remodelling (Rich et al., 2010). Histopathological and morphometric studies 

have been conducted on explanted lungs of PH patients who received PGI2 

treatment and such individuals showed no difference in percentage thickness of 

intima, media, or adventitia or in the density of plexiform lesions compared to 

untreated patients (Achcar et al., 2006). This illustrates the need for more 

effective treatments that target the pulmonary vascular remodelling component 

of this disease. 

 

In general, there are three main treatment paradigms for PH, these target three 

fundamental biological pathways that maintain vascular homeostasis; 

prostacyclin, endothelin, and GC. Examples of these treatments are the 

prostanoids (e.g. epoprostenol, treprostinil, beraprost, iloprost), which activate 

prostanoid receptors and promote vasodilation and prevent proliferation, the 

endothelin receptor (ETA and ETB) antagonists (e.g. ambrisentan, bosentan) 

that inhibit the potent vasoconstrictor and mitogenic effect of ET-1, and those 
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treatments that potentiate the cGMP pathway (Gali et al., 2013). 

 

Cyclic GMP elevating treatments approved for the treatment of PH include the 

PDE5 inhibitors (sildenafil and tadalafil), inhaled NO (iNO) and the sGC 

stimulator (Riociguat; Gali et al. 2013). Inhaled NO is an extremely effective 

treatment for persistent pulmonary hypertension of neonates (PPHN) also 

known as ”blue baby syndrome”, a condition that previously had no non- 

invasive therapy (Creagh-Brown et al., 2009; Macrae et al., 2004; Roberts et al., 

1997, 1992). However, this treatment is very expensive and impractical 

because NO gas itself is very unstable and stored in large, heavy cylinders 

(Ichinose et al., 2004). Although, the invention of a device that produces NO 

from the atmosphere, on demand, has been developed and studies show that it 

can effectively reduce PAP in an acute model of PH in lambs, and thus could 

provide a low cost, portable alternative iNO treatment for PPHN (Yu et al., 

2015). 

 

The PDE5 inhibitors sildenafil (Galiè et al., 2005), tadalafil (Galiè et al., 2009) 

and vardenafil (Jing et al., 2011) are all effective treatments for PH; they 

improve PAP, exercise capacity, FC and survival. This illustrates the 

effectiveness of augmenting pulmonary specific NO/sGC/cGMP and 

NP/NPR/cGMP signalling by PDE5 inhibition, although one caveat is the 

development of side effects such as flushing, dyspepsia, and diarrhoea. Despite 

strong evidence in preclinical research, there is currently no evidence 

demonstrating the effectiveness of PDE5 inhibition in preventing vascular 

remodelling in PH patients (Galiè et al., 2005). Of note, PDE5 inhibitors have 

been found to also inhibit MRPs, leading to the hypothesis that their therapeutic 

effectiveness may be, in part, due to synergism through simultaneous 

prevention of cGMP degradation and export (Jedlitschky et al., 2000; Reid et 

al., 2003).  

 

Recently, sGC agonists have been developed for the treatment of PH by 

increasing cGMP production through augmentation of the NO/sGC pathway. 

sGC ‘stimulators’ (e.g. riociguat) stimulate the native haem (Fe2+) domain of 
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sGC and synergise with NO. In contrast to PDE5 inhibition, sGC 

activation/stimulation lacks pulmonary selectivity which can result in dose-

limiting systemic hypotension (Belik, 2009).  

 

1.5.4 Potential role for CNP in pulmonary hypertension 

(PH)? 

 

Despite the broad cardioprotective role of CNP, maintaining endothelial barrier, 

function and inhibiting VSMC proliferation and fibrosis (described previously), a 

function for this peptide in the pulmonary vascular specifically, certainly in the 

context of PH, remains unclear. Patients with PH have increased plasma 

concentrations of CNP (Kaiser et al., 2015). In addition, rats exposed to chronic 

hypoxia develop significantly increased plasma levels of CNP, although 

expression in the lung is decreased (Klinger et al., 1998). Itoh et al., (2004) 

investigated the role of CNP in the monocrotaline model of PH and found that 

CNP infusion increased survival and improved haemodynamics in both 

prophylactically treated animals and animals with established PH. Most 

importantly, CNP treatment enhanced expression of markers of proliferation in 

pulmonary ECs, this was mirrored by a decrease in medial thickness and 

inflammatory cell infiltrates, and an increase in pulmonary eNOS protein 

expression. Together these data demonstrate that CNP infusion promotes the 

maintenance of the EC barrier, a well characterised pathological target of 

monocrotaline, thus preventing exposure of the underlying VSMCs to mitogens 

and preventing hyperplasia. In addition, CNP promoted a protective EC 

phenotype evident by enhancing expression of the NO producing enzyme, 

eNOS (Itoh et al., 2004). This study was followed by a contrasting publication by 

Casserly et al., (2011). This group found using the chronic hypoxia and hypoxia 

plus SU5416 model (see 1.5.5.3) in rats, that treatment with a continuous 

infusion of CNP did not attenuate the development of PH. The authors were 

unable to conclude definitively why CNP infusion was not effective despite its 

well characterised cardiovascular protective effects; they hypothesised that due 

to a significant reduction in NPR-B expression measured in the lungs of the 

hypoxic rats, along with previous evidence showing that pulmonary NPR-C 
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expression is significantly decreased by hypoxia, that any beneficial effect of 

increased circulating CNP may have been mitigated (Klinger et al., 1994; Sun et 

al., 2000). 

 

CNP potently inhibits leukocyte adhesion and can therefore reduce 

inflammation associated with pathologic pulmonary vascular remodelling 

(Moyes et al., 2014; Ohno et al., 2002; Qian et al., 2002). Furthermore, 

inflammation can precede the deposition of extracellular matrix and fibrosis. 

This concept has been well characterised in other cardiovascular diseases; 

CNP infusion reduces cardiac fibrosis (Izumiya et al., 2012; Soeki et al., 2005), 

and decreased CNP production is linked with increased left ventricular fibrosis 

in aged rat hearts (Sangaralingham et al., 2011), and CNP infusion attenuates 

cardiac fibrosis following MI (Soeki et al., 2005). In the lung, CNP infusion also 

increases survival and attenuates pulmonary fibrosis in a mouse model of 

pulmonary fibrosis (bleomycin-induced; Murakami et al., 2004). In this study 

CNP was able to significantly reduce the number of infiltrating inflammatory 

cells (macrophages, neutrophils, and lymphocytes) and subsequent secretion of 

pro-inflammatory cytokines (IL-1β), which prevented the development of 

pulmonary fibrosis. This work was built on further by Kimura et al., (2016) who 

have shown that CNP over expression in fibroblasts specifically, attenuates the 

development of pulmonary fibrosis in the bleomycin model through the same 

process (reduction in inflammation and subsequent fibrosis). In sum, the 

effectiveness of CNP infusion in treating PH has proven controversial, although 

CNP is shown to be a potent anti-fibrotic agent and is effective at treating 

diseases with a substantial fibrotic component. In the context of PH, driven 

predominantly by vascular remodelling and not fibrosis, it still remains to be 

understood whether CNP can be used as an effective therapy. However, no 

matter what the context, the exact mechanism (CNP/NPR-B or CNP/NPR-C) by 

which CNP is acting to elicit any beneficial action has yet to be delineated.  
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1.5.5 Animal models of pulmonary hypertension (PH) 

 

Animal models are used to simulate the clinical and pathological features of a 

disease, with the aim of increasing understanding and ultimately developing 

novel therapeutic strategies. PH is a multifactorial disease; it has been 

challenging to simulate the disease accurately and therefore a number of 

animal models of PH exist, none of which recapitulate all the human 

manifestations of the disease. 

 

1.5.5.1 Chronic Hypoxia 

 

The link between exposure to either normo- or hypobaric hypoxic conditions 

and the development of PH was made by studying mountain climbers at high 

altitude, shedding light into a possible pathophysiological mechanism of PH 

(Arias-Stella and Saldana, 1963; Houston et al., 1987). Pulmonary hypoxia 

caused by either environmental conditions (e.g. high altitude) or disease (e.g. 

sleep apnoea) triggers an adaptive pulmonary specific physiological 

mechanism; the lung attempts to optimise the ventilation/perfusion (V/Q) ratio 

and gas exchange by diverting blood flow away from poorly ventilated areas 

(Ward and McMurtry, 2009). O2 concentrations are detected by mitochondria 

present in PASMCs, this initiates a signalling cascade, ultimately leading to 

increased intracellular calcium (Ca2+) concentration and thus vasoconstriction 

(Aaronson et al., 2006; Ward et al., 2004; Waypa and Schumacker, 2008). 

However, in situations where hypoxic conditions are sustained (i.e. chronic 

hypoxia), for example at high altitude, the enhanced shear stress leads to the 

release of vasoconstrictors (TXA2, ET-1, 5-HT), which maintain the high 

pulmonary vascular tone but also leads to adaptive vascular remodelling 

(Eddahibi et al., 2000; Fike et al., 2002; Frid et al., 2006; Li et al., 1994). In 

general, this is characterised by PASMC and adventitial fibroblast proliferation 

causing muscularisation of precapillary resistance vessels with no significant 

EC proliferation, thus leaving the vessel un-occluded and retaining flow 

(Rabinovitch et al., 1979; Stenmark et al., 1987). This response to hypoxia is 

not universal across species, strains within species and even individuals within 
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strains; gender and age are factors that influence an individual’s response to 

hypoxic conditions (Dempsey et al., 1996; Haworth and Hislop, 2003; Miettinen 

et al., 1981). The most obvious example of species differences is studying 

animals that do not develop PH at high altitude; for example, the yak, pika, 

snow pig and llama (Durmowicz et al., 1993; Stenmark et al., 2006b). Animals 

that develop PH in hypoxic conditions include humans, mice, rats and neonatal 

calves; however despite developing PH, they differ in severity and specific 

pathological features. Moreover, humans and neonatal calves develop severe 

PH characterised by large increases in PAPm (can be as high as systemic 

pressures), significant muscularisation of normally non-muscularised vessels 

and adventitia thickening, although it’s key to note that these features are 

reversible upon returning to normoxic conditions, contrary to what is observed in 

patients with PH (Anand et al., 1988; Arias-Stella and Saldana, 1963; Stenmark 

et al., 1987). In contrast, rats and mice develop less severe PH characterised 

by smaller increases in PAPm and less severe pulmonary vascular remodelling 

(Estrada and Chesler, 2009; Frank et al., 2008; Meyrick and Reid, 1980; 

Miettinen et al., 1981; Tuchscherer et al., 2007). In addition, RVH in response to 

hypoxia is not severe enough to develop to the point of failure, again, in contrast 

to PH patients where the development of RVH inevitably leads to death (Drexler 

et al., 2008). In addition to differences between animals, chronic hypoxia 

induces variable pathology between strains within the same species. Different 

strains of rat, Fischer 344 (F344), Sprague-Dawley (SD), Fawn hooded (FH) 

and Wistar Kyoto (WKY), respond differently to chronic hypoxia, with some 

strains demonstrating far greater resistance to others (e.g. FH; Wilkins et al., 

2015). Although, until recently, the cause of this phenomenon has mostly 

remained a mystery; except in the case of FH rats who develop PH 

spontaneously (4 weeks of age) because of an inherent inability to uptake 

serotonin into platelets, a similar feature observed in PH patients (Cras et al., 

2000; Hervé et al., 1995; Kentera et al., 1988). Zhao et al., (2015), identified a 

series of single nucleotide polymorphisms resulting in frameshift mutations in 

several genes within different strains of rat, which account for their different 

susceptibility to development of PH. These studies identified a novel 

pathological mechanism for PH implicating the zinc ion transporter ZIP12, such 

reduced ZIP12 expression attenuates the development of PH in rats exposed to 
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chronic hypoxia. Similar stain differences are also seen in mice, driven by a 

differing gene expression profile within the pulmonary vascular cell (Bull et al., 

2007; Hoshikawa et al., 2003; Tada et al., 2013). Despite this, the use of 

rodents in the chronic hypoxia model for PH research remains the most 

commonly utilised technique, probably because of its phenotypic reproducibility, 

practicality and low cost, compared to using larger mammals (Lawrie, 2014).  

 

1.5.5.2 Monocrotaline model 

 

Seeds from the plant Crotalaria Spectabilis contain a toxic compound called  

monocrotaline (MCT) and when ingested causes PH (Kay et al., 1967). MCT is 

a 11-membered macrocyclic pyrrolizidine alkaloid that is subsequently activated 

to the pyrrole metabolite by oxidases present in the liver, converting it into a 

reactive bi-functional, cross-linking compound, dehydromonocrotaline (Reid et 

al., 1998; Wilson et al., 1992). Production of the reactive pyrrole metabolite is 

the pathological determining factor. Differences in cytochrome-P450 3A isoform 

as a result of sex, age and species vary the pathology produced by MCT. The 

importance of the cytochrome-P450 3A isoform has been demonstrated by 

specifically inhibiting this enzyme, reducing the severity of MCT-dependent PH. 

Conversely, induction of this enzyme can increase the severity of pathology 

(Kasahara et al., 1997; Reid et al., 1998). The exact mechanism by which MCT 

causes PH is not completely understood. However, MCT exposure is found to 

damage the pulmonary arterial endothelial cells (PAECs) causing a disruption of 

NO signalling and an increase in proliferative and anti-apoptotic factors (Huang 

et al., 2010; Lee et al., 2009; Rosenberg and Rabinovitch, 1988). The prominent 

histopathological feature of this model is medial hypertrophy and not 

obstructive, EC derived, complex lesion formation (Stenmark et al., 2009). The 

exact mechanism underlying medial hypertrophy is also not known and whether 

it is directly caused by interactions with ECs or by systemic inflammation 

triggered by MCT. Therefore, there are several caveats with this model 

including the limited understanding of the mechanisms underlying vascular 

remodelling. Firstly, vascular remodelling is not strictly confined to the distal 

pulmonary arteries as seen in PH patients but is also found in the veins 
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(Meyrick, 1982; Wilson et al., 1989). In addition, other pathological features, not 

found in PH patients, are associated with MCT exposure, including liver toxicity, 

occlusion of pulmonary veins, alveolar oedema and alveolar septal cell 

hyperplasia (Copple, 2003; Dumitrascu et al., 2008; Lalich et al., 1977). 

Furthermore and probably most importantly, although MCT treated rats develop 

significant increases in PAPm and RVH which eventually leads to heart failure, 

similar to that of PH patients, MCT acts directly on the heart inducing 

lymphocytic myocarditis, making RV failure due to PH hard to determine and 

likely MCT-induced (J. G. Gomez-Arroyo et al., 2012). 

 

1.5.5.3 Hypoxia plus SU5416 model 

 

In 2001, Taraseviciene-Stewart et al., investigated the role of EC hyper-

proliferation that form the characteristic plexiform lesions in an animal model of 

PAH. VEGF signalling is important for maintaining and differentiating vascular 

ECs and expression is increased in complex lesions found in PAH patients 

(Tuder et al., 2001, 1994). Increased angiogenesis appears to be a 

compensatory mechanism in response to hypoxia with enhanced expression of 

pro-angiogenic substances (e.g. VEGF) attenuating experimental PH, in 

addition the number of peripheral vessels is commonly reduced in patients with 

PH, a phenomenon called vascular pruning (McLaughlin and McGoon, 2006; 

Partovian et al., 2000; Pascaud et al., 2003). Using the VEGFR-2 inhibitor 

Sugen5416 (SU5416; Semaxinib), this group found that VEGFR inhibition in 

normal conditions caused slight pulmonary vascular remodelling, but when 

combined with hypoxic conditions, resulted in severe, progressive, irreversible 

PAH, characterised by extensive EC proliferation in the pulmonary arterioles 

(Taraseviciene-Stewart et al., 2001). The authors concluded VEGFR inhibition 

caused EC apoptosis leading to the rise of an apoptotic-resistant, hyper-

proliferating EC phenotype, commonly found in complex lesions of PH patients 

(Sakao et al., 2005; Voelkel et al., 2002). This hypothesis was investigated 

using a caspase inhibitor, preventing EC apoptosis, and attenuating the PH 

developed in this model (Taraseviciene-Stewart et al., 2001). Loss of 

endothelial barrier integrity through EC apoptosis results in exposing the 
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underlying PASMCs to circulating growth factors, prompting PASMC 

proliferation. A significant and defining feature of this model is that in the rats, 

when returned to normoxic conditions, pulmonary vascular remodelling 

progresses (unlike in the chronic hypoxia model). Furthermore, this remodelling 

progresses until complex lesions develop similar to that seen in PH patients, 

accompanied by severe RVH that eventually leads to failure and death, offering 

a more representative model of the human disease (Abe et al., 2010). 

Unsurprisingly, upon development of this model this same combination was 

attempted in mice, largely to allow exploitation of transgenics. Taraseviciene-

Stewart et al., (2001) found using the same protocol used in rats (a single 

injection of SU5416) did not produce a PH like pathology (J. Gomez-Arroyo et 

al., 2012). However, subsequently it was found that if the SU5416 was dosed 3 

times (once per week) whilst the mice were still exposed to hypoxia, this elicited 

significant increases in PAPm, RVH and vascular remodelling with the 

appearance complex occlusive lesions characteristic of PH, compared to that 

seen in mice exposed to hypoxia alone (Ciuclan et al., 2011). However, slight 

reversal of RVSP and RVH was observed after returning the animals to 

normoxia for 2 weeks and the extent of complex lesion were not quantified, 

begging the question how permanent this pathology is (Ciuclan et al., 2011). 

Nevertheless, the authors of this study did observe significant early EC 

apoptosis followed by late EC proliferation in the lungs of these mice, evident by 

significantly enhanced early caspase-3 staining that plateaus over time and is 

followed by increased EC proliferating cell nuclear antigen (PCNA) staining, 

demonstrating a shift from EC apoptosis to proliferating phenotype, which is 

now understood to be the defining feature of PH but this feature has yet to be 

recapitulated in other mouse models of PH. 

 

1.5.5.4 Bleomycin-induced model of PH 

 

Bleomycin is a chemotherapeutic antibiotic, produced by the bacterium 

Streptomyces verticillus (Adamson, 1976; Umezawa et al., 1967). The drug is 

used in the treatment of lymphoma, squamous cell carcinomas and germ cell 

tumours, but has the undesirable side effect of producing interstitial lung 
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disease (ILD), specifically pulmonary fibrosis; this observation led to the 

rationale that this drug can be used in the research of PH secondary to ILD 

(Muggia et al., 1983). Bleomycin is among a large groups of agents which 

cause ILD, including: anti-microbial (e.g. amphotericin B), anti-inflammatory 

(e.g. methotrexate), biological (e.g. rituximab), cardiovascular (e.g. 

procainamide), chemotherapeutic (e.g. doxorubicin), and miscellaneous (e.g. 

talc; Schwaiblmair et al., 2012). The acute lung injury caused by these agents 

leads to the development of pneumonia, and the ensuing chronic pulmonary 

inflammation eventually leads to a fibrotic change that ultimately interferes with 

gas exchange. Areas of poor gas exchange results in hypoxia and 

vasoconstriction, thus PH (Seeger et al., 2013). 

 

Bleomycin is believed to produce superoxide and hydroxyl free radicals, which 

disrupt DNA within tumour cells, thereby interrupting the cell-cycle (Claussen 

and Long, 1999). In the lung, this leads to an inflammatory response, activating 

fibroblasts, leading to fibrosis (Chaudhary et al., 2006; Grande et al., 1998). The 

lungs are particularly susceptible to bleomycin because of relatively low 

expression of bleomycin hydrolase, an enzyme that inactivates the drug (Sebti 

et al., 1989). Lung instillation (oropharyngeal; o.p.) of bleomycin causes acute 

lung injury, specifically formed of increased epithelial apoptosis, followed by a 

characteristic increase in the secretion of pro-inflammatory cytokines (e.g. IL-

1β, TNF-α, IL-6, interferon-γ; INF-γ) from macrophages and neutrophils, the 

crucial first-step in this models fibrotic pathogenesis (Chaudhary et al., 2006; 

Janick-Buckner et al., 1989; Mungunsukh et al., 2010). Next, significant 

production of pro-fibrotic markers (TGF-β, fibronectin, procollagen-1) occurs, 

which peaks at around day 14 (Chaudhary et al., 2006; Kolb et al., 2001). Of 

note, TGF-β and myofibroblasts are considered central to the aberrant fibrotic 

response as they specifically contribute to the exaggerated extracellular matrix 

deposition and are also found in human IPF (Coward et al., 2010; Dhainaut et 

al., 2003; Harari and Caminati, 2010; Hardie et al., 2009; Sheppard, 2001; Zhao 

et al., 2002). This extracellular matrix consists mainly of collagen, which forms 

distinctive histopathological formations; intra-alveolar buds, mural incorporation 

and obliterative changes (Ebihara et al., 2000; Lucey et al., 1996; Usuki and 

Fukuda, 1995). This model of pulmonary fibrosis is highly reproducible and 
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produces a fibrotic histologic picture similar to human disease, characterised by 

patchy parenchymal inflammation, epithelial cell injury with reactive hyperplasia, 

basement membrane damage and interstitial as well as intra-alveolar fibrosis 

(Epperly et al., 2006). However, fibrosis initiated using this model eventually 

resolves, unlike the human disease, although this process can take many 

months (Chua et al., 2005; Izbicki et al., 2002). 
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1.6 Hypotheses and specific aims 

 

For well over half a century, cGMP has been thoroughly characterised as an 

integral regulator of cardiovascular homeostasis. My thesis research focused on 

further optimisation of cGMP for therapeutic gain in cardiovascular disease and 

comprised two main strands: (1) the role of MRPs in vascular physiology and 

(2) the cytoprotective function of CNP in pulmonary vascular disease: 

 

(1) There is emerging evidence demonstrating MRPs play a role in regulating 

vascular homeostasis by modulating cGMP and cAMP levels, and as potential 

targets for the treatment of cardiovascular disease. However, previous work has 

focussed on cAMP-dependent effects of MRPs. Therefore, in this thesis I have 

investigated the hypothesis that ‘MRPs play a pivotal role in regulating local 

cGMP concentrations and cardiovascular homeostasis’. To address this 

question I explored the function of MRPs to potentiate well characterised roles 

of cGMP in the vasculature; vascular reactivity, VSMC proliferation and BP. 

 

(2) CNP plays an integral role in cardiovascular homeostasis regulating 

leukocyte adherence, VSMC proliferation, endothelial integrity, BP and fibrosis 

via both cGMP -dependent and -independent processes. PH is a severe 

pulmonary vascular disease underlined by vascular dysfunction, which is 

treated by drugs promoting cGMP signalling, but currently a role for CNP in 

maintaining pulmonary vascular homeostasis, or the pathogenesis of PH, 

remains unclear. In addition, the mechanism by which CNP might elicit a 

beneficial activity has not been elucidated (i.e. CNP/NPR-B or CNP/NPR-C). 

Thus, in this thesis I have also tested the hypothesis that ‘endogenous 

endothelial-derived CNP is an innate defence mechanism that protects 

against PH’. To achieve this goal, I used an experimental models of PH and 

mice deficient in endothelial-derived CNP and global NPR-C KO.  
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CHAPTER 2: METHOD & MATERIALS 

 

2.1 Materials & reagents 

 

ANP (Cambridge Bioscience, Cambridge, UK), CNP (Calbiochem, Nottingham, 

UK), spermine-NONOate (Sp-NO; Sigma Aldrich, Poole, UK), MK571 (MK; 

Sigma Aldrich, Poole, UK), Iso (Sigma Aldrich, Poole, UK), phenylephrine (PE; 

Sigma Aldrich, Poole, UK), acetylcholine (ACh; Sigma Aldrich, Poole, UK), were 

dissolved in deionised, distilled water (ddH2O). For acute blood pressure 

studies, sodium nitroprusside (SNP; Sigma Aldrich, Poole, UK), 

diethylenetriamine/nitric oxide adduct (D-NO; Sigma Aldrich, Poole, UK) and 

MK571 were dissolved in saline (0.9 %; Baxter, Newbury, UK). For telemetry 

studies MK571 was dissolved in normal animal drinking water. Probenecid (PB; 

Sigma Aldrich, Poole, UK) was dissolved in dimethyl sulfoxide (DMSO; Sigma 

Aldrich, Poole, UK) and identical percentage DMSO concentrations added to 

tissues (0.3 % DMSO). SU5416 (Tocris Bioscience, Bristol, UK) was suspended 

in carboxymethylcellulose sodium, (CMC; 0.5 %; w/v), NaCl (0.9 %; w/v), 

polysorbate 80 (Tween 80; 0.4 %; v/v), benzyl alcohol (0.9 %; v/v; all sourced 

from Sigma Aldrich, Poole, UK). 

 

2.2 Organ bath pharmacology 

 

All animal procedures were conducted in accordance with the UK Home Office 

Animals (Scientific Procedures) Act of 1986 and adhered to ARRIVE (Animal 

Research: Reporting of In Vivo Experiments) guidelines. Animals were housed 

in a temperature-controlled environment (~24 °C) with a 12-hour light–dark 

cycle. Food and water were accessible ad libitum.   
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Male and female mice (C57/BL6; 20-30 g) were euthanised by cervical 

dislocation. The thoracic aortae were carefully removed, cleaned of connective 

tissue and cut into three to four ring segments of approximately 4 mm in length. 

Aortic rings were mounted in 10 ml organ baths containing Krebs-bicarbonate 

buffer (composition (mM): Na+ 143; K+ 5.9; Ca2+ 2.5; Mg2+ 1.2; Cl- 128; HCO3
- 

25; HPO4
2- 1.2; SO4

2- 1.2; D-Glucose 11) and gassed with carbogen (95 % O2/ 

5 % CO2; British Oxygen Company; BOC; Guildford, UK). Tension was initially 

set at 0.3 g and reset at intervals following an equilibration period of 

approximately 1 h during which time fresh Krebs-bicarbonate buffer was 

replaced every 15 min. After equilibration, the rings were primed with three 

separate additions of KCl (48 mM; Sigma Aldrich, Poole, UK), at each addition 

maximum tension was observed (3 min) before being washed out by the 

addition of fresh Krebs-bicarbonate buffer at 10 min intervals for a total of 30 

min. Cumulative concentrations of PE (1 nM to 3 µM) were then added until a 

maximum contraction was observed. Another washout period was performed. 

The vessels were then contracted to 80 % of the tension elicited by the 

maximum PE concentration (EC80). Once this response had stabilised, a single 

addition of ACh (1 µM) was added to the bath to assess the integrity of the 

endothelium. If the contractions to PE were not maintained, or relaxations less 

than 50 % of the PE-induced tension to ACh were not observed, the tissues 

were discarded. After another wash period, the vessels were again contracted 

to 80 % of the maximum tension elicited by PE and then cumulative 

concentrations of each pharmacological treatment were administered. 

Pharmacological treatments investigated were ANP (1 pM to 300 nM), ACh (1 

nM to 3 µM), MK571 (100 nM to 50 µM), CNP (1 nM to 3 µM), the NO-donor 

spermine-NONOate (Sp-NO; 1 nM to 30 µM), the β-adrenoceptor agonist Iso 

(300 pM to 300 nM), and PB (1 µM to 1 mM). In separate experiments, tissues 

were pre-incubated with sub-threshold concentrations of MK571 (3 µM) or PB 

(300 µM; determined following construction of concentration-response curves 

for each compound; Figure 13 & Figure 14) for 10 min prior to cumulative 

concentrations of either; ACh, ANP, CNP, Sp-NO and Iso being added to pre-

contracted vessels.  
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2.3 Freezing cells 

 

Cells were stored in liquid nitrogen (N2; BOC) when not being cultured. Cells 

were aliquoted into cryogenic vials in 90 % bovine serum (BS; Life 

Technologies Ltd, Paisley, UK) and 10 % DMSO at 0.5 x 106 cells/ml. Vials 

were then slowly frozen in a -80 ⁰C freezer using a Mr. Frosty™ freezing 

container (Thermo Fisher Scientific, Leicestershire, UK) for 24 h before being 

moved and transferred to liquid N2 for long term storage.  

 

2.4 Thawing cells 

 

Vials of cells were removed from liquid N2 and immediately placed into a water 

bath kept at 37 ⁰C. The lid was unscrewed slightly, to allow pressure 

equilibration, then re-tightened. Once most of the vial was thawed, pre-warmed 

cell culture media was added, then the cell suspension pipetted directly into a 

cell culture flask containing pre-warmed media. The flask was placed in a cell 

culture incubator over night before the medium was changed the next day to 

remove all the DMSO.  

 

2.5 Cell proliferation assays 

 

Human coronary artery smooth muscle cells (hCASMC; passage 6-7; Lonza, 

Basel, Switzerland) were seeded onto 6-well plates at a density of 3 x 105 

cells/well. Cells were initially grown for 24 h in routine cell culture medium 

(Smooth Muscle Growth Medium-2; Lonza, Basel, Switzerland) with SmGM™-2 

BulletKit containing foetal bovine serum (FBS; 5 %), human epidermal growth 

factor (hEGF), insulin, human fibroblastic growth factor (hFGF), and 

gentamicin/amphotericin B (proprietary concentrations). Subsequently, the cells 

were serum-starved (FBS: 0.5 %; 1:10 dilution of routine cell culture medium) 

for 48 h to synchronise cell-cycles. Cells were then incubated in medium 
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containing 5 % serum in the presence of vehicle (sterile ddH2O) or 

pharmacological treatment, and cells (stained with trypan blue diluted 1:1 to 

identify dead cells) counted at 0, 24, 48, 72, 96 h intervals using a 

haemocytometer. Individual plates were set up with the same treatments, in 

duplicate wells, one for each time-point. The pharmacological agents 

investigated were ANP (1 µM), D-NO (10 µM), MK571 (30 nM, 300 nM, 3 µM, 

30 µM) and ANP or D-NO combined with MK571 (30 nM). 

 

2.6 Cyclic GMP assay 

 

Intracellular and extracellular cGMP concentrations were measured by enzyme-

linked immunosorbent assay (ELISA; GE Healthcare, Hatfield, UK) following 24 

h of treatment in the same cells used for the proliferation assays described 

above. Each well was pre-incubated with the non-selective PDE inhibitor 3-

isobutyl-1-methylxanthine (IBMX; 100 µM; Sigma Aldrich, Poole, UK) for 30 min 

prior to cell and supernatant harvest to prevent breakdown of cGMP during cell 

processing. Cell pellet (for intracellular cGMP) and supernatant (for extracellular 

cGMP) were frozen and stored at -80 oC until use. The ELISA was conducted 

as per manufacturer’s instructions. 

 

2.7 Acute blood pressure measurement in 

anaesthetised mice 

 

Male C57/BL6 mice (~25 g) were anaesthetised with 1.5 % isoflurane (Abbott 

Laboratories Ltd, Queenborough, UK) in O2 and placed supine on a 

thermostatically controlled heating blanket (37.0 °C ± 0.5 °C). To measure blood 

pressure, the left common carotid artery was isolated and a fluid-filled (heparin; 

100 U/ml diluted in 0.9 % saline), 0.28 mm internal diameter cannula (Critchley 

Electrical Products Pty Ltd, Castle Hill, Australia) introduced into the artery. 

Blood pressure was measured using an in-line P23 XL transducer (Viggo-
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Spectramed, USA, California) and PowerLab system (ADInstruments, Castle 

Hill, Australia), calibrated beforehand, and recorded using LabChart 

(ADInstruments, Castle Hill, Australia). The jugular vein was cannulated for drug 

administration. The arterial cannula was flushed once with heparinised saline 

(heparin; 100 U/ml diluted in 0.9 % saline). After a minimum 10 min equilibration 

or until continuous stable pressure was observed, mice were given a weight 

adjusted (1 µl to 1 g of body weight) intravenous bolus injection of accumulative 

doses of MK571 (0.001, 0.01, 0.1, 1, 3 mg/kg). Since MK571 had little or no 

effect on blood pressure per se (Figure 32), the 3 mg/kg dose was chosen as 

‘sub-threshold.’ Subsequently, blood pressure was measured following 

intravenous (i.v.) bolus administration of the NO-donor sodium nitroprusside 

(SNP; 1, 3, 10 µg/kg) or ANP (1, 10, 100 µg/kg) in the absence and presence of 

MK571 (3 mg/kg; pre-incubated for 30 min). 

 

2.8 Chronic blood pressure measurement in 

conscious, telemeterised mice 

 

Male C57/BL6 mice (~25 g) were implanted with either a DSI PhysioTel® PA-

C10 or HD-X11 telemetry probe (Data Sciences International, Minneapolis, 

USA). Each probe was cleaned and sterilised according to the manufacturer’s 

guidelines. The probe was soaked in Terg-A-Zyme® (1 % w/v; Sigma Aldrich, 

Poole, UK) for a maximum of 72 h, rinsed with water, dried and stored until the 

day of implantation. Prior to insertion the probe was sterilised by soaking in 4 % 

glutaraldehyde (Sigma Aldrich, Poole, UK) for a maximum of 40 min, then 

washed with sterile saline and finally re-gelled to ensure the absence of air 

bubbles in the catheter tip. Mice were sedated with 5 % isoflurane in O2 and 

anaesthesia was maintained using 1.5-2 % isoflurane in O2. The left common 

carotid artery was exposed, isolated and cleaned of any surrounding tissue. A 

small incision was made in the carotid and the catheter inserted whilst 

submerged in saline to ensure no bubble form inside the catheter tip. The tip of 

the catheter was placed into the aortic arch, securely fastened and the 

transmitter body placed subcutaneously (s.c.) on the right flank. The incision 
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was stitched and each animal received post-operative analgesia consisting of 

0.3 μg vetergesic (Abbott Laboratories Ltd, Queenborough, UK) in 0.5 ml saline 

(s.c.). Animals were left to recover for a minimum of 7 days, after which 

haemodynamic recordings were taken for 64 h over the weekend to minimise 

noise disturbance. Mean arterial blood pressure (MABP), heart rate (HR) and 

activity were recorded for 2 min at 15 min intervals using Dataquest Art 

Acquisition System (Data Sciences International, Minneapolis, USA). Baseline 

haemodynamic measurements were taken one week before dosing. The body 

weight of animals was measured at the beginning of the experiment. The mean, 

normal daily drinking water consumption was calculated by measuring the 

volume of water consumed per day for three days. At the start of drug 

administration, drinking water bottles were replaced with bottles containing 

MK571 at a concentration which entailed each mouse received 25 mg/kg/day 

(based on a pre-determined mean consumption of 4 ml/mouse/day). A 24 h 

time period was used for analysis: starting from 1 pm Saturday and ending 1 pm 

Sunday (12 h light/dark) with dosing commencing 24 h before the start of this 

time period. 

 

2.9 Experimental models of pulmonary 

hypertension (PH) 

 

Based on arguments regarding experimental model suitability made in the 

Introduction, I employed two well-established protocols to evaluate a potential 

role for CNP in the pathogenesis of PH. 

 

2.9.1 Genotyping of animals 

 

NPR-C KO mice were generously donated to our laboratory by Prof. Oliver 

Smithies (University of North Carolina, USA; Matsukawa et al., 1999). 

Endothelial-specific CNP KO mice were generated and characterised in our 

laboratory (Moyes et al., 2014). Mouse ear clip samples were digested using 

DirectPCR lysis reagent (Viagen Biotech, Los Angeles, USA) and 0.3 mg/ml 
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proteinase K (Scientific Laboratory Supplies Ltd, Benfleet, UK) overnight at 55 

ºC. Samples were incubated at 85 ºC for 45 min to denature proteinase K 

followed by cooling to room temperature. A master mix of the polymerase chain 

reaction (PCR) mixture composed of: MyTaq™ Red Mix (Bioline, London, UK), 

primers (Table 4) DNA template (digested mouse ear clip solution) and sterile 

ddH2O in a total volume of 25 µl. The PCR conditions for each reaction are 

described in (Table 5). PCR products were loaded into wells formed from a pre-

made 2 % agarose gel (Sigma Aldrich, Poole, UK) containing GelGreen™ 

(Biotium, Hayward, USA) nucleic acid stain and resolved by gel electrophoresis, 

then viewed using an AlphaImager (Alpha-Innotech, Kasendorf, Germany). 

NPR-C KO mice were identified by a product of 413 base pairs (detecting the 

neomycin cassette used to delete the gene) compared to a 250 base pair 

product for WT; ecCNP KO mice were identified by the presence of two bands: 

CNP-floxed (956 base pairs) and Tie2-Cre (512 base pairs). The WT was 

identified by a 842 base pair product. 

 

Primer Primer nucleic acid sequence 

Floxed CNP forward 5’-CCCTGTGCTCAGACAGAAATGAG-3’ 

Floxed CNP reverse 5’-CGCATAACCAGTGAAACAGCATTGC-3’ 

Tie2 forward 5’-CCTTTATGCCAAGAGAACTTCCAGGAGG-3’ 

Tie2 reverse 5’-TCCTTCCTGACTTCCTTCTGCTCTCTATCC-3’ 

NPR-C forward 5’-CTTGGATGTAGCGCACTATGTC-3’ 

NPR-C reverse 5’-CACAAGGACACGGAATACTC-3’ 

NPR-C NEO 5’-ACGCGTCACCTTAATATGCG-3’ 

 

Table 4. A table describing the nucleic acid sequence of the primers used 

to genotype ecCNP and NPR-C KO and WT mice. 

A table describing the nucleic acid sequence of the primers used to genotype 

endothelial cell-specific C-type natriuretic peptide (ecCNP) and natriuretic 

peptide receptor-C (NPR-C) knockout (KO), heterozygous and wild-type (WT) 

mice. Adenine (A), cytosine (C), guanine (G), thymine (T), neomycin (NEO).  
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PCR Step Floxed CNP Tie2 NPR-C 

 94°C 10 min 95°C 10 min 95°C 5 min 

 

Denaturation 

Annealing 

Polymerisation 

x35 cycles 

94°C 30 s 

60°C 1 min 

68°C 2 min 

x40 cycles 

95°C 30 s 

58°C 1 min 

72°C 1 min 

x35 cycles 

93°C 1 min 

60°C 1 min 

72°C 1 min 

Extension 68°C 10 min 72°C 10 min 72°C 10 min 

 

Table 5. A table describing the PCR thermal cycler conditions used for 

each reaction. 

A table describing the polymerase chain reaction (PCR) thermal cycler 

conditions used to detect each of the three DNA sequences to genotype 

endothelial cell-specific C-type natriuretic peptide (ecCNP) and natriuretic 

peptide receptor-C (NPR-C) knockout (KO), heterozygous and wild-type (WT) 

mice. 

 

2.9.2 Hypoxia plus SU5416 model 

 

The VEGFR-2 inhibitor SU5416 was suspended in CMC (0.5 %; w/v), NaCl (0.9 

%; w/v), polysorbate 80 (Tween 80; 0.4 %; v/v), benzyl alcohol (0.9 %; v/v) in 

ddH2O, then vigorously vortexed, and sonicated for 6 min to produce a uniform 

suspension. In optimisation studies, animals (male C57/BL6 mice; ~25 g) were 

exposed to chronic normobaric hypoxia (10 % O2) for either 21 or 35 days, or 

21 days followed by 14 days of normoxia (21 %; the latter protocol termed 

‘Reversal’; Figure 8). Mice were administered SU5416 (20 mg/kg; s.c.) via 3 

injections (at weekly intervals). Control mice received vehicle (s.c.) with the 

same dosing regimen (3 injections, at weekly intervals; days 0, 7 and 14; Figure 

8). Control mice were kept at normoxia (21 % O2) for 21 days and treated with 

vehicle as described previously. For studies involving transgenic animals (e.g. 

ecCNP and NPR-C KO), 16 week old, male and female mice received weekly 

injections of SU5416 (20 mg/kg; s.c.; days 0, 7 and 14) in combination with a 21 

day hypoxia (10 % O2) period (Figure 8). Control mice received vehicle (s.c.; 



64 

 

days 0, 7 and 14) in combination with a 21 day normoxia period (21 % O2). 

 

Figure 8. Schematic describing method used for hypoxia plus SU5416 

experiments. 

For optimisation studies mice were dosed with SU5416 (20 mg/kg; s.c. at days 

0, 7 & 14) and exposed to either normoxia (21 % O2; control) or hypoxia (10 % 

O2) for 21 or 35 days, or 21 days hypoxia followed by 14 days normoxia 

(Reversal). For studies involving male and female endothelium-specific CNP 

knockout (ecCNP KO) and natriuretic peptide receptor-C knockout (NPR-C KO) 

mice with corresponding wild-type (WT) littermates involved dosing with 

SU5416 (20 mg/kg; s.c. at days 0, 7 & 14) or vehicle and exposure to hypoxia 

or normoxia for 21 days.  



65 

 

2.9.3 Bleomycin-induced model of pulmonary 

hypertension (PH)  

 

Male and female WT and NPR-C KO mice received a single oropharyngeal 

(o.p.) instillation, under light isoflurane anaesthesia, of Bleo-Kyowa® (Bleomycin 

Sulphate; Bleo; Nippon Kayaku Co. Ltd, Tokyo, Japan) weight adjusted (1 µl to 

1 g of body weight), resulting in individual mice receiving 4 mg/kg (4,000 IU or 4 

USP) dissolved in saline. Control mice received saline (o.p.) only. The mice 

were then left in normal housing conditions for 14 days before being euthanised 

(Figure 9). 

 

 

Figure 9. Schematic describing method used for bleomycin-induced 

pulmonary hypertension model. 

Studies involving male and female natriuretic peptide receptor-C knockout 

(NPR-C KO) mice and wild-type (WT) littermates were administered bleomycin 

(4 mg/kg; o.p.; day 0) followed by 14 days at normal laboratory conditions. 

 

2.9.4 Lung & heart morphology 

 

The whole lung was fixed with 5 % paraformaldehyde (PFA; Sigma Aldrich, 

Poole, UK) by inflating under constant pressure using a gravity fed apparatus 

(20 cm of H2O, 14.7 mm Hg; equivalent to physiological pulmonary pressure). 

The lungs were then left to fix for 4 h, transferred to a 15 % sucrose (Sigma 

Aldrich, Poole, UK) solution for 6 h, and permanently stored in 70 % ethanol 

(Fisher Scientific Ltd, Leicestershire, UK). The left lung was then removed, cut 
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transversely and the lower section paraffin embedded, sectioned and stained. 

Embedding, sectioning, mounting and staining were performed by the Barts 

Cancer Institute (BSI; London, UK) histology department. Mouse lungs from the 

hypoxia plus SU5416 model of PH were stained for α-smooth muscle actin (α-

SMA; Sigma Aldrich, Poole, UK) and used to assess pulmonary vascular 

remodelling. Pulmonary vascular remodelling was assessed by counting the 

number of non-muscularised (<25 % total α-SMA staining), partially-

muscularised (25 – 75 % α-SMA staining) and fully-muscularised (>75 % α-

SMA staining) vessels (Table 21 & Table 22). Every vessel <100 µm in 

diameter was counted using a microscope (x20 magnification) from a single 

slice of α-SMA stained lung, for each mouse. Percentage non-muscularised, 

partially-muscularised and fully-muscularised were then expressed graphically. 

Mouse lung sections from the bleomycin-induced model of PH were stained 

with Picrosirius red (PSR; BSI, London, UK) to stain for collagen and 

representative images of pulmonary fibrosis were taken (Table 23). The heart 

was removed, the right ventricle dissected under x8 magnification, and weighed 

to determine RVH (as calculated by right ventricle to left ventricle plus septum 

ratio; RV/[LV+S]; Fulton’s Index). 

 

2.9.5 Right ventricular systolic pressure (RVSP) & 

mean arterial blood pressure (MABP) 

measurement 

 

Both RVSP and MABP measurements were taken. The mice were 

anaesthetised with ~1.5 % isofluorane in O2 and placed supine on a 

thermostatically controlled heating blanket (37.0 °C +/- 0.5 °C). RVSP was 

measured first; the right jugular vein was isolated and a Millar catheter (Millar 

Instruments; SPR-671, size 1.4F; Houston, USA) introduced into the superior 

vena cava and then advanced into the right ventricle. The breathing rate was 

maintained between 100-120 breaths per minute and a 2 min section of stable 

pressure was recorded. For MABP, the left common carotid artery was isolated 

and a fluid-filled catheter (described previously) introduced into the artery and a 

2 min period of stable pressure recorded. Both MABP and RVSP were 
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measured using an in-line P23 XL transducer (Viggo-Spectramed, Oxnard, 

USA) and recorded onto a pre-calibrated PowerLab system (ADInstruments, 

Castle Hill, Australia). RVSP and MABP were calculated as mean pressure over 

a 2 min recording. 

 

2.10 Statistics 

 

Statistical analyses were carried out using GraphPad Prism version 5 

(GraphPad software, California, USA). When comparing two groups of data a 

two-tailed, unpaired, Student’s t-test was used. Three or more groups of data 

were compared using one-way ANOVA followed by a Bonferroni multiple 

comparisons test. Two-way analysis of variance (ANOVA) was used to compare 

data affected by two factors; organ bath pharmacology (relaxation/contraction & 

concentration), acute changes in BP (BP & dose), animal models of PH (body 

weight & time), vascular remodelling (vessel type & number of vessels) and cell 

proliferation studies (cell growth & time). For organ bath experiments curves 

were fitted to the data using nonlinear regression and the concentration of each 

drug, giving a half-maximal response (EC50), was used to compare potency. 

Exponential growth curves were fitted to cell proliferation data. Statistical 

significance was achieved when P<0.05. Results are expressed as mean ± 

standard error of the mean (SEM) of n repeats or animals.  
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CHAPTER 3: RESULTS 1 

 

3 Investigation of the role of MRPs in 

vascular homeostasis 

 

3.1 Effect of MRP inhibition on vascular reactivity 

 

Functional pharmacological studies were performed on mouse thoracic aorta. 

Concentration-dependent responses to the contractile agent PE were 

performed to determine vessel viability and an appropriate EC80 concentration 

to pre-contract vessels for the study of vasorelaxant drugs (Figure 10 & Figure 

11). All vessels relaxed >50 % to ACh (1 µM) pre-contracted with an EC80 

concentration of PE, indicating the presence of an intact endothelium (Figure 

12). The MRP inhibitors MK571 (100 nM to 50 µM) and PB (1 µM to 1 mM) 

produced concentration-dependent relaxations of PE-induced tone, with the 

highest concentrations of each resulting in 100 % relaxation (Figure 13 and 

Figure 14). Sub-threshold (relaxation <20 %) concentrations of MK571 (3 µM) 

and PB (300 µM) were chosen to assess the effects of these MRP inhibitors on 

vasorelaxant responses. 

 

The endothelium-dependent vasorelaxant ACh exerted concentration-

dependent relaxations of PE pre-contracted mouse aorta that were not 

significantly different in the presence of either MK571 (3 µM; Figure 15) or PB 

(300 µM; Figure 16). The NO-donor, Sp-NO, CNP, ANP and the β-adrenoceptor 

agonist Iso all induced concentration-dependent relaxations of PE-tone that 

were sensitive to MRP inhibition. The greatest effect of MRP inhibition was 

observed on vasorelaxant responses to ANP; MK571 significantly increased 

ANP potency by almost a half Log (Log EC50: -8.53 ± 0.085 to -9.011 ± 0.12; 

P<0.001; Figure 17). PB also significantly enhanced the vasodilator effect of 

ANP (Log EC50: -8.51 ±0.091 to -8.64 ± 0.12; P<0.001; Figure 18). Responses 
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to CNP were significantly, albeit modestly, increased by MK571 (Log EC50: -

6.84 ± 0.041 to -6.98 ± 0.034; P<0.001; Figure 19) and PB (Log EC50: -6.87 ± 

0.14 to -9.011 -6.91 ± 0.098; P<0.05; Figure 20). In addition, PB, but not 

MK571, significantly enhanced the maximal response to CNP (Emax 88.50 ± 

8.94 to 95.97 ± 5.32 % Figure 20). The potency of Sp-NO was marginally, but 

significantly, enhanced when combined with MK571 (Log EC50: -6.84 ± 0.068 to 

-6.58 ± 0.028; P<0.01; Figure 21). Conversely, PB reduced the potency of Sp-

NO producing a significant rightward shift in the relaxation response curve (Log 

EC50: -6.36 ± 0.07 to -6.58 ± 0.03; P<0.05; Figure 22). Finally, PB (Log EC50  

-6.64 ±0.13 to -6.90 ±0.16; P<0.01; Figure 24) and MK571 (Log EC50 -6.63 ± 

0.14 to -6.97 ± 0.13; P<0.001; Figure 23) significantly increased the potency of 

Iso. 
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EFFECT OF PE IN MOUSE AORTIC RINGS 
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Figure 10. Concentration-response curve to PE in mouse aortic rings.  

Contraction is expressed as mean ± SEM increase in absolute tension (g). 

n=11. 

 

 

 

Log EC50 (M) Emax (g) 

-7.03 ± 0.11 0.38 ± 0.03 

 

Table 6. Log EC50 and Emax values for PE-induced contraction of mouse 

aortic rings.  

Log EC50 is expressed as mean ± SEM [M]. Emax is expressed as mean ± SEM 

increase in absolute tension (g). n=11. 
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EFFECT OF PE IN MOUSE AORTIC RINGS 
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Figure 11. Concentration-response curve to PE in mouse aortic rings.  

Contraction is expressed as mean ± SEM percentage of the maximal 

contraction to K+ (48 mM). n=7. 

 

 

 

Log EC50 (M) Emax (%) 

-7.12 ± 0.10 67.49 ± 4.24 

 

Table 7. Log EC50 and Emax values for PE-induced contraction of mouse 

aortic rings.  

Log EC50 is expressed as mean ± SEM [M]. Emax is expressed as mean ± SEM 

percentage contraction of the maximal increase in tension to K+ (48 mM). n=7. 
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EFFECT OF ACh IN MOUSE AORTIC RINGS 
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Figure 12. Concentration-response curve to ACh in mouse aortic rings.  

Relaxation is expressed as mean ± SEM percentage reversal of PE-induced 

tone. n=12. 

 

 

 

Log EC50 (M) Emax (%) 

-7.33 ± 0.06 72.02 ± 2.15 

 

Table 8. Log EC50 and Emax values for ACh-induced relaxation of mouse 

aortic rings.  

Log EC50 is expressed as mean ± SEM [M]. Emax is expressed as mean ± SEM 

percentage reversal of PE-induced tone. n=12. 
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EFFECT OF MK571 IN MOUSE AORTIC RINGS 
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Figure 13. Concentration-response curve to MK571 in mouse aortic rings.  

Relaxation is expressed as mean ± SEM percentage reversal of PE-induced 

tone. n=6. 

 

 

 

Log EC50 (M) Emax (%) 

-4.96 ± 0.05 109.70 ± 10.79 

 

Table 9. Log EC50 and Emax values for MK571-induced relaxation of mouse 

aortic rings.  

Log EC50 is expressed as mean ± SEM [M]. Emax is expressed as mean ± SEM 

percentage reversal of PE-induced tone. n=6. 
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EFFECT OF PB IN MOUSE AORTIC RINGS 
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Figure 14. Concentration-response curve to PB in mouse aortic rings.  

Relaxation is expressed as mean ± SEM percentage reversal of PE-induced 

tone. n=4. 

 

 

 

Log EC50 (M) Emax (%) 

-2.87 ± 0.26 133.30 ± 34.63 

 

Table 10. Log EC50 and Emax values for PB-induced relaxation of mouse 

aortic rings. 

Log EC50 is expressed as mean ± SEM [M]. Emax is expressed as mean ± SEM 

percentage reversal of PE-induced tone. n=4. 
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EFFECT OF ACh IN MOUSE AORTIC RINGS IN THE ABSENCE AND 

PRESENCE OF MK571 
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Figure 15. Concentration-response curves to ACh in mouse aortic rings in 

the absence and presence of MK571. 

Relaxation is expressed as mean ± SEM percentage reversal of PE-induced 

tone in the absence and presence of MK571. n=6-8. 

 

 Log EC50 (M) Emax (%) 

Control -7.33 ± 0.055 72.02 ± 2.15 

+ MK571 (3 µM) -7.27 ± 0.072 69.71 ± 2.83 

 

Table 11. Log EC50 and Emax values for ACh-induced relaxation of mouse 

aortic rings in the absence and presence of MK571. 

Log EC50 is expressed as mean ± SEM [M]. Emax is expressed as mean ± SEM 

percentage reversal of PE-induced tone in the absence and presence of 

MK571. n=6-8.  
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EFFECT OF ACh IN MOUSE AORTIC RINGS IN THE ABSENCE AND 

PRESENCE OF PB 
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Figure 16. Concentration-response curves to ACh in mouse aortic rings in 

the absence and presence of PB.  

Relaxation is expressed as mean ± SEM percentage reversal of PE-induced 

tone in the absence and presence of PB. n=8-12. 

 

 Log EC50 (M) Emax (%) 

Control -7.05 ± 0.18 66.66 ± 7.86 

+ PB (300 µM) -6.90 ± 0.23 69.36 ± 10.90 

 

Table 12. Log EC50 and Emax values for ACh-induced relaxations of mouse 

aortic rings in the absence and presence of PB.  

Log EC50 is expressed as mean ± SEM [M]. Emax is expressed as mean ± SEM 

percentage reversal of PE-induced tone in the absence and presence of PB. 

n=8-12.  
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EFFECT OF ANP IN MOUSE AORTIC RINGS IN THE ABSENCE AND 

PRESENCE OF MK571 
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Figure 17. Concentration-response curves to ANP in mouse aortic rings in 

the absence and presence of MK571.  

Relaxation is expressed as mean ± SEM percentage reversal of PE-induced 

tone in the absence and presence of MK571. ***P<0.001 v control. n=10-17. 

 

 Log EC50 (M) Emax (%) 

Control -8.53 ± 0.09 101.00 ± 5.42 

+ MK571 (3 µM) -9.01 ± 0.12 102.00 ± 6.038 

 

Table 13. Log EC50 and Emax values for ANP-induced relaxation of mouse 

aortic rings in the absence and presence of MK571.  

Log EC50 is expressed as mean ± SEM [M]. Emax is expressed as mean ± SEM 

percentage reversal of PE-induced tone in the absence and presence of 

MK571. n=10-17.  
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EFFECT OF ANP IN MOUSE AORTIC RINGS IN THE ABSENCE AND 

PRESENCE OF PB 
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Figure 18. Concentration-response curves to ANP in mouse aortic rings in 

the absence and presence of PB.  

Relaxation is expressed as mean ± SEM percentage reversal of PE-induced 

tone in the absence and presence of PB. **P<0.01 v control. n=7-9. 

 

 Log EC50 (M) Emax (%) 

Control -8.51 ± 0.091 93.71 ± 4.40 

+ PB (300 µM) -8.64 ± 0.12 100.80 ± 5.71 

 

Table 14. Log EC50 and Emax values for ANP-induced relaxation of mouse 

aortic rings in the absence and presence of PB.  

Log EC50 is expressed as mean ± SEM [M]. Emax is expressed as mean ± SEM 

percentage reversal of PE-induced tone in the absence and presence of PB. 

n=7-9. 
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EFFECT OF CNP IN MOUSE AORTIC RINGS IN THE ABSENCE AND 

PRESENCE OF MK571 
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Figure 19. Concentration-response curves to CNP in mouse aortic rings in 

the absence and presence of MK571.  

Relaxation is expressed as mean ± SEM percentage reversal of PE-induced 

tone in the absence and presence of MK571. ***P<0.001 v control. n=6-7. 

 

 Log EC50 (M) Emax (%) 

Control -6.84 ± 0.0.041 96.96 ± 2.96 

+ MK571 (3 µM) -6.98 ± 0.034 98.67 ± 2.28 

 

Table 15. Log EC50 and Emax values for CNP-induced relaxation of mouse 

aortic rings in the absence and presence of MK571.  

Log EC50 is expressed as mean ± SEM [M]. Emax is expressed as mean ± SEM 

percentage reversal of PE-induced tone in the absence and presence of 

MK571. n=6-7.  
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EFFECT OF CNP IN MOUSE AORTIC RINGS IN THE ABSENCE AND 

PRESENCE OF PB 
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Figure 20. Concentration-response curves to CNP in mouse aortic rings in 

the absence and presence of PB.  

Relaxation is expressed as mean ± SEM percentage reversal of PE-induced 

tone in the absence and presence of PB. *P<0.05 v control. n=8-11. 

 

 Log EC50 (M) Emax (%) 

Control -6.87 ± 0.14 88.50 ± 8.94 

+ PB (300 µM) -6.97 ± 0.08 95.97 ± 5.32 

 

Table 16. Log EC50 and Emax values for CNP-induced relaxation of mouse 

aortic rings in the absence and presence of PB.  

Log EC50 is expressed as mean ± SEM [M]. Emax is expressed as mean ± SEM 

percentage reversal of PE-induced tone in the absence and presence of PB. 

n=8-11. 
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EFFECT OF Sp-NO IN MOUSE AORTIC RINGS IN THE ABSENCE AND 

PRESENCE OF MK571 

 

-8 -7 -6 -5 -4

0

20

40

60

80

100
Control

+ MK571 (3µM) **

Log [Sp-NO] (M)

R
e
la

x
a
ti

o
n

 (
%

)

 

Figure 21. Concentration-response curves to Sp-NO in mouse aortic rings 

in the absence and presence of MK571.  

Relaxation is expressed as mean ± SEM percentage reversal of PE-induced 

tone in the absence and presence of MK571 **P<0.01 v control. n=5. 

 

 Log EC50 (M) Emax (%) 

Control -6.36 ± 0.07 102.40 ± 3.85 

+ MK571 (3 µM) -6.58 ± 0.03 100.50 ± 1.41 

 

Table 17. Log EC50 and Emax values for Sp-NO-induced relaxation of mouse 

aortic rings in the absence and presence of MK571.  

Log EC50 is expressed as mean ± SEM [M]. Emax is expressed as mean ± SEM 

percentage reversal of PE-induced tone in the absence and presence of 

MK571. n=5.  
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EFFECT OF Sp-NO IN MOUSE AORTIC RINGS IN THE ABSENCE AND 

PRESENCE OF PB  
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Figure 22. Concentration-response curves to Sp-NO in mouse aortic rings 

in the absence and presence of PB.  

Relaxation is expressed as mean ± SEM percentage reversal of PE-induced 

tone in the absence and presence of PB. *P<0.05 v control. n=7-8. 

 

 Log EC50 (M) Emax (%) 

Control -6.69 ± 0.12 93.43 ± 5.65 

+ PB (300 µM) -6.33 ± 0.12 93.08 ± 5.98 

 

Table 18. Log EC50 and Emax values for Sp-NO-induced relaxation of mouse 

aortic rings in the absence and presence of PB.  

Log EC50 is expressed as mean ± SEM [M]. Emax is expressed as mean ± SEM 

percentage reversal of PE-induced tone in the absence and presence of PB. 

n=7-8. 
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EFFECT OF Iso IN MOUSE AORTIC RINGS IN THE ABSENCE AND 

PRESENCE OF MK571  
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Figure 23. Concentration-response curves to Iso in mouse aortic rings in 

the absence and presence of MK571.  

Relaxation is expressed as mean ± SEM percentage reversal of PE-induced 

tone in the absence and presence of MK571. ***P<0.001 v control. n=7-9. 

 

 Log EC50 (M) Emax (%) 

Control -6.63 ± 0.14 94.03 ± 9.21 

+ MK571 (3 µM) -6.97 ± 0.13 96.65 ± 8.23 

 

Table 19. Log EC50 and Emax values for Iso-induced relaxation of mouse 

aortic rings in the absence and presence of MK571.  

Log EC50 is expressed as mean ± SEM [M]. Emax is expressed as mean ± SEM 

percentage reversal of PE-induced tone by Iso in the absence and presence of 

MK571. n=7-9.  
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EFFECT OF Iso IN MOUSE AORTIC RINGS IN THE ABSENCE AND 

PRESENCE OF PB  
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Figure 24. Concentration-response curves to Iso in mouse aortic rings in 

the absence and presence of PB.  

Relaxation is expressed as mean ± SEM percentage reversal of PE-induced 

tone in the absence and presence of PB. **P<0.01 v control. n=7-8. 

 

 Log EC50 (M) Emax (%) 

Control -6.64 ± 0.13 70.93 ± 5.62 

+ PB (300 µM) -6.90 ± 0.16 75.12 ± 6.86 

 

Table 20. Log EC50 and Emax values for Iso-induced relaxation of mouse 

aortic rings in the absence and presence of PB.  

Log EC50 is expressed as mean ± SEM [M]. Emax is expressed as mean ± SEM 

percentage reversal of PE-induced tone in the absence and presence of PB. 

n=7-8. 
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3.2 Effect of MRP inhibition on vascular smooth 

muscle cell (VSMC) proliferation 

 

Having demonstrated that MRP inhibition augmented cGMP- (and cAMP-) 

dependent relaxations of isolated aorta, the objective of these experiments was 

to determine whether MRP inhibition also reduces VSMC proliferation by 

enhancing cGMP signalling. Human CASMCs were used due to their relevance 

to human cardiovascular disease (e.g. CAD). Routine culture of hCASMCs 

produced a uniform monolayer when confluent which contained “hill and valley” 

formations characteristic of SMCs (Figure 25). Cells seeded at an initial density 

of 30,000 cells/well grew at an exponential rate under control conditions without 

becoming confluent (Figure 26). MK571 (30 nM-30 µM) concentration-

dependently inhibited hCASMC proliferation compared to control (Figure 26); 30 

µM MK571 completely arrested cell growth and changed cell morphology 

(Figure 26 & Figure 25). Based on these data, a sub-threshold concentration of 

MK571 (30 nM) was selected to study effects of MRP inhibition on the anti-

proliferative effects of the NO-donor D-NO and ANP. D-NO was chosen due to 

its relatively long half-life (20 h) at 37 ⁰C compared to other NO donors such as 

Sp-NO (39 min) and SNP (2 min) since treatments were changed once every 24 

h (Keefer, 2005). D-NO (10 µM) and ANP (1 µM) were chosen due to their 

ability to elicit sub-maximal inhibition of human VSMC proliferation (Bubb et al., 

2014). D-NO and ANP alone did not significantly alter hCASMC proliferation, 

although a tendency for both to reduce mean fold-change in cell number was 

observed (Figure 27 & Figure 28). An essentially identical result was gleaned 

using the sub-threshold concentration of MK571 (30 nM; Figure 27 & Figure 

28). However, when the sub-threshold concentration of MK571 was combined 

with either ANP (1 µM) or D-NO (10 µM) a significantly enhanced inhibitory 

effect on hCASMC proliferation was observed compared to control (Figure 27 & 

Figure 28). Moreover, MK571 combined with D-NO significantly inhibited 

hCASMC growth compared to D-NO alone (Figure 27), although a similar 

potentiation was not seen with MK571 plus ANP compared to ANP alone 

(Figure 28).    
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REPRESENTATIVE IMAGES OF HUMAN CORONARY ARTERY SMOOTH 

MUSCLE CELLS IN THE ABSENCE AND PRESENCE OF MK571 

 

 

Figure 25. Representative images of hCASMC under routine culture and 

after seeding in the absence and presence MK571. 

Representative images of confluent hCASMCs under routine culture (A); 

hCASMC 24 h after seeding (30,000 cell/well) treated with sterile ddH2O 

(control; B), MK571 (3 µM; C) or MK571 (30 µM; D). x4 objective used for 

image A. x20 objective used for image A 
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EFFECT OF MK571 ON THE PROLIFERATION OF HUMAN CORONARY 

ARTERY SMOOTH MUSCLE CELLS 
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Figure 26. Effect of increasing concentrations of MK571 on hCASMC 

proliferation. 

Proliferation of hCASMC in the absence (control) or in the presence of 

increasing concentrations of MK571 (30 nM, 300 nM, 3 µM, 30 µM). Data are 

expressed as mean ± SEM fold change in cell number compared to 0 h. 

*P<0.05, **P<0.01, ***P<0.001 v control. n=6-10 observations from 3-5 

separate experiments. 
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EFFECT OF D-NO ON THE PROLIFERATION OF HUMAN CORONARY 

ARTERY SMOOTH MUSCLE CELLS IN THE ABSENCE AND PRESENCE 

OF MK571 
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Figure 27. Effect of D-NO in the absence and presence or MK571 on 

hCASMC proliferation. 

Proliferation of hCASMC in the absence (control) or in the presence of MK571 

(30 nM), D-NO (10 µM) or MK571 plus D-NO. Data are expressed as mean ± 

SEM fold change in cell number compared to 0 h. ***P<0.001 v control. #P<0.05 

v D-NO. n=10 observations from 5 separate experiments. 
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EFFECT OF ANP ON THE PROLIFERATION OF HUMAN CORONARY 

ARTERY SMOOTH MUSCLE CELLS IN THE ABSENCE AND PRESENCE 

OF MK571 
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Figure 28. Effect of ANP in the absence and presence or MK571 on 

hCASMC proliferation. 

Proliferation of hCASMC in the absence (control) or in the presence of MK571 

(30 nM), ANP (10 µM) or MK571 plus ANP. Data are expressed as mean ± 

SEM fold change in cell number compared to 0 h. **P<0.01 v control. n=10 

observations from 5 separate experiments.  
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3.3 Effect of MRP inhibition on intra and extra -

cellular cGMP concentrations 

 

In the previous set of experiments I showed that MRP blockade is able to 

augment the anti-proliferative effects of NO and NPs. To investigate whether 

MRP inhibition augments VSMC growth through effects on cGMP 

dynamics/transport, intracellular and extracellular cGMP concentrations were 

measured in hCASMC at the 24 h time point, under identical conditions 

employed for the proliferation assays described above. Human CASMC grown 

under control conditions show an essentially equal intra and extra -cellular 

production of cGMP (Figure 29). In hCASMCs treated with MK571 (30 nM, 300 

nM and 3 µM), the intra- and extra- cellular cGMP concentrations did not differ 

significantly from control (Figure 26). Following 24 h treatment with D-NO (10 

µM) in the absence or presence of MK571 (30 nM) intra-, or extra- cellular 

cGMP concentrations did not significantly change compared to control (Figure 

30). However, 24 h treatment with ANP (1 µM) produced a marked, statistically-

significant (14.91 ± 3.82 fmol/well; P<0.05) increase in extracellular cGMP 

compared to control (3.79 ± 0.56 fmol/well), which showed a trend towards 

being blunted when combined with MK571 (30 nM; 11.76 ± 3.17 fmol/well; 

P>0.05 v control; Figure 31). Importantly, the intra:extra-cellular ratio of cGMP 

revealed a significant decrease with ANP treatment (0.37 ± 0.05 intra:extra –

cellular ratio; P<0.01) compared to control (1.33 ± 0.20 intra:extra –cellular 

ratio) which was significantly (P<0.05) attenuated by the presence of MK571 

(30nM; 0.69 ± 0.13 intra:extra –cellular ratio; P<0.05 v ANP; Figure 31).  
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EFFECT OF MK571 ON INTRA- AND EXTRA- CELLULAR cGMP 

CONCENTRATIONS IN HUMAN CORONARY ARTERY SMOOTH MUSCLE 

CELLS 

 

C
ontr

ol

 +
 M

K
57

1 
(3

0n
M

)

+ 
M

K
57

1 
(3

00
nM

)

+ 
M

K
57

1 
(3

µM
) 

0

1

2

3

4

5

6

7

8

A

c
G

M
P

 f
m

o
l/

w
e
ll

C
ontr

ol

 +
 M

K
57

1 
(3

0n
M

)

+ 
M

K
57

1 
(3

00
nM

)

+ 
M

K
57

1 
(3

µM
) 

0

1

2

3

4

5

6

7

8

B

c
G

M
P

 f
m

o
l/

w
e
ll

C
ontr

ol

 +
 M

K
57

1 
(3

0n
M

)

+ 
M

K
57

1 
(3

00
nM

)

+ 
M

K
57

1 
(3

µM
) 

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
C

c
G

M
P

 i
n

tr
a
:e

x
tr

a
 -

c
e
ll

u
la

r 
ra

ti
o

 

Figure 29. Effect of MK571 on hCASMC cGMP concentrations. 

Intracellular (A) & extracellular (B) cGMP concentrations and intra:extra  

–cellular cGMP ratio (C) in hCASMC in the absence or presence of increasing 

concentrations of MK571 for 24 h. Data are expressed as mean ± SEM [cGMP] 

in fmol/well (A & B), or cGMP intra/extra -cellular ratio (C). n=8-12.  
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EFFECT OF D-NO ON INTRA- AND EXTRA- CELLULAR cGMP 

CONCENTRATIONS IN HUMAN CORONARY ARTERY SMOOTH MUSCLE 

CELLS IN THE ABSENCE AND PRESENCE OF MK571 
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Figure 30. Effect of D-NO on hCASMC cGMP concentrations in the 

absence and presence of MK571. 

Intracellular (A) and extracellular (B) cGMP concentrations and intra:extra  

–cellular cGMP ratio (C) in hCASMC under control conditions or treated with or 

D-NO (10 µM) in the absence or presence of MK571 (30 nM). Data are 

expressed as mean ± SEM [cGMP] in fmol/well (A & B), or cGMP intra/extra -

cellular ratio (C). n=8-12.  
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EFFECT OF ANP ON INTRA- AND EXTRA- CELLULAR cGMP 

CONCENTRATIONS IN HUMAN CORONARY ARTERY SMOOTH MUSCLE 

CELLS IN THE ABSENCE AND PRESENCE OF MK571 
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Figure 31. Effect of ANP on hCASMC cGMP concentrations in the absence 

and presence of MK571. 

Intracellular (A) and extracellular (B) cGMP concentrations and intra:extra  

–cellular cGMP ratio (C) in hCASMC under control conditions or treated with 

ANP (1 µM) in the absence or presence of MK571 (30 nM). Data are expressed 

as mean ± SEM [cGMP] in fmol/well (A & B), or cGMP intra/extra –cellular ratio 

(C). *P<0.05, **P<0.01 v control. #P<0.05 v ANP. n=8-12.  
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3.4 Effect of MRP inhibition on acute changes in 

blood pressure 

 

My in vitro observations in isolated blood vessels and cells suggest that 

inhibition of MRPs augments the vasorelaxant and anti-proliferative activity of 

NO and ANP, and that this is underpinned, at least in the case of ANP, by a 

change in the intra:extra cellular -cGMP ratio (i.e. cGMP efflux via MRPs). 

These data identify MRPs as playing a key role in regulating cGMP biology in 

the cardiovascular system, particularly in the case of natriuretic peptides. To 

determine if such an influence was also functionally apparent in vivo, the effect 

of MRP inhibition on NO- and ANP- induced acute changes in blood pressure 

was explored in anaesthetised mice.  

 

Administration of 0.0001, 0.001, 0.01, 0.1, 1 and 3 mg/kg MK571 caused a 

small decrease in MABP that was indistinguishable compared to saline (Figure 

32). Accordingly, the highest dose (3 mg/kg) MK571 was used in subsequent 

experiments to assess the effect of MRP inhibition on haemodynamic 

responses to NO and ANP. The NO-donor SNP (1, 3, 10 µg/kg; i.v. bolus) and 

ANP (1, 10, 100 µg/kg; i.v. bolus) were chosen due to their ability to elicit dose-

dependent reductions in MABP (Madhani et al., 2006). SNP produced a dose-

dependent decrease in MABP (1 µg/kg: MABP = -4.42 ± 1.34 mm Hg; 3 

µg/kg: MABP = -11.83 ± 1.63 mm Hg; 10 µg/kg: MABP = -23.85 ± 1.59 mm 

Hg; Figure 33) which was not significantly altered when combined with MK571 

(3 mg/kg; Figure 33). ANP also produced dose-dependent decreases in MABP 

(1 µg/kg: MABP = -2.79 ± 1.46 mm Hg; 10 µg/kg: MABP = -7.92 ± 1.98 mm 

Hg; 100 µg/kg: MABP= -11.07 ± 1.64 mm Hg; Figure 34); however, in this 

case the hypotensive response to ANP was significantly (P<0.01) enhanced 

when combined with MK571 3 mg/kg; (1 µg/kg: MABP = -10.37 ± 2.00 mm 

Hg; 10 µg/kg: MABP = -11.72 ± 2.66 mm Hg; 100 µg/kg: MABP = -17.20 ± 

1.91 mm Hg; Figure 34). 

 

Administration of MK571 at the doses above caused a small decrease in HR but 



96 

 

this was indistinguishable compared to saline (Figure 32). SNP alone produced 

a significant, dose-dependent increase in HR which was not significantly altered 

when combined with MK571 (Figure 33). ANP alone did not produce dose-

dependent changes in HR and this was not significantly altered when combined 

with MK571 (Figure 34).  
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EFFECT OF MK571 ON BLOOD PRESSURE AND HEART RATE IN 

ANAESTHETISED MICE 
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Figure 32. Effect of MK571 on blood pressure and heart rate in 

anaesthetised mice. 

Mean arterial blood pressure (MABP; A) and heart rate (HR; B), in 

anaesthetised mice treated with vehicle (saline) or increasing doses of MK571 

(0.001-3 mg/kg; i.v. bolus). Data are expressed as mean ± SEM. n=5. 
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EFFECT OF SNP ON BLOOD PRESSURE AND HEART RATE IN THE 

ABSENCE AND PRESENCE OF MK571 IN ANAESTHETISED MICE 
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Figure 33. Effect of SNP on blood pressure and heart rate in the absence 

and presence of MK571 in anaesthetised mice. 

Mean arterial blood pressure (MABP; A) and heart rate (HR; B), in 

anaesthetised mice treated with SNP (1, 3, 10 µg/kg; i.v. bolus) in the absence 

and presence of MK571 (3 mg/kg; i.v. bolus). Data are expressed as mean ± 

SEM. n=6.  
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EFFECT OF ANP IN THE ABSENCE AND PRESENCE OF MK571 ON 

BLOOD PRESSURE AND HEART RATE IN ANAESTHETISED MICE 
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Figure 34. Effect of ANP on blood pressure and heart rate in the absence 

and presence of MK571 in anaesthetised mice. 

Mean arterial blood pressure (MABP; A) and heart rate (HR; B), in 

anaesthetised mice treated with ANP (1, 10, 100 µg/kg; i.v. bolus) in the 

absence and presence of MK571 (3 mg/kg; i.v. bolus). Data are expressed as 

mean ± SEM. **P<0.05 v ANP alone. n=5.   
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3.5 Effect of MRP inhibition on blood pressure in 

conscious, telemeterised mice 

 

Since my initial in vivo studies in anaesthetised mice suggested that MRP 

inhibition with MK571 can acutely enhance the hypotensive activity of ANP, I 

proceeded to conduct investigations to determine if a more chronic 

administration of MK571 was able to modulate blood pressure in vivo. Male WT 

C57/BL6 mice were implanted with a telemetry probes, allowing continuous 

measurement of MABP, HR and activity. Data shown in this section are over a 

24 h period. Baseline recording were made over one weekend and then mice 

administered MK571 (25 mg/kg/day) in the drinking water 12 h before 

haemodynamic parameters were recorded a second time the following 

weekend.  

 

3.5.1 Mean arterial blood pressure (MABP) 

 

Mice had a normal circadian rhythm with respect to MABP during the 24 h time 

period (Figure 35). There were no significant differences in MABP over the 

whole 24 h or during either the 12 h light or dark phase in the absence or 

presence of MK571 (Figure 36). 

 

3.5.2 Heart rate (HR) 

 

Mice exhibited a normal HR circadian rhythm over the 24 h time period (Figure 

35). HR was significantly (P<0.05) reduced in mice treated with MK571 (24 h 

period: 564.60 ± 5.16 bpm; light phase: 512.6 ± 5.72 bpm) compared to 

baseline (24 h period: 581.1 ± 5.15 bpm; light phase: 532.7 ± 5.21 bpm), during 

the light (inactive) phase and over the whole 24 h period, but not during the dark 

(active) phase (Figure 36). 

 



101 

 

3.5.3 Activity 

 

Mice exhibited a normal circadian rhythm of activity over the 24 h time period 

with marked increases in the dark phase, as expected (Figure 35). Activity 

tended to be reduced when treated with MK571 over the whole 24 h period and 

during the light and dark phases (Figure 36). However, it was only significantly 

(P<0.05) reduced during the dark phase (10.32 ± 0.57 a.u., 8.83 ± 0.47 a.u., 

baseline and MK571 treated, respectively; Figure 36).  
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EFFECT OF MK571 ON THE CIRCADIAN RHYTHM OF BLOOD PRESSURE, 

HEART RATE AND ACTIVITY IN CONSCIOUS TELEMETERISED MICE 
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Figure 35. Effect of MK571 on the circadian rhythm of blood pressure, 

heart rate and activity in conscious telemeterised mice. 

MABP (A), HR (B), and activity (C) in mice under control conditions (normal 

drinking water; baseline) or treated with MK571 (25 mg/kg/day; p.o). n=4.  
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EFFECT OF MK571 ON BLOOD PRESSURE, HEART RATE AND ACTIVITY 

IN CONSCIOUS TELEMETERISED MICE 
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Figure 36. Effect of MK571 on blood pressure, heart rate and activity in 

conscious telemeterised mice. 

MABP (A), HR (B), and activity (C) in mice under control conditions (normal 

drinking water; baseline) or treated with MK571 (25 mg/kg/day; p.o.; for 24 h). 

Data represented as mean ± SEM over 24 h. *P<0.05, **P<0.01, v baseline. 

n=4.  
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CHAPTER 4: RESULTS 2 

 

4 Investigation of the role of CNP and its 

cognate receptor NPR-C in experimental PH 

 

4.1 Optimising the mouse hypoxia plus SU5416 

model of PH 

 

As outlined in the introduction, there are several animal models of PH that are 

utilised to replicate the human condition. The one I chose to use is an 

adaptation of a classic model of PH, that associated with chronic hypoxia (10 % 

O2), except that additionally I administered the VEGFR-2 inhibitor, SU5416. 

This model was originally described in rats Taraseviciene-Stewart et al., (2001) 

and produces pathohistological pulmonary vascular lesions which are 

progressive and non-reversible (upon return to normoxia), and therefore more 

akin to the human disease than chronic hypoxia alone or indeed other animal 

models of PH; as such, the hypoxia plus SU5416 model is largely considered 

the gold standard for this disease (Abe et al., 2010). A mouse hypoxia plus 

SU5416 model was first described by Ciuclan et al., (2011), involving the 

combination of chronic hypoxia (3 weeks) with repeat doses of SU5416 which 

generated a more severe phenotype; higher RVH (Fulton’s Index), RVSP and 

the presence of pulmonary vascular “complex” lesions. Furthermore, this report 

confirmed that the pulmonary vascular remodelling contained markers of EC 

apoptosis/SMC proliferation and when the mice were returned to normal 

laboratory conditions they retained PH pathology; this again more closely 

mimics the disease found in humans and in sharp contrast to chronic hypoxia 

only (reversible pathology and predominantly SMC proliferation not EC 

apoptosis).  

 

Since this model had not been utilised in our laboratory previously, initial studies 
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were designed with the goal of optimising the protocol. SU5416 is available 

commercially (Tocris Bioscience, Bristol, UK), but due to its considerable cost, 

in-house synthesis was conducted by Prof. D. Selwood (UCL, London, UK) 

according to a published method (Sun et al., 1998). In a first set of studies, I 

compared the efficacy of equal doses of SU5416 sourced from either Tocris 

(‘Tocris SU5416’) or synthesised by Prof Selwood (‘DS SU5416’) in the hypoxia 

plus SU5416 experimental mouse model of PH described above (Ciuclan et al., 

2011). This approach allowed me to assess the relative potency of both 

SU5416 preparations and concomitantly optimise the hypoxic exposure. 

 

Male C57/BL6 mice were injected once a week, for 3 weeks with SU5416 (20 

mg/kg; s.c.) and exposed to varying periods of hypoxia (10% O2, normobaric, 

21 or 25 days).  

 

4.1.1 Body weight (BW) 

 

Under control conditions mice steadily gained weight over the complete 35 day 

period (Figure 37). However, animals exposed to hypoxia plus SU5416 rapidly 

(within 3 days) lost body weight (BW; Figure 37). This drop in BW was 

maintained at a constant level for the whole 35 day period and did not differ 

significantly between the two SU5416 sources (Figure 37). After 21 days 

hypoxia, once mice were returned to normoxia, they gained weight at a steady 

rate, comparable to that observed under normoxic/control conditions (Figure 

37). Thus, after a further 14 days in normoxia, mouse BW had returned to the 

value at the start of the experiment (Figure 37). This effect of hypoxia plus 

SU5416 on mouse body weight mirrored that observed originally by Ciuclan et 

al., (2011).  

 

4.1.2 Right ventricular systolic pressure (RVSP) 

 

Mice administered SU5416 from either source and exposed to 21 days hypoxia 

developed significantly (P<0.001) increased RVSP (46.9 ± 2.28 mm Hg & 46.7 



107 

 

± 3.08 mm Hg, Tocris & DS SU5416, respectively) compared to normoxia 

controls (33.8 ± 0.61 mm Hg; Figure 38). A further 14 days hypoxia (35 days 

hypoxia in total) resulted in similar RVSP values to that observed at 21 days 

that remained significantly greater than controls (Figure 38). Returning the mice 

to normoxia following 21 days hypoxia (‘Reversal’) resulted in a decrease in 

RVSP (Figure 38). In this setting, mice treated with Tocris SU5416 (41.2 ± 0.98 

mm Hg) maintained an RVSP significantly (P<0.05) greater than control (Figure 

38), whereas in animals receiving DS SU5416 the RVSP (38.1 ± 0.97 mm Hg) 

was no longer statistically higher than normoxic mice (Figure 38). However, 

overall there were no significant differences in RVSP under any conditions 

when comparing animals treated with either Tocris SU5416 or DS SU5416 

(Figure 38). These change in RVSP are similar to those originally reported by 

Ciuclan et al., (2011). 

 

4.1.3 Mean arterial blood pressure (MABP) 

 

MABP was not significantly altered by hypoxia, nor the SU5416 from either 

source, under any experimental conditions (Figure 38). 

 

4.1.4 Right ventricular hypertrophy (RVH) 

 

RVH followed a similar pattern to that seen with RVSP (Figure 39). After 21 

days hypoxia, RVH was significantly increased (as measured by the RV:[LV+S] 

ratio; Figure 39). A further increase in RVH was not observed when 35 days 

hypoxia was compared to 21 days, but at 35 days RVH remained significantly 

increased compared to control (Figure 39). Mirroring effects on RVSP, RVH 

was also decreased in the reversal group and no longer significantly greater 

than control (Figure 39). The effect I observed of hypoxia plus SU5416 on RVH 

relates closely to what was reported by Ciuclan et al., (2011). Importantly, no 

significant difference in RVH was observed between Tocris and DS SU5416. 

Thus, since these data established that SU5416 synthesised by Prof. Selwood 

was functionally equivalent to that commercially available, the former source 
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was used for all subsequent experiments. Moreover, since 21 days hypoxia 

produced an essentially identical phenotype to 35 days hypoxia, the former time 

period was employed for further study. 

 

4.1.5 Pulmonary vascular remodelling 

 

The lungs of mice exposed to 5 weeks hypoxia plus SU5416, which is the most 

severe form of this model, were inspected for the presence of complex lesions 

and occluded vessels, a hallmark of PAH found in humans and in the rat 

hypoxia plus SU5416 model. No complex lesions or occluded vessels were 

found in these mouse lungs (data not shown). 
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EFFECT OF HYPOXIA PLUS SU5416 ON BODY WEIGHT  
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Figure 37. Effect of hypoxia plus SU5416 on body weight. 

Body weight at days 0, 3, 7, 14, 21, 28 and 35 of mice administered vehicle 

(Control), SU5416 (20 mg/kg; s.c. at days 0, 7 & 14) synthesised in-house (DS 

SU5416) or purchased from Tocris (Tocris SU5416) and exposed to either 

normoxia (21 % O2; control) or hypoxia (10 % O2) for 35 days (A), or 21 days 

hypoxia followed by 14 days normoxia (B). Data represented as mean ± SEM. 

***P<0.001 v control. n=8-21.  
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EFFECT OF HYPOXIA PLUS SU5416 ON HAEMODYNAMICS  
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Figure 38. Effect of hypoxia plus SU5416 on haemodynamics. 

Right ventricular systolic pressure (RVSP; A) and mean arterial blood pressure 

(MABP; B) in mice administered vehicle (control), SU5416 (20 mg/kg; s.c. at 

days 0, 7 & 14) synthesised in-house (DS SU5416) or purchased from Tocris 

(Tocris SU5416) and exposed to either normoxia (21 % O2; control) for 35 days, 

hypoxia (10 % O2) for 21 or 35 days, or 21 days hypoxia followed by 14 days 

normoxia (reversal). Data represented as mean ± SEM. ***P<0.001, **P<0.01, 

*P<0.05 v control. n=3-7.  
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EFFECT OF HYPOXIA PLUS SU5416 ON RIGHT VENTRICULAR 

HYPERTROPHY  
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Figure 39. Effect of hypoxia plus SU5416 on right ventricular hypertrophy.  

Right ventricle to left ventricle plus septum ratio (RV/[LV+S]) in mice 

administered vehicle (control), SU5416 (20 mg/kg; s.c. at days 0, 7 & 14) 

synthesised in-house (DS SU5416) or purchased from Tocris (Tocris SU5416) 

and exposed to either normoxia (21 % O2; control) for 35 days, hypoxia (10 % 

O2) for 21 or 35 days, or 21 days hypoxia followed by 14 days normoxia 

(reversal). Data represented as mean ± SEM. **P<0.01, ***P<0.001 v control. 

n=3-7.  
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4.2 Effect of endothelial-specific deletion of CNP 

on the development of experimental pulmonary 

hypertension  

 

Previous work from our laboratory demonstrated that endothelium-derived CNP 

plays a pivotal role in regulating local vascular tone, systemic blood pressure, 

and the reactivity of platelets and leukocytes (Moyes et al., 2014). In the 

pulmonary circulation, infusion of CNP has been reported to be ineffective in 

reversing the increased pressure associated with pulmonary hypertension 

(Casserly et al., 2011). However, as CNP is metabolised rapidly by peptides in 

the pulmonary circulation, particularly NEP (Kenny et al., 1993), I designed 

experiments to discover if endogenous CNP played a pathophysiological role in 

the development of PH. To achieve this goal, I exploited the endothelial-specific 

CNP knockout (ecCNP KO) mouse developed by our lab (Moyes et al., 2014). 

For this set of investigations, ecCNP KO and WT littermate mice (male and 

female; 16 week old; C57/BL6 background) were injected once a week, for 3 

weeks, with SU5416 (20 mg/kg; s.c.) and exposed to 21 days hypoxia (10 % 

O2, normobaric).  

 

4.2.1 Body weight (BW) 

 

4.2.1.1 Male 

 

In the first 3 days both WT and ecCNP KO mice lost BW, similar to that 

observed during the optimisation experiments and previously reported by 

Ciuclan et al., (2011; Figure 40). Subsequently, the BW of both groups 

remained steady for the entire 21 day hypoxic period (Figure 40). Although WT 

(30.93 ± 0.68 g) mice were on average marginally heavier than KO animals 

(29.43 ± 0.55 g) the percentage loss in BW between day 0 and 21 was 

comparable (WT: -11.2 ± 3.0 %; KO: -10.2 ± 1.7 %; P>0.05; Figure 40).  
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4.2.1.2 Female 

 

Female WT (normoxic 24.68 ± 0.85 g) were also heavier than ecCNP KO 

(normoxic 23.03 ± 0.85 g; P>0.05; Figure 41). Both WT and KO mice lost BW 

steadily over the first 7 days of hypoxia which then remained constant for the 

remainder of the experiment (Figure 41). As for the male animals, the 

percentage decrease in BW between day 0 and 21 was not significantly 

different between WT and KO (-14.5 ± 2.16 %, -12.3 ± 4.45 % WT and KO 

respectively; P>0.05; Figure 41).  

 

4.2.2 Right ventricular systolic pressure (RVSP) 

 

4.2.2.1 Male 

 

Hypoxia significantly increased RVSP in male WT (37.7 ± 1.26 mm Hg; P<0.01) 

and ecCNP KO (40.8 ± 1.56 mm Hg; P<0.001) mice compared to their 

corresponding normoxic controls (29.8 ± 0.93 and 28.7 ± 1.56 mm Hg, WT and 

KO, respectively). Although, there was no significant difference in RVSP 

between WT and KO mice exposed to hypoxia plus SU5416, even when 

comparing change in RVSP for both WT (∆7.9 ± 1.26 mm Hg) and KO (∆12.1 ± 

1.57 mm Hg) animals (Figure 46 and Figure 42). 

 

4.2.2.2 Female 

 

The RVSP in female WT (38.2 ± 1.76 mm Hg, P<0.001) and ecCNP KO (38.2 ± 

1.52 mm Hg, P<0.001) mice increased significantly, compared to normoxic 

controls (28.3 ± 0.87 and 28.4 ± 2.11 mm Hg, WT and KO, respectively), in 

response to hypoxia plus SU5416 regardless of genotype (Figure 43). Again, 

there was no significant difference in the magnitude of this RVSP increase 

when comparing WT (∆9.9 ± 1.77 mm Hg) with KO (∆9.8 ± 1.52 mm Hg; Figure 

47). 
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4.2.3 Mean arterial blood pressure (MABP) 

 

4.2.3.1 Male 

 

MABP was essentially identical, regardless of genotype, between normoxia and 

hypoxia plus SU5416 (Figure 42). 

 

4.2.3.2 Female 

 

An identical profile was observed in female WT and ecCNP KO mice. There 

was no significant difference in MABP between female WT and ecCNP KO mice 

in either control (normoxic) or hypoxic plus SU5416 conditions (Figure 43). This 

is at odds with previous data produced by our lab (Moyes et al., 2014) that 

shows female ecCNP KO mice are hypertensive compared to WT littermates, 

although a more sensitive BP measuring method was utilised (telemetry in 

conscious mice) in those studies compared to that used here (invasive catheter 

in anaesthetised mice).  

 

4.2.4 Right ventricular hypertrophy (RVH) 

 

4.2.4.1 Male 

 

Hypertrophic responses in the RV in both male and female WT and ecCNP KO 

mice mirrored that observed with RVSP. Exposure to hypoxia plus SU5416 

resulted in significant (P<0.05, P<0.01, WT and KO, respectively) increases in 

RVH in male animals (RV/[LV+S]: 0.25 ± 0.009, 0.26 ± 0.016, WT and KO, 

respectively) compared to control (RV/[LV+S]: 0.19 ± 0.008, 0.20 ± 0.006, WT 

and KO, respectively; Figure 44). Genotype did not significantly affect RV size 

under normoxic or hypoxic conditions (Figure 44). These findings are 

substantiated when change in RV/[LV+S] between normoxic and hypoxic 
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conditions for both WT (∆0.059 ± 0.009) and KO (∆0.061 ± 0.016) mice is 

calculated (Figure 46).  

 

4.2.4.2 Female 

 

Both WT (RV/[LV+S]: 0.20 ± 0.004) and ecCNP KO (RV/[LV+S]: 0.22 ± 0.01) 

female mice developed significantly (P<0.05 for both WT and KO) increased 

RVH under hypoxic conditions (RV/[LV+S]: 0.26 ± 0.01, 0.26 ± 0.02, WT and 

KO respectively; Figure 45). Paralleling results in the males, genotype did not 

alter RV under a normoxic or hypoxic environment even when change in 

RV/[LV+S] is calculated for both WT (∆0.053 ± 0.013) and KO (∆0.048 ± 0.016; 

Figure 45 & Figure 47). 

 

4.2.5 Pulmonary vascular remodelling 

 

4.2.5.1 Male 

 

Pulmonary vascular remodelling in both male and female ecCNP WT and KO 

mice showed a predominance of partially- and fully- muscularised vessels and 

with no complex lesions or occluded vessels (Table 21). Male ecCNP KO mice 

had a slightly higher percentage of fully-muscularised vessels (54.14 ± 2.27 %) 

than WT (47.19 ± 2.70 %). Although, genotype did not significantly alter the 

proportion of non-, partially- and fully- muscularised vessels (Figure 48).  

 

4.2.5.2 Female 

 

Akin to the observations in the male mice, female ecCNP KO did not exhibit 

significant differences in pulmonary vessel muscularisation, despite KO (56.10 ± 

3.90 %) mice having a slightly higher proportion of fully-muscularised vessels 

than WT (49.53 ± 3.63; Figure 49). Lungs were inspected for the presence of 

complex lesions and occluded vessels but none were found (Table 21).  
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EFFECT OF ENDOTHELIUM-SPECIFIC CNP DELETION ON BODY WEIGHT 

IN MALE MICE WITH PULMONARY HYPERTENSION 
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Figure 40. Effect of endothelium-specific CNP deletion on body weight in 

male mice with pulmonary hypertension. 

Body weight (g) at day 0, 3, 7, 14 and 21 (A) and change in body weight 

between day 0 and 21 (%; B) in male endothelium-specific CNP knockout 

(ecCNP KO) mice and wild-type (WT) littermates under control conditions 

(normoxia; 21 % O2) or exposed to hypoxia (10 % O2; 21 days) plus SU5416 

(20 mg/kg; s.c. at days 0, 7 & 14) or vehicle. Data are represented as mean ± 

SEM. n=7-14. 
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EFFECT OF ENDOTHELIUM-SPECIFIC CNP DELETION ON BODY WEIGHT 

IN FEMALE MICE WITH PULMONARY HYPERTENSION 
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Figure 41. Effect of endothelium-specific CNP deletion on body weight in 

female mice with pulmonary hypertension. 

Body weight (g) at day 0, 3, 7, 14 and 21 (A) and change in body weight 

between day 0 and 21 (%; B) in female endothelium-specific CNP knockout 

(ecCNP KO) mice and wild-type (WT) littermates under control conditions 

(normoxia; 21 % O2) or exposed to hypoxia (10 % O2; 21 days) plus SU5416 

(20 mg/kg; s.c. at days 0, 7 & 14) or vehicle. Data are represented as mean ± 

SEM. **P<0.01 v WT. n=9-12.  
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EFFECT OF ENDOTHELIUM-SPECIFIC CNP DELETION ON 

HAEMODYNAMICS IN MALE MICE WITH PULMONARY HYPERTENSION 
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Figure 42. Effect of endothelium-specific CNP deletion on haemodynamics 

in male mice with pulmonary hypertension. 

Right ventricular systolic pressure (RVSP; A) and mean arterial blood pressure 

(MABP; B) in male endothelium-specific CNP knockout (ecCNP KO) mice and 

wild-type (WT) littermates under control conditions (normoxia; 21 % O2) or 

exposed to hypoxia (10 % O2; 21 days) plus SU5416 (20 mg/kg; s.c. at days 0, 

7 & 14) or vehicle. Data are represented as mean ± SEM. ***P<0.001 v KO, 

**P<0.01 v WT. n=6-13.  
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EFFECT OF ENDOTHELIUM-SPECIFIC CNP DELETION ON 

HAEMODYNAMICS IN FEMALE MICE WITH PULMONARY HYPERTENSION 
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Figure 43. Effect of endothelium-specific CNP deletion on haemodynamics 

in female mice with pulmonary hypertension. 

Right ventricular systolic pressure (RVSP; A) and mean arterial blood pressure 

(MABP; B) in female endothelium-specific CNP knockout (ecCNP KO) mice and 

wild-type (WT) littermates under control conditions (normoxia; 21 % O2) or 

exposed to hypoxia (10 % O2; 21 days) plus SU5416 (20 mg/kg; s.c. at days 0, 

7 & 14 or vehicle). Data are represented as mean ± SEM. ***P<0.001 v WT, 

KO. n=7-13.  
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EFFECT OF ENDOTHELIUM-SPECIFIC CNP DELETION ON RIGHT 

VENTRICULAR HYPERTROPHY IN MALE MICE WITH PULMONARY 

HYPERTENSION 
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Figure 44. Effect of endothelium-specific CNP deletion on right ventricular 

hypertrophy in male mice with pulmonary hypertension. 

Right ventricle to left ventricle plus septum ratio (RV/[LV+S]) in male 

endothelium-specific CNP knockout (ecCNP KO) mice and wild-type (WT) 

littermates under control conditions (normoxia; 21 % O2) or exposed to hypoxia 

(10 % O2; 21 days) plus SU5416 (20 mg/kg; s.c. at days 0, 7 & 14) or vehicle. 

Data are represented as mean ± SEM. *P<0.05 v WT, **P<0.01 v KO. n=7-13.  
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EFFECT OF ENDOTHELIUM-SPECIFIC CNP DELETION ON RIGHT 

VENTRICULAR HYPERTROPHY IN FEMALE MICE WITH PULMONARY 

HYPERTENSION 
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Figure 45 Effect of endothelium-specific CNP deletion on right ventricular 

hypertrophy in female mice with pulmonary hypertension. 

Right ventricle to left ventricle plus septum ratio (RV/[LV+S]) in female 

endothelium-specific CNP knockout (ecCNP KO) mice and wild-type (WT) 

littermates under control conditions (normoxia; 21 % O2) or exposed to hypoxia 

(10 % O2; 21 days) plus SU5416 (20 mg/kg; s.c. at days 0, 7 & 14) or vehicle. 

Data are represented as mean ± SEM. *P<0.05 v WT, KO. n=8-14.  
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EFFECT OF ENDOTHELIUM-SPECIFIC CNP DELETION ON CHANGE IN 

RIGHT VENTRICULAR SYSTOLIC PRESSURE AND HYPERTROPHY IN 

MALE MICE WITH PULMONARY HYPERTENSION 
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Figure 46. Effect of endothelium-specific CNP deletion on change in right 

ventricular systolic pressure and hypertrophy in male mice with 

pulmonary hypertension. 

Change in right ventricular systolic pressure (RVSP; A) and right ventricle to left 

ventricle plus septum ratio (RV/[LV+S]; B) in male endothelium-specific CNP 

knockout (ecCNP KO) mice and wild-type (WT) littermates under control 

conditions (normoxia; 21 % O2) or exposed to hypoxia (10 % O2; 21 days) plus 

SU5416 (20 mg/kg; s.c. at days 0, 7 & 14) or vehicle. Data are represented as 

mean ± SEM. n=7-13.  
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EFFECT OF ENDOTHELIUM-SPECIFIC CNP DELETION ON CHANGE IN 

RIGHT VENTRICULAR SYSTOLIC PRESSURE AND HYPERTROPHY IN 
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Figure 47. Effect of endothelium-specific CNP deletion on change in right 

ventricular systolic pressure and hypertrophy in female mice with 

pulmonary hypertension. 

Change in right ventricular systolic pressure (RVSP; A) and right ventricle to left 

ventricle plus septum ratio (RV/[LV+S]; B) in female endothelium-specific CNP 

knockout (ecCNP KO) mice and wild-type (WT) littermates under control 

conditions (normoxia; 21 % O2) or exposed to hypoxia (10 % O2; 21 days) plus 

SU5416 (20 mg/kg; s.c. at days 0, 7 & 14) or vehicle. Data are represented as 

mean ± SEM. n=10-13.  
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EFFECT OF ENDOTHELIUM-SPECIFIC CNP DELETION ON VASCULAR 

REMODELLING IN MALE MICE WITH PULMONARY HYPERTENSION 

 

Figure 48. Effect of endothelium-specific CNP deletion on vascular 

remodelling in male mice with pulmonary hypertension. 

Number of vessels (%; <100 µM in diameter) within the pulmonary vasculature 

that are non-muscularised (<25 % α-SMA stain), partially-muscularised (25-75 

% α-SMA stain) and fully-muscularised (>75 % α-SMA stain) in male 

endothelium-specific CNP knockout (ecCNP KO) mice and wild-type (WT) 

littermates under control conditions (normoxia; 21 % O2) or exposed to hypoxia 

(10 % O2; 21 days) plus SU5416 (20 mg/kg; s.c. at days 0, 7 & 14) or vehicle. 

Data are represented as mean ± SEM. n=3.  
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EFFECT OF ENDOTHELIUM-SPECIFIC CNP DELETION ON VASCULAR 

REMODELLING IN FEMALE MICE WITH PULMONARY HYPERTENSION 

 

Figure 49. Effect of endothelium-specific CNP deletion on vascular 

remodelling in female mice with pulmonary hypertension. 

Number of vessels (%; <100 µM in diameter) within the pulmonary vasculature 

that are non-muscularised (<25 % α-SMA stain), partially-muscularised (25-75 

% α-SMA stain) and fully-muscularised (>75 % α-SMA stain) in female 

endothelium-specific CNP knockout (ecCNP KO) mice and wild-type (WT) 

littermates under control conditions (normoxia; 21 % O2) or exposed to hypoxia 

(10 % O2; 21 days) plus SU5416 (20 mg/kg; s.c. at days 0, 7 & 14) or vehicle. 

Data are represented as mean ± SEM. n=4.
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REPRESENTATIVE IMAGES OF THE EFFECT OF ENDOTHELIUM-

SPECIFIC CNP DELETION ON VASCULAR REMODELLING IN MALE AND 

FEMALE MICE WITH PULMONARY HYPERTENSION 

 
Non- 

muscularised 
Partially-

muscularised 
Fully-

muscularised 

Male ecCNP WT 

   

Male ecCNP KO 

   

Female ecCNP WT 

   

Female ecCNP KO 

   
 

Table 21. Representative images of endothelium-specific CNP deletion on 

vascular remodelling in male and female mice with pulmonary 

hypertension. 

Representative images of vessels within the pulmonary vasculature that are 

non-muscularised (<25 % α-SMA stain), partially-muscularised (25-75 % α-SMA 

stain) and fully-muscularised (>75 % α-SMA stain) in male and female 

endothelium-specific CNP knockout (ecCNP KO) mice and wild-type (WT) 

littermates exposed to hypoxia (10 % O2; 21 days) plus SU5416 (20 mg/kg; s.c. 

at days 0, 7 & 14). H & E stain (blue) and α-SMA stain (brown). Images taken at 

x20 magnification. Scale bar = 50 µm.  
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4.3 Effect of global deletion of NPR-C on the 

development of experimental pulmonary 

hypertension  

 

Recent work by our laboratory has assigned a critical signalling role to NPR-C 

in the systemic circulation (Moyes et al., 2014) in addition to its well-established 

function to clear natriuretic peptides (Maack et al., 1987). In particular, the 

endothelial dysfunction and hypertension observed in ecCNP KO animals 

appears to be recapitulated, at least in part, in global NPR-C deleted mutants. 

Data from the previous set of experiments indicated that endothelium-derived 

CNP does not play a prominent role in regulating pulmonary vascular reactivity 

in the context of PH. However, since other cellular sources of CNP may be 

important in this pro-proliferative disorder (e.g. cardiomyocyte, macrophage, 

fibroblast, VSMC), and the possibility that alternate NPs (i.e. ANP and/or BNP; 

released in patients with PH) might also activate NPR-C, I proceeded to 

examine the phenotype of global NPR-C KO mice in the hypoxia plus SU5416 

model of PH. Of note, although I originally hypothesised that cGMP-dependent 

processes might underlie any beneficial activity of CNP, the demonstrated 

importance of NPR-C in the systemic circulation and the shortage of usable 

NPR-B KO offspring (due to significantly reduced survival) targeted this line of 

investigation towards mice with NPR-C gene deletion. 

 

The same methodology was used in these experiments; male and female, 16 

week old, NPR-C KO and WT littermates were injected once a week, for 3 

weeks, with SU5416 (20 mg/kg ; s.c.) or vehicle, and exposed to 21 days 

hypoxia (10% O2, normobaric) normoxia (21% O2).   
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4.3.1 Body weight (BW) 

 

4.3.1.1 Male 

 

Male NPR-C KO (34.4 ± 0.95 g) mice were slightly heavier than their WT (31.91 

± 0.69 g) counterparts at the start of the experiment. Both WT and KO animals 

lost BW in the first 3 days which then remained relatively stable for the 

remainder of the experiment, which was also observed by Ciuclan et al., (2011) 

and in optimisation experiments (Figure 50). Comparison of the BW between 

male NPR-C KO and WT revealed a significant (P<0.01) difference over the 

entire time course of the experiment, with WT always having a lower BW 

(Figure 50). This is despite KO mice having an elongated, narrowed bone 

structure, and lean physique observed in this strain (Bordicchia et al., 2012; 

Matsukawa et al., 1999). However, the percentage change in BW from the start 

to the end of the experiment was not significantly different between genotypes  

(-15.5 ± 1.8 %, -16.7 ± 2.4 % WT and KO, respectively; Figure 50). 

 

4.3.1.2 Female 

 

Female WT (26.21 ± 0.66 g) mice were heavier than KOs (23.03 ± 0.85 g) at 

day 0 (Figure 51). KO animals steadily lost weight over the first 3 days of 

hypoxia but subsequently BW stabilised for the remainder of the experiment 

(Figure 51). A similar pattern was observed in WT mice; BW fell within the first 3 

days, which then remained constant for the balance of the experiment (Figure 

51). Over the whole time course, WT mice were significantly and consistently 

heavier than KO littermates (P<0.001; Figure 51). However, when comparing 

percentage loss in BW from the start to the end of the experiment there is no 

significant difference between genotypes (-12.6 ± 2.3, -10.8 ± 2.8 %; WT and 

KO, respectively; Figure 51).  
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4.3.2 Right ventricular systolic pressure (RVSP) 

 

4.3.2.1 Male 

 

Male WT and NPR-C KO mice demonstrated a similar response to hypoxia plus 

SU5416 with respect to RVSP. NPR-C KO mice had a slightly lower RVSP 

(26.9 ± 1.88 mm Hg) under control (normoxic) conditions when compared to WT 

(28.6 ± 1.22 mm Hg). Hypoxia plus SU5416 resulted in a significant increase in 

RVSP in both WT (36.6 ± 1.60 mm Hg; P<0.01) and KO (38.0 ± 1.73 mm Hg; 

P<0.001) mice (Figure 52). The magnitude of the change was not significantly 

altered by genotype (∆8.0 ± 1.60, ∆11.0 ± 1.73 mm Hg, WT and KO, 

respectively; Figure 66). 

 

4.3.2.2 Female 

 

Female NPR-C KO mice developed a significant (P<0.001) increase in RVSP 

when exposed to hypoxia plus SU5416 compared to control (26.5 ± 1.22 mm 

Hg to 39.1 ± 2.67 mm Hg), although this response was not significantly different 

to WT (27.8 ± 1.61 mm Hg to 36.6 ± 1.60 mm Hg; Figure 53). There is also no 

significant difference comparing the increase in RVSP between normoxic and 

hypoxic plus SU5416 conditions for both WT (∆8.8 ± 1.60 mm Hg) and KO 

(∆12.6 ± 2.67 mm Hg) mice (Figure 67). 

 

4.3.3 Mean arterial blood pressure (MABP) 

 

4.3.3.1 Male 

 

Male NPR-C KO mice had significantly (P<0.05) lower MABP (77.0 ± 1.53 mm 

Hg) under control conditions than WT littermates (90.3 ± 3.03 mm Hg; Figure 

52), consistent with previous reports (Matsukawa et al., 1999; Moyes et al., 
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2014). This relative profile was mirrored when both WT (88.7 ± 2.28 mm Hg) 

and KO (75.2 ± 2.82 mm Hg) animals were exposed to hypoxia plus SU5416 

(Figure 52). 

 

4.3.3.2 Female 

 

Female WT (90.5 ± 1.58 mmHg) and NPR-C KO (85.2 ± 0.95 mmHg) mice had 

similar MABP under control (normoxic) conditions or when exposed to hypoxia 

plus SU5416 (98.9 ± 2.43 mm Hg, 90.8 ± 4.63 mm Hg; WT and KO, 

respectively; Figure 53).  

 

4.3.4 Right ventricular hypertrophy (RVH) 

 

4.3.4.1 Male 

 

Hypoxia plus SU5416 produced a significant (P<0.001) increase in RV mass, 

when normalised to LV+S, in NPR-C male KO mice (RV/[LV+S]: 0.18 ± 0.060  

to 0.26 ± 0.018 in normoxia and hypoxia, respectively; Figure 54). However, 

under the same conditions, WT littermates did not exhibit a significant increase 

in RVH (RV/[LV+S]: 0.20 ± 0.011 to 0.23 ± 0.008 in normoxia and hypoxia, 

respectively; Figure 54). When comparing change in RVH between normoxia 

and hypoxia plus SU5416, KO (∆0.081 ± 0.018) RV/[LV+S] ratio was 

significantly (P<0.05) increased compared to WT (∆0.025 ± 0.011; Figure 56). 

 

4.3.4.2 Female 

 

Right ventricular hypertrophy in female NPR-C KO mice and WT counterparts 

followed the same pattern observed with RVSP (Figure 55). Female NPR-C KO 

mice under control (normoxic) conditions have similar RV/[LV+S] ratio (0.19 ± 

0.005) compared to  WT (0.20 ± 0.008). When exposed to hypoxia plus 

SU5416, female NPR-C KO develop a significant RVH (0.27 ± 0.043; P<0.001) 
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that is mirrored by WT (0.24 ± 0.027; P<0.01; Figure 55). Similar to that 

observed in males, female NPR-C KO mice (∆0.087 ± 0.018) developed a 

significantly (P<0.05) greater increase in RVH compared to WT mice (∆0.045 ± 

0.009; Figure 57).  

 

4.3.5 Pulmonary vascular remodelling 

 

4.3.5.1 Male 

 

Male NPR-C WT and KO mice showed similar pulmonary vascular remodelling 

after hypoxic plus SU5416 (Table 22), with no observed presence of complex 

lesions or occluded lesions. Both genotypes developed mainly partially- and 

fully- muscularised vessels with minimal non-muscularised vessels (Figure 58). 

Male NPR-C KO mice had slightly more fully-muscularised vessels (54.1 ± 2.70 

%) than WT (47.2 ± 2.27 %), although this did not reach statistical significance 

(Figure 58). 

 

4.3.5.2 Female 

 

A similar pattern was observed in female WT and NPR-C KO mice, with no 

complex lesions or occluded lesions (Table 22). These animals developed 

similar levels of non-, partially- and fully- muscularised vessels after exposure to 

hypoxia plus SU5416 (Figure 59). However, there were no significant 

differences between WT and KO mice (Figure 59).   
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EFFECT OF GLOBAL NPR-C DELETION ON BODY WEIGHT IN MALE MICE 

WITH PULMONARY HYPERTENSION 
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Figure 50. Effect of global NPR-C deletion on body weight in male mice 

with pulmonary hypertension. 

Body weight at day 0, 3, 7, 14 and 21 (g; A) and change in body weight 

between day 0 and 21 (%; B) in male natriuretic peptide receptor-C knockout 

(NPR-C KO) mice and wild-type (WT) littermates under control conditions 

(normoxia; 21 % O2) or exposed to hypoxia (10 % O2; 21 days) plus SU5416 

(20 mg/kg; s.c. at days 0, 7 & 14) or vehicle. Data are represented as mean ± 

SEM. **P<0.01 v WT. n=7-11.  
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EFFECT OF GLOBAL NPR-C DELETION ON BODY WEIGHT IN FEMALE 

MICE WITH PULMONARY HYPERTENSION 
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Figure 51. Effect of global NPR-C deletion on body weight in female mice 

with pulmonary hypertension. 

Body weight at day 0, 3, 7, 14 and 21 (g; A) and change in body weight 

between day 0 and 21 (%; B) in female natriuretic peptide receptor-C knockout 

(NPR-C KO) mice and wild-type (WT) littermates under control conditions 

(normoxia; 21 % O2) or exposed to hypoxia (10 % O2; 21 days) plus SU5416 

(20 mg/kg; s.c. at days 0, 7 & 14) or vehicle. Data are represented as mean ± 

SEM. ***P<0.001 v WT. n=6-11.  
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EFFECT OF GLOBAL NPR-C DELETION ON HAEMODYNAMICS IN MALE 

MICE WITH PULMONARY HYPERTENSION 
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Figure 52. Effect of global NPR-C deletion on haemodynamics in male 

mice with pulmonary hypertension. 

Right ventricular systolic pressure (RVSP; A) and mean arterial blood pressure; 

B) in male natriuretic peptide receptor-C knockout (NPR-C KO) mice and wild-

type (WT) littermates under control conditions (normoxia; 21 % O2) or exposed 

to hypoxia (10 % O2; 21 days) plus SU5416 (20 mg/kg; s.c. at days 0, 7 & 14) or 

vehicle. Data are represented as mean ± SEM. *P<0.05 v WT, **P<0.01 v WT, 

***P<0.001 v KO. n=5-11.  
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EFFECT OF GLOBAL NPR-C DELETION ON HAEMODYNAMICS IN 

FEMALE MICE WITH PULMONARY HYPERTENSION 
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Figure 53. Effect of global NPR-C deletion on haemodynamics in female 

mice with pulmonary hypertension. 

Right ventricular systolic pressure (RVSP; A) and mean arterial blood pressure; 

B) in female natriuretic peptide receptor-C knockout (NPR-C KO) mice and wild-

type (WT) littermates under control conditions (normoxia; 21 % O2) or exposed 

to hypoxia (10 % O2; 21 days) plus SU5416 (20 mg/kg; s.c. at days 0, 7 & 14) or 

vehicle. Data are represented as mean ± SEM. **P<0.01 v WT, ***P<0.001 v 

KO. n=5-11.  
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EFFECT OF GLOBAL NPR-C DELETION ON RIGHT VENTRICULAR 

HYPERTROPHY IN MALE MICE WITH PULMONARY HYPERTENSION 
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Figure 54. Effect of global NPR-C deletion on right ventricular hypertrophy 

in male mice with pulmonary hypertension. 

Right ventricle to left ventricle plus septum ratio (RV/[LV+S]) in male natriuretic 

peptide receptor-C knockout (NPR-C KO) mice and wild-type (WT) littermates 

under control conditions (normoxia; 21 % O2) or exposed to hypoxia (10 % O2; 

21 days) plus SU5416 (20 mg/kg; s.c. at days 0, 7 & 14) or vehicle. Data are 

represented as mean ± SEM. ***P<0.001 v KO. n=6-15.  
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EFFECT OF GLOBAL NPR-C DELETION ON RIGHT VENTRICULAR 

HYPERTROPHY IN FEMALE MICE WITH PULMONARY HYPERTENSION 
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Figure 55. Effect of global NPR-C deletion on right ventricular hypertrophy 

in female mice with pulmonary hypertension. 

Right ventricle to left ventricle plus septum ratio (RV/[LV+S]) in female 

natriuretic peptide receptor-C knockout (NPR-C KO) mice and wild-type (WT) 

littermates under control conditions (normoxia; 21 % O2) or exposed to hypoxia 

(10 % O2; 21 days) plus SU5416 (20 mg/kg; s.c. at days 0, 7 & 14) or vehicle. 

Data are represented as mean ± SEM. **P<0.01 v WT, ***P<0.001 v KO. n=6-

12.  
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EFFECT OF GLOBAL NPR-C DELETION ON CHANGE IN RIGHT 

VENTRICULAR SYSTOLIC PRESSURE AND HYPERTROPHY IN MALE 

MICE WITH PULMONARY HYPERTENSION 
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Figure 56. Effect of global NPR-C deletion on change in right ventricular 

systolic pressure and hypertrophy in male mice with pulmonary 

hypertension. 

Change in right ventricular systolic pressure (RVSP; A) and right ventricle to left 

ventricle plus septum ratio (RV/[LV+S]; B) in male natriuretic peptide receptor-C 

knockout (NPR-C KO) mice and wild-type (WT) littermates under control 

conditions (normoxia; 21 % O2) or exposed to hypoxia (10 % O2; 21 days) plus 

SU5416 (20 mg/kg; s.c. at days 0, 7 & 14) or vehicle. Data are represented as 

mean ± SEM. *P<0.05 v WT. n=8-9.  
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EFFECT OF GLOBAL NPR-C DELETION ON CHANGE IN RIGHT 

VENTRICULAR SYSTOLIC PRESSURE AND HYPERTROPHY IN FEMALE 

MICE WITH PULMONARY HYPERTENSION 
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Figure 57. Effect of global NPR-C deletion on change in right ventricular 

systolic pressure and hypertrophy in female mice with pulmonary 

hypertension. 

Change in right ventricular systolic pressure (RVSP; A) and right ventricle to left 

ventricle plus septum ratio (RV/[LV+S]; B) in female natriuretic peptide receptor-

C knockout (NPR-C KO) mice and wild-type (WT) littermates under control 

conditions (normoxia; 21 % O2) or exposed to hypoxia (10 % O2; 21 days) plus 

SU5416 (20 mg/kg; s.c. at days 0, 7 & 14) or vehicle. Data are represented as 

mean ± SEM. *P<0.05 v WT. n=5-9.  
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EFFECT OF GLOBAL NPR-C DELETION ON VASCULAR REMODELLING IN 

MALE MICE WITH PULMONARY HYPERTENSION 

 

Figure 58. Effect of global NPR-C deletion on vascular remodelling in male 

mice with pulmonary hypertension. 

Number of vessels (%; <100 µM in diameter) within the pulmonary vasculature 

that are non-muscularised (<25 % α-SMA stain), partially-muscularised (25-75 

% α-SMA stain) and fully-muscularised (>75 % α-SMA stain) in male natriuretic 

peptide receptor-C knockout (NPR-C KO) mice and wild-type (WT) littermates 

under control conditions (normoxia; 21 % O2) or exposed to hypoxia (10 % O2; 

21 days) plus SU5416 (20 mg/kg; s.c. at days 0, 7 & 14) or vehicle. Data are 

represented as mean ± SEM. n=5-6.

N
on-m

usc
ula

ris
ed

Par
tia

lly
-m

usc
ula

ris
ed

Fully
-m

usc
ula

ris
ed

0

10

20

30

40

50

60

70

80

90

100 WT

KO

N
o

. 
o

f 
v
e
s
s
e
ls

 (
%

)



141 

 

EFFECT OF GLOBAL NPR-C DELETION ON VASCULAR REMODELLING IN 

FEMALE MICE WITH PULMONARY HYPERTENSION 

 

Figure 59. Effect of global NPR-C deletion on vascular remodelling in 

female mice with pulmonary hypertension. 

Number of vessels (%; <100 µM in diameter) within the pulmonary vasculature 

that are non-muscularised (<25 % α-SMA stain per vessel), partially-

muscularised (25-75 % α-SMA stain per vessel) and fully-muscularised (>75 % 

α-SMA stain per vessel) in female natriuretic peptide receptor-C knockout 

(NPR-C KO) mice and wild-type (WT) littermates under control conditions 

(normoxia; 21 % O2) or exposed to hypoxia (10 % O2; 21 days) plus SU5416 

(20 mg/kg; s.c. at days 0, 7 & 14) or vehicle. Data are represented as mean ± 

SEM. n=4-5.
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REPRESENTATIVE IMAGES OF GLOBAL NPR-C DELETION ON 

VASCULAR REMODELLING IN MALE AND FEMALE MICE WITH 

PULMONARY HYPERTENSION 

 
Non- 

muscularised 
Partially-

muscularised 
Fully-

muscularised 

 
Male NPR-C WT 

   
 

Male NPR-C KO 

   
 

Female NPR-C WT 

   
 

Female NPR-C KO 

   
Table 22. Representative images of global NPR-C deletion on vascular 

remodelling in male and female mice with pulmonary hypertension. 

Representative images of vessels within the pulmonary vasculature that are 

non-muscularised (<25 % α-SMA stain), partially-muscularised (25-75 % α-SMA 

stain) and fully-muscularised (>75 % α-SMA stain) in male and female 

natriuretic peptide receptor-C knockout (NPR-C KO) mice and wild-type (WT) 

littermates exposed to hypoxia (10 % O2; 21 days) plus SU5416 (20 mg/kg; s.c. 

at days 0, 7 & 14). H & E stain (blue) and α-SMA stain (brown). Images taken at 

x20 magnification. Scale bar = 50 µm.  
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4.4 Effect of global deletion of NPR-C on the 

development of bleomycin-induced lung fibrosis 

and secondary pulmonary hypertension  

 

Data gleaned from the hypoxia plus SU5416 experimental model of PH 

indicated that NPR-C might play a significant role in the development of RVH. In 

addition, CNP signalling has been shown to exert beneficial (i.e. anti-fibrotic) 

effect in several models of fibrosis (e.g. Kimura et al., 2016; Murakami et al., 

2004; Soeki et al., 2005). Therefore, I designed experiments to assess whether 

genetic deletion of NPR-C affected disease severity in a second model of PH, 

which is associated with bleomycin-induced lung fibrosis.  

 

In this complementary model of PH secondary to pulmonary fibrosis, male and 

female NPR-C KO, and age matched WT littermates, received a single 

oropharyngeal (o.p.) instillation, under light isoflurane anaesthesia, of Bleo-

Kyowa® (Bleomycin Sulphate; Bleo) weight adjusted (1 µl to 1 g of body weight), 

resulting in individual mice receiving 4 mg/kg (4,000 IU or 4 USP) dissolved in 

saline. Control mice received saline (o.p.) only. The mice were then left in 

normal housing conditions for 14 days before haemodynamic measures were 

taken. 

 

4.4.1 Body weight (BW) 

 

4.4.1.1 Male 

 

Male WT (34.9 ± 0.92 g) mice were slightly heavier than NPR-C KO (32.3 ± 

0.96 g) littermates consistent with previously published work (Matsukawa et al., 

1999; Figure 60). Following administration of Bleo, both WT and KO mice lost 

weight at a steady rate throughout the 14 day period (Figure 60). Immediate 

reductions in BW after lung instillations of Bleo have previously been reported, 



144 

 

with the extent of BW loss proportional to dose (Failla et al., 2006; Murakami et 

al., 2004). Although, BW of WT and NPR-C KO animals were significantly 

(P<0.01) different across the 14 day time course (with KO mice always having 

lower BW), the percentage change in BW from day 0 to day 14 was almost 

identical for WT (-16.3 ± 4.1 %) and KO (-16.8 ± 4.8 %) mice (Figure 60). 

 

4.4.1.2 Female 

 

In the females, WT mice (28.7 ± 0.83 g) were marginally heavier than NPR-C 

KO (27.9 ± 0.94 g) littermates at the start of the study (Figure 61). Both WT and 

NPR-C KO mice steadily lost BW for the first 7 days, after which the loss in BW 

tapered and remained constant until the end of the experiment (Figure 61). BW 

throughout the experiment was not significantly different between WT and KO 

animals, although WTs were consistently heavier than KOs. Percentage change 

in BW between day 0 and 14 was similar between WT and NPR-C KO mice (-

8.6 ± 3.0, -6.8 ± 1.7 %, respectively; Figure 61). 

 

4.4.2 Right ventricular systolic pressure (RVSP) 

 

4.4.2.1 Male 

 

Control (normoxic) male WT mice had an essentially identical RVSP (28.6 ± 

1.22 mm Hg) compared to NPR-C KO animals (26.9 ± 1.88 mm Hg; Figure 62). 

After being treated with bleo, RVSP increased significantly in both WT 

(P<0.001) and KO (P<0.001) mice. Although, the magnitude of this response 

was marginally greater in NPR-C KO mice (43.2 ± 2.79 mm Hg) compared to 

WT (38.7 ± 0.70 mm Hg) there was no significant difference between the two 

genotypes (Figure 62). However, when comparing the change in RVSP 

between normoxia and hypoxia plus SU5416, NPR-C KO (∆16.3 ± 2.79 mm Hg) 

mice developed a significant increase (P<0.05) compared to WT mice (∆10.1 ± 

0.67 mm Hg; Figure 66). 
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4.4.2.2 Female 

 

Female WT and NPR-C KO mice had very similar RVSP under control 

conditions (27.8 ± 1.6 mm Hg and 26.5 ± 1.2 mm Hg, respectively). These 

values increased significantly after treatment with bleomycin (WT: 33.0 ± 1.11 

mm Hg; KO 37.3 ± 0.94 mm Hg; P<0.05 and P<0.001, respectively; Figure 63). 

Of note, bleomycin-treated NPR-C KO mice had significantly (P<0.05) higher 

RVSP than WT animals (Figure 63). This significant difference was reflected 

when change in RVSP was calculated (∆5.3 ± 1.11, ∆10.8 ± 0.94 mm Hg, WT 

and KO respectively; P<0.001; Figure 67). 

 

4.4.3 Mean arterial blood pressure (MABP) 

 

4.4.3.1 Male 

 

Male NPR-C KO mice tended to have a lower MABP (77.0 ± 1.53 mm Hg) 

compared to their WT littermates (90.3 ± 3.03 mm Hg) under basal (control) 

conditions, as I showed in the hypoxia model (Figure 62). After administration of 

bleomycin, the MABP in WT (77.4 ± 4.12 mm Hg) mice dropped significantly 

(P<0.01) whereas blood pressure in the NPR-C KO animals underwent little 

change (77.5 ± 2.68 mm Hg) possibly because it is inherently low (Figure 62). 

Nonetheless, MABP is not significantly different between WT and NPR-C KO 

mice either under control conditions or after exposure to bleomycin (Figure 62).  

 

4.4.3.2 Female 

 

Female NPR-C KO mice had marginally lower MABP (85.2 ± 0.96 mmHg) than 

WT (90.5 ± 1.58 mmHg) under control (normoxic) conditions (Figure 63). This 

remained unchanged in both WT (90.6 ± 1.96 mmHg) and KO (86.4 ± 1.87 mm 

Hg) animals following bleomycin administration (Figure 63). 
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4.4.4 Right ventricular hypertrophy (RVH) 

 

4.4.4.1 Male 

 

Subsequent to administration of bleomycin, male WT and NPR-C KO mice 

exhibited a trend towards an increase in RVH but this didn’t reach statistical 

significance (Figure 64). RV/(LV+S) ratio was increased in WT mice with 

bleomycin treatment (0.20 ± 0.011 to 0.24 ± 0.017; Figure 64) with an 

analogous change observed in NPR-C KO animals (0.18 ± 0.060 to 0.23 ± 

0.087; Figure 64). This was also the case when calculating change in 

RV/(LV+S) ratio for WT (∆0.036 ± 0.017) and KO (∆0.049 ± 0.009) mice (Figure 

66).  

  

4.4.4.2 Female 

 

A similar lack of RVH was also observed in female WT animals undergoing 

bleomycin treatment. RV/(LV+S) ratio increased marginally in WT mice (0.20 ± 

0.008 to 0.21 ± 0.004) but not to a statistically significant degree (Figure 65). 

This is in sharp contrast to NPR-C KO mice in which a greater, significant 

(P<0.001) increase was observed (0.19 ± 0.006 to 0.24 ± 0.007), which was 

also significantly (P<0.05) larger than WT (Figure 65). This finding was 

accentuated when change in RV/(LV+S) ratio from normoxia to hypoxia plus 

SU5416 was calculated (∆0.015 ± 0.005, ∆0.049 ± 0.007, WT and KO, 

respectively; P<0.001; Figure 67). 

 

4.4.5 Lung weight 

 

4.4.5.1 Male 

 

The lung weight in male WT mice (0.176 ± 0.011 g) was similar to NPR-C KO 
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(0.163 ± 0.011 g) under control conditions (Figure 68). Treatment with 

bleomycin caused lung weight to increase significantly in WT (0.328 ± 0.033 g; 

P<0.001) and NPR-C KO (0.176 ± 0.011 g; P<0.01) mice compared to control 

(Figure 68). However, there was no significant differences between genotype in 

this regard (Figure 68). The same pattern was observed when lung weight was 

normalised to BW; both WT and NPR-C KO mice developed significantly (WT: 

0.0044 ± 0.006 to 0.0121 ± 0.002; KO: 0.0048 ± 0. to 0.014 ± 0.002; P<0.01, 

P<0.05 WT and KO respectively) increased lung weight/BW ratios (Figure 68).  

 

4.4.5.2 Female 

 

Female NPR-C KO animals had slightly heavier lungs (0.157 ± 0.006 g) 

compared to WT littermates (0.148 ± 0.005 g) under control conditions (Figure 

69). When administered bleomycin, both WT and NPR-C KO mice develop a 

significant (P<0.001 for both) increase in lung weight (Figure 69). Importantly, 

NPR-C KO mice developed a significantly (P<0.05) greater increase (0.377 ± 

0.030 g) than WT (0.268 ± 0.020 g) animals (Figure 69). This was also 

observed when lung weight was normalised to account for changes in BW. 

Control WT lung weight/BW ratio was 0.005 ± 0.003 and increased significantly 

(P<0.01) to 0.010 ± 0.001, whilst KO mice increased from 0.005 ± 0.001 to 

0.016 ± 0.002 (P<0.001); the change in KO is also significantly (P<0.01) larger 

than WT (Figure 69).  

 

4.4.6 Pulmonary vascular remodelling 

 

4.4.6.1 Male and female 

 

Male and female NPR-C WT and KO mice dosed with bleomycin developed 

obvious pulmonary vascular remodelling characterised by areas of fibrosis rich 

in collagen deposits (Table 23). However, time constraints entailed that the 

degree of fibrosis was not quantified.  
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EFFECT OF GLOBAL NPR-C DELETION ON BODY WEIGHT IN MALE MICE 

WITH BLEOMYCIN-INDUCED PULMONARY HYPERTENSION  
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Figure 60. Effect of global NPR-C deletion on body weight in male mice 

with bleomycin-induced pulmonary hypertension. 

Body weight at day 0, 3, 7 and 14 (g; A) and change in body weight between 

day 0 and 14 (%; B) in male natriuretic peptide receptor-C knockout (NPR-C 

KO) mice and wild-type (WT) littermates administered bleomycin (4 mg/kg; o.p.; 

day 0) or saline (at day 0). Data are represented as mean ± SEM. **P<0.01 v 

WT. n=10-14.  
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EFFECT OF GLOBAL NPR-C DELETION ON BODY WEIGHT IN FEMALE 

MICE WITH BLEOMYCIN-INDUCED PULMONARY HYPERTENSION 
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Figure 61. Effect of global NPR-C deletion on body weight in female mice 

with bleomycin-induced pulmonary hypertension. 

Body weight at day 0, 3, 7 and 14 (g; A) and change in body weight between 

day 0 and 14 (%; B) in female natriuretic peptide receptor-C knockout (NPR-C 

KO) mice and wild-type (WT) littermates administered bleomycin (4 mg/kg; o.p.; 

day 0) or saline (at day 0). Data are represented as mean ± SEM. n=14-16.
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EFFECT OF GLOBAL NPR-C DELETION ON HAEMODYNAMICS IN MALE 

MICE WITH BLEOMYCIN-INDUCED PULMONARY HYPERTENSION 
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Figure 62. Effect of global NPR-C deletion on haemodynamics in male 

mice with bleomycin-induced pulmonary hypertension. 

Right ventricular systolic pressure (RVSP; A) and mean arterial blood pressure 

(MABP; B) in male natriuretic peptide receptor-C knockout (NPR-C KO) mice 

and wild-type (WT) littermates administered bleomycin (4 mg/kg; o.p.; day 0) or 

saline (at day 0). Data are represented as mean ± SEM. **P<0.01 v WT, 

***P<0.001 v control WT, KO. n=4-11.  
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EFFECT OF GLOBAL NPR-C DELETION ON HAEMODYNAMICS IN 

FEMALE MICE WITH BLEOMYCIN-INDUCED PULMONARY 

HYPERTENSION 
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Figure 63. Effect of global NPR-C deletion on haemodynamics in female 

mice with bleomycin-induced pulmonary hypertension. 

Right ventricular systolic pressure (RVSP; A) and mean arterial blood pressure 

(MABP; B) in female natriuretic peptide receptor-C knockout (NPR-C KO) mice 

and wild-type (WT) littermates administered bleomycin (4 mg/kg; o.p.; day 0) or 

saline (at day 0). Data are represented as mean ± SEM. *P<0.05 v WT, 

***P<0.001 v KO control; #P<0.05 v Bleo WT. n=8-15.  
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EFFECT OF GLOBAL NPR-C DELETION ON RIGHT VENTRICULAR 

HYPERTROPHY IN MALE MICE WITH BLEOMYCIN-INDUCED 

PULMONARY HYPERTENSION 
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Figure 64. Effect of global NPR-C deletion on right ventricular hypertrophy 

in male mice with bleomycin-induced pulmonary hypertension. 

Right ventricle to left ventricle plus septum ratio (RV/[LV+S]) in male natriuretic 

peptide receptor-C knockout (NPR-C KO) mice and wild-type (WT) littermates 

administered bleomycin (4 mg/kg; o.p.; day 0) or saline (at day 0). Data are 

represented as mean ± SEM. n=6-15.
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EFFECT OF GLOBAL NPR-C DELETION ON RIGHT VENTRICULAR 

HYPERTROPHY IN FEMALE MICE WITH BLEOMYCIN-INDUCED 

PULMONARY HYPERTENSION 
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Figure 65. Effect of global NPR-C deletion on right ventricular hypertrophy 

in female mice with bleomycin-induced pulmonary hypertension. 

Right ventricle to left ventricle plus septum ratio (RV/[LV+S]) in female 

natriuretic peptide receptor-C knockout (NPR-C KO) mice and wild-type (WT) 

littermates administered bleomycin (4 mg/kg; o.p.; day 0) or saline (at day 0). 

Data are represented as mean ± SEM. ***P<0.001 v KO, *P<0.05 v Bleo WT. 

n=11-15.  



154 

 

EFFECT OF GLOBAL NPR-C DELETION ON CHANGE IN RIGHT 

VENTRICULAR SYSTOLIC PRESSURE AND HYPERTROPHY IN MALE 

MICE WITH BLEOMYCIN-INDUCED PULMONARY HYPERTENSION 
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Figure 66. Effect of global NPR-C deletion on change in right ventricular 

systolic pressure and hypertrophy in male mice with bleomycin-induced 

pulmonary hypertension. 

Change in right ventricular systolic pressure (RVSP; A) and right ventricle to left 

ventricle plus septum ratio (RV/[LV+S]; B) in male natriuretic peptide receptor-C 

knockout (NPR-C KO) mice and wild-type (WT) littermates administered 

bleomycin (4 mg/kg; o.p.; day 0) or saline (at day 0). Data are represented as 

mean ± SEM. *P<0.05 v WT. n=10-11.  



155 

 

EFFECT OF GLOBAL NPR-C DELETION ON CHANGE IN RIGHT 

VENTRICULAR SYSTOLIC PRESSURE AND HYPERTROPHY IN FEMALE 

MICE WITH BLEOMYCIN-INDUCED PULMONARY HYPERTENSION 
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Figure 67. Effect of global NPR-C deletion on change in right ventricular 

systolic pressure and hypertrophy in female mice with bleomycin-induced 

pulmonary hypertension. 

Change in right ventricular systolic pressure (RVSP; A) and right ventricle to left 

ventricle plus septum ratio (RV/[LV+S]; B) in female natriuretic peptide receptor-

C knockout (NPR-C KO) mice and wild-type (WT) littermates administered 

bleomycin (4 mg/kg; o.p.; day 0) or saline (at day 0) . Data are represented as 

mean ± SEM. ***P<0.001 v WT. n=14-15.  
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EFFECT OF GLOBAL NPR-C DELETION ON LUNG WEIGHT IN MALE MICE 

WITH BLEOMYCIN-INDUCED PULMONARY HYPERTENSION 
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Figure 68. Effect of global NPR-C deletion on lung weight in male mice 

with bleomycin-induced pulmonary hypertension. 

Lung weight (g; A) and lung weight to body weight ratio (LW/BW; B) in male 

natriuretic peptide receptor-C knockout (NPR-C KO) mice and wild-type (WT) 

littermates administered bleomycin (4 mg/kg; o.p.; day 0) or saline (at day 0). 

Data are represented as mean ± SEM. ***P<0.001 v WT, **P<0.01 v KO (A). 

**P<0.01 v WT, *P<0.05 v KO (B). n=3-10.  
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EFFECT OF GLOBAL NPR-C DELETION ON LUNG WEIGHT IN FEMALE 

MICE WITH BLEOMYCIN-INDUCED PULMONARY HYPERTENSION 
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Figure 69. Effect of global NPR-C deletion on lung weight in female mice 

with bleomycin-induced pulmonary hypertension. 

Lung weight (g; A) and lung weight to body weight ratio (LW/BW; B) in female 

natriuretic peptide receptor-C knockout (NPR-C KO) mice and wild-type (WT) 

littermates administered bleomycin (4 mg/kg; o.p.; day 0) or saline (at day 0). 

Data are represented as mean ± SEM. ***P<0.001 v control WT, KO (A). 

***P<0.001 v KO; **P<0.01 v WT (B). ###P<0.001 v Bleo WT (A & B). n=5-16.  
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REPRESENTATIVE IMAGES SHOWING THE EFFECTS OF GLOBAL NPR-C 

DELETION ON LUNG FIBROSIS IN MALE AND FEMALE MICE WITH 

BLEOMYCIN-INDUCED PULMONARY HYPERTENSION 

 

Table 23. Representative images showing the effects of global NPR-C 

deletion on lung fibrosis in male and female mice with bleomycin-induced 

pulmonary hypertension. 

Representative images of lung fibrosis in male and female natriuretic peptide 

receptor-C knockout (NPR-C KO) mice and wild-type (WT) littermates 14 days 

following administration of bleomycin (4 mg/kg; o.p.; day 0). Picrosirius red 

(PSR) stain (red). Scale bar at x1 magnification = 2 mm. Scale bar at x10 

magnification = 200 µm.   

 
x1  

magnification 
x10  

magnification 

 
 

Male NPR-C WT 
 

  
 
 

Male NPR-C KO 

  
 
 

Female NPR-C WT 

  
 
 

Female NPR-C KO 
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CHAPTER 5: DISCUSSION 

 

5.1 Summary of key findings 

 

I have shown that MRPs contribute to cyclic GMP signal termination in the 

vasculature contributing to the regulation of homeostasis. Specifically, I have 

found MRP inhibition alone relaxes mouse aortic rings, and potentiates 

relaxations induced by both sGC and pGC activation, with a preference toward 

pGC. In addition, MRP inhibition significantly attenuates cGMP efflux by 

hCASMCs resulting from pGC activation, which is not seen with sGC 

stimulation or MRP inhibition alone. Despite this, MRP inhibition per se 

concentration-dependently attenuates hCASMC proliferation and enhances the 

anti-proliferative effects of both pGC and sGC -generated cGMP. I have also 

provided evidence for a functional role for MRPs in regulating vascular 

responses in vivo. Whilst MRP inhibition itself does not reduce BP, blockade of 

cGMP efflux does significantly enhance reductions in BP triggered by pGC 

activation (but not sGC). These data demonstrate MRPs contribute to the 

regulation of cGMP-dependent vascular homeostasis, with a preference toward 

membrane produced cGMP rather than cytosolic, in accord with cGMP 

signalling compartmentalisation. 

 

Using male and female endothelial cell-specific CNP KO mice, in a well-

established hypoxia plus SU5416 model of PH, I have found that EC-derived 

CNP does not contribute to the development of PH in either sex. However, I 

found that the CNP receptor, NPR-C, is essential for innate protection against 

the development of significant RVH in both male and female mice using the 

same experimental model of PH (using global NPR-C KO animals), although a 

similar effect against increased RVSP is not seen. My results also demonstrate 

that NPR-C is essential in the protection against the development of bleomycin-

induced PH. Specifically, the absence of NPR-C causes significant increases in 

RVSP in both male and female mice, and greater RVH and lung weights in 

females. In sum, CNP derived from endothelial cells, specifically, is not 
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essential in the protection against PH pathogenesis; however, its receptor, 

NPR-C, appears to be crucial in maintaining normal pulmonary and cardiac 

function in this disease. 

 

5.2 The role of MRPs in vascular 

homeostasis 

 

The intracellular second messenger cGMP is a well characterised, central 

player in the regulation of cardiovascular homeostasis (Francis et al., 2010; Tsai 

and Kass, 2009). Increasing intracellular concentrations of cGMP relaxes 

vessels, inhibits platelet aggregation and prevents VSMC proliferation. 

Maintenance of intracellular cGMP concentrations is thought to consist of a 

finely-tuned balance between cGMP generation by GC enzymes and 

degradation by PDEs. Cellular extrusion of cyclic GMP has been appreciated 

for many years, but with the general opinion that it’s of lesser importance than 

PDEs in terminating cGMP signalling; this has led to this mechanism being 

largely ignored in terms of cGMP dynamics and cardiovascular function 

(Davoren and Sutherland, 1963; Mercapide et al., 1999). Recently, MRPs have 

been identified as the transport mechanism responsible for the cellular efflux of 

cAMP and cGMP. As a consequence, this has led to the hypothesis that MRPs 

contribute to the regulation of cyclic nucleotide dependent vascular 

homeostasis. Indeed, there is mounting evidence that MRP-dependent cAMP 

efflux has a broad array of cardiovascular effects; inhibition of VSMC growth 

and platelet aggregation improved cardiac contractility, reduced cardiac fibrosis, 

and as a therapeutic target in PH (Borgognone and Pulcinelli, 2012; Claude et 

al., 2015; Hara et al., 2011; Sassi et al., 2014, 2008). However, there is a 

paucity of evidence defining cGMP-dependent cardiovascular effects of MRPs. 

Therefore, in this thesis I have investigated functional cGMP-dependent 

biological effects in the vasculature modulated by MRPs. 

 

One key limitation in this field is the lack of potent and selective 

pharmacological MRP inhibitors. Some have circumvented this crucial caveat 
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by utilising siRNA to reduce expression of specific MRPs within different cell-

types, in addition to studies using MRP4 and MRP5 KO mice. However, in the 

absence of these techniques and/or transgenic models, this illustrates a need to 

use structurally-distinct MRP inhibitors to reassure as to target specificity. 

Specifically-designed, selective MRP inhibitors have not yet been developed, 

but compound screening aimed at finding novel competitive inhibitors of this 

transporter protein family have been successful. During such screenings the 

MRP inhibitors MK571 and probenecid were identified. MK571 is an inhibitor of 

MRP4 (Chen et al., 2002; Jedlitschky et al., 2000; Reid et al., 2003) and 

considered by most to be a specific inhibitor of this particular isoform, despite 

other studies showing effective MRP5 inhibition by this compound (Reid et al., 

2003). In contrast, probenecid is a relatively selective inhibitor of MRP5 over 

MRP4 (Jedlitschky et al., 2000; Reid et al., 2003). Although, some evidence 

shows that at the same concentrations probenecid can inhibit MRP4 equally 

well as MRP5 (Chen et al., 2002; van Aubel et al., 2002). In sum, MK571 and 

probenecid are likely to have both MRP4 and MRP5 inhibitory activity and 

therefore the effect of MRP inhibition I observed may have come about from 

either MRP4 or MRP5 or simultaneous MRP4/MRP5 inhibition. 

 

 

Figure 70. Molecular formulae of MK571 and probenecid. 

Molecular formulae demonstrating the structural distinction between multidrug 

resistance protein inhibitors probenecid and MK571.  
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Although, structurally-distinct inhibitors of MRPs (Figure 70), these compounds 

also affect alternate mechanisms such that possible off-target effects should 

therefore be considered. 

 

MK571 was originally developed as a leukotriene D4 (LTD4) receptor (also 

known as a cysteinyl leukotriene receptor-1, CysLT1) antagonist, for the 

treatment of asthma (Jones et al., 1989; Kips et al., 1991; Young, 1991). This 

drug was later dropped for a more potent candidate compound, MK-0476, 

currently prescribed by the name Montelukast. MK571 was originally identified 

as an inhibitor of MRPs because of its structural similarity to the leukotrienes, 

which are well characterised substrates of MRP1 (Gekeler et al., 1995; Leier et 

al., 1996, 1994). MK571 prevents the contraction and proliferation of airway 

smooth muscle and VSMCs caused by leukotriene D4 (Panettieri et al., 1998). 

Moreover, MRP1, another transporter of the ABCC family, can extrude 

leukotrienes contributing to inflammation and oxidative stress -mediated VSMC 

proliferation. However, these actions should not have complicated interpretation 

of my data because leukotrienes were not added to any of my experimental 

setups and the experimental conditions utilised did not involve oxidative stress 

and inflammation. Thus, it is reasonable to assume that antagonism or transport 

of leukotrienes would not have complicated interpretation of my findings (Cole, 

2014; Mueller et al., 2008; Widder et al., 2007). 

 

Probenecid was first synthesised in 1949 and designed to reduce the renal 

clearance of penicillin prescribed to soldiers during World War II with the aim of 

reducing the dose prescribed and thus the cost. Since then, probenecid has 

been found to reduce the clearance, therefore increase the plasma 

concentration and half-life of a multitude of antibiotics making it highly effective 

as an antibiotic adjuvant. The mode of action of probenecid is as a non-specific 

inhibitor of OAT proteins, which also reduce the reabsorption of uric acid, 

explaining the use of probenecid as a treatment for gout (Roch-Ramel and 

Guisan, 1999). During studies investigating the mechanism behind cGMP efflux 

from cells, probenecid was found to inhibit the transport process, leading to the 

hypothesis that cGMP efflux was due to a kind of OAT (Hamet et al., 1989). 

Therefore, probenecid may have affected my results by inhibiting OATs and not 
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MRPs as I assumed. OATs are mainly expressed in excretory organs such as 

the kidney, gastrointestinal tract and liver, which reflect their overall essential 

role in the distribution and excretion of numerous endogenous metabolic 

products and exogenous organic anions. However, they are not found in 

vascular tissue to any extent and therefore the effects I observed in mouse 

aortic rings were most likely due to MRP inhibition (Riedmaier et al., 2012). 

 

Subthreshold concentrations of both MK571 and probenecid were established 

and utilised in vascular reactivity studies such that they inhibited MRPs without 

inducing a vascular effect themselves. Therefore, it should be noted that the 

magnitude of the shifts described within this thesis are concentration-

dependent, with a higher concentration of inhibitor potentially eliciting an 

enhanced response. Practically, however, the use of a higher concentration of 

MRP inhibitor results in an inability to contract the tissue to PE, preventing 

effective study. A larger vascular effect of MRP inhibition has already been 

shown by (Krawutschke et al., 2015), in mouse aortic ring assays where 

relaxations to the NO donor, GS-NO, when pre-incubated with 10 µM MK571; 

this resulted in a larger leftward shift when compared to the relaxations to Sp-

NO in my studies using 3 µM MK571. Thus, whilst the increases in potency 

observed in my functional pharmacological studies are modest, the beneficial 

effects of MRP inhibitors I describe are almost certainly underestimates of the 

maximum attainable outcome.  

 

My data show that both MK571 and probenecid concentration-dependently 

relax mouse aortic rings, suggesting an inherent functional role of MRPs in 

regulating vascular tone. Collectively, MK571 and probenecid significantly 

increased the potency of Sp-NO, ANP and CNP -induced relaxations in pre-

contracted mouse aortic rings, with a preference toward pGC activation. The 

innate ability of MRP inhibitors per se to relax vessels probably resulted from 

intrinsic turn-over of cGMP production by either sGCs or pGCs. The 

endothelium-dependent vasodilator ACh produced significant relaxations 

confirming the presence of an intact, functional endothelium. The presence of 

an intact endothelium in aortic ring segments is known to enhance extracellular 

concentrations of cGMP (33-fold higher) compared to denuded vessels, which 
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results from eNOS activity, release of NO from ECs, which in-turn activates 

sGC present in VSMCs (Schini et al., 1989). Surprisingly, I was unable to see 

potentiation of the dilator response to ACh in my studies. This could be due to 

cGMP signal compartmentalisation within VSMCs; specifically, that ACh-

dependent NO release stimulates VSMC sGC but the cGMP signal generated 

isn’t large enough to be affected by MRPs. Schini et al., (1989), showed that 

treatment of rat aortic rings with ACh causes a peak in tissue cGMP 

concentration (1343 ± 380 fmol pg-1 DNA) after 1 min, but that this 

concentration decreases by approximately 86 % when measured at 5 min. This 

observation suggests that the initial cGMP signal following addition of ACh is 

degraded rapidly by PDEs, perhaps in subcellular locations not under the 

influence of MRPs. Interestingly, the same study reported that significant egress 

of cGMP is observed, but only after 60 min. This gives rise to the possibility that 

the rate of MRP-driven efflux of cGMP is too slow to affect the functional 

response to ACh. However, the vasorelaxant response to pharmacological 

addition of NO (via an NO-donor), rather than through endothelium-dependent 

eNOS activation, is increased in the presence of MK571. One explanation for 

this discrepancy is that ACh relaxes mouse aorta through an alternative, NO-

independent mechanism. However, whilst this is likely to be true in the 

resistance vasculature where EDHF predominates (Villar et al., 2007), 

endothelium-dependent NO release by ACh is the principal vasodilatory 

mechanism in the aorta (Chataigneau et al., 1999; Scotland et al., 2005). An 

alternative argument is that, in contrast to the capacity of ACh to generate NO 

in specific areas of the cytosol, an exogenous NO donor produces considerably 

higher concentrations of NO which leads to maximal activation of the entire sGC 

pool. This idea is alluded to by Schini et al., (1989), since increasing 

concentrations of ACh do not elevate extracellular cGMP whereas the NO 

donor, SNP, results in almost a ten-fold increase in extracellular cGMP 

concentrations. These data imply that more cytosolic cGMP is generated by 

pharmacological concentrations of NO, spilling over into the membrane region 

and resulting in increased extrusion by MRPs (Figure 71). In comparison, some 

studies have reported that cGMP efflux following sGC stimulation (by SNP) is 

more effective than via pGC stimulation (using ANP; Mercapide et al., 1999). 

However, the data from these studies may not best represent what occurs 
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biologically as the concentration of both SNP and ANP used was 

pharmacological rather than physiological (500 µM), entailing that upon 

stimulation with SNP the cGMP generated may have “spilled over” into the 

membrane area increasing its rate of extrusion, in comparison to a normal 

endogenous signal which would result in a contained cytosolic cGMP “cloud” 

(Figure 71). 

 

In functional reactivity studies MRP inhibition demonstrated a preference toward 

potentiating pGC-stimulated vessel relaxations compared with sGC activation. 

Recent innovation has permitted the study of real-time production of cGMP in 

VSMC, visualised and quantified using an intracellular cGMP FRET sensor. In 

these cells, MRP inhibition (using MK571) significantly enhances the magnitude 

of intracellular cGMP generated from both sGC and pGC activation; however, 

cGMP levels stay maximal for longer periods with pGC activation, compared to 

sGC where the signal declines relatively rapidly (Krawutschke et al., 2015). 

These data indicate that MRPs are more important in regulating membrane-

localised cGMP “pools”, rather than cytosolic cGMP, which instead is 

predominantly PDE regulated (Fischmeister et al., 2006; Krawutschke et al., 

2015). This contributes to the understanding of cGMP signalling 

compartmentalisation and the preferential effect of MRP inhibition to membrane, 

compared to cytosolic, -generated cGMP. My data support this notion but also 

go further to show this dichotomy from a functional standpoint, in which MRP 

inhibition had a greater effect on vessel relaxation in response to natriuretic 

peptides than NO donors.   

 

If this difference between sGC and pGC signalling with respect to MRPs can be 

explained by subcellular co-localisation, currently there is little or no data 

defining MRP protein-protein interactions with pGCs. However, MRP4 is 

localised in caveolin-1-enriched membrane fractions in VSMCs, implying that 

proximity is likely (Sassi et al., 2008). Moreover, both NPR-A and NPR-B co-

localise with caveolin-3 in cardiac homogenates (Doyle et al., 1997; Horikawa et 

al., 2011), and NPR-A co-localises with caveolin-1 in lung homogenates (Chen 

et al., 2012). Therefore, one might hypothesise that pGCs and MRPs could be 

co-localised in micro-domains, meaning the effect of cGMP egression would 
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have a greater effect on pGC than sGC -signalling. Furthermore, the cGMP 

downstream effecter molecules PKG and PDEs can also be present either in 

cytosolic or particular subcellular membrane fractions meaning that the co-

localisation of MRPs, pGCs, PKG and PDEs within caveolae/microdomains 

forms a highly regulated cGMP signalling environment through precisely 

controlling concentrations of intracellular cGMP to elicit particular cellular 

functions (Francis et al., 2010). In some situations this phenomenon may also 

be of relevance to sGC because of its ability to translocate to the plasma 

membrane via the chaperone Hsp90 (Agullo et al., 2005; Venema et al., 2003). 

In addition to membrane trafficking by Hsp90, a fraction of endogenous sGC 

within the normal heart is found in caveolin-3 (Tsai et al., 2012) and caveolin-1 

(Linder et al., 2005) -rich micro-domains. When present in the caveolae the 

enzyme is protected against oxidation that can occur from vascular injury, which 

inactivates the catalytic haem domain on the β subunit; therefore, the enzyme 

remains active compared to its cytosolic counterparts (Tsai et al., 2012). 

Overall, this demonstrates that not only can MRP inhibition potentiate pGC 

produced cGMP, but in disease environments characterised by oxidative stress, 

MRP inhibition may also potentiate cGMP generated from membrane located 

sGC, amplifying the signal, thus expanding the therapeutic potential of MRP 

inhibitors (Schnabel and Blankenberg, 2007; Figure 71). Interestingly, in the 

case of probenecid the potency of Sp-NO was significantly inhibited in my 

functional pharmacological studies; this almost certainly results from direct 

inhibition of sGC. This characteristic of probenecid has already been described 

in cultured porcine kidney epithelial and rat fibroblast cells; the mechanism is 

thought to involve blocking of the interaction between two unidentified, heat-

stable, high molecular weight factors that each facilitate the production of cGMP 

by sGC (Patel et al., 1995). This appears to be a sGC specific phenomenon as 

ANP stimulated cGMP is not affected by probenecid (Hamet et al., 1989). 

 

Determining which specific MRP isoform (MRP4 or MRP5) is responsible for the 

effects I observed on vascular reactivity is difficult. The accepted cyclic 

nucleotide transporting specificity of MRP4 and MRP5 is controversial but is 

likely to play a key role in determining the pathways regulated by both cAMP 

and cGMP efflux. MRP4 is universally accepted as a predominantly cAMP 
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transporting protein despite the fact that MRP4 inhibition results in elevated 

intracellular cGMP levels (Hara et al., 2011; Sassi et al., 2008). MRP4 has a 

lower Km value (9.69 ± 2.3 µM) for cGMP compared to cAMP (44.5 ± 5.8 µM) 

suggesting it may actually have a preference for cGMP over cAMP (Chen et al., 

2001). However, the Vmax for cAMP extrusion (4.14 ± 0.40 pmol/mg/min) is 

approximately twice as high as cGMP (2.01 ± 0.34 pmol/mg/min; Chen et al., 

2001). This suggests at low cAMP concentrations MRP4 transports cGMP but 

at high cAMP concentrations, cAMP itself is egressed. This theory appears to 

be supported in practice by studies that show increasing cAMP levels decrease 

cGMP eggression, presumably via competition (Hamet et al., 1989; Patel et al., 

1995). In comparison, MRP5 is commonly accepted as a predominantly cGMP 

transporting protein because of its significantly lower Km and higher Vmax values 

for cGMP (Km = 2.1 ± 0.2 µM; Vmax/Km = 2100 µl x mg-1 protein x min-1) 

compared to cAMP (Km = 379 ± 24 µM; Vmax/Km = 90 µl x mg-1 protein x min-1; 

Jedlitschky et al. 2000). Therefore, in the context of my reactivity studies I 

hypothesise that both MRP4 and MRP5 efflux cGMP simultaneously upon sGC 

and pGC activation, with MRP5 being the more favoured protein because of its 

superior efficiency in exporting cGMP. Whereas, vasodilatation elicited by 

increased cAMP, such as those I observed with Iso, is likely to be more 

dependent on MRP4, with MRP5 playing a minor role.  
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Figure 71. An illustration of the multiple interactions multidrug resistance 

proteins have with cGMP and cAMP elevating and degrading enzymes 

within the vasculature. 

Endothelial nitric oxide synthase (eNOS), soluble guanylyl cyclase (sGC), nitric 

oxide (NO), prostacyclin (PGI2), natriuretic peptides (NPs), multidrug resistance 

protein (MRP), phosphodiesterase (PDE), adenylyl cyclase (AC), natriuretic 

peptide receptor (NPR), acetylcholine (ACh).  

 

This notion of simultaneous cAMP and cGMP transport by MRPs is 

complemented by the finding that both MRP4 and MRP5 contain two substrate-

binding sites; MRP4 having a high affinity cAMP substrate-binding site, MRP5 a 

high affinity cGMP binding site, and both proteins a low affinity dual cAMP and 

cGMP binding site (Sager and Ravna, 2009). This entails that, depending on 

local concentration, both cyclic nucleotides can be transported by either one of 

these proteins. This theory is likely to be true because the MRP substrate-

binding pocket is known to bind more than one substrate at one time, based on 

export kinetics of native and conjugated substrates (Deeley and Cole, 2006; 

Schumacher et al., 2004). This facet gives MRPs a broad substrate-transporting 

capability (Sharom, 2008). However, such kinetic variations have not yet been 

reported for cyclic nucleotide transport (Deeley and Cole, 2006).  
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Specific cell and tissue expression of MRP4 and MRP5 will also determine their 

role in VSMC relaxation. In the vasculature, MRP4 and MRP5 are both 

expressed on ECs; however, MRP4 is considered by some to be the only MRP 

expressed on VSMCs, and MRP5 mainly an EC located protein (Sassi et al., 

2008). This has led to the assumption that all VSMC effects are elicited by 

MRP4 specifically, although there is plenty of evidence to show MRP5 

expression on VSMC in addition to ECs (Dazert et al., 2003; Meissner et al., 

2007; Mitani et al., 2003; Xu et al., 2004). Evidence supports the thesis that 

both MRP4 and MRP5 are expressed on VSMC and contribute to vessel 

reactivity since reduction of MRP5 expression using siRNA in rat pial arteriolar 

smooth muscle enhances sGC stimulated relaxations and decreases 

extracellular cGMP levels, demonstrating a specific functional effect of MRP5, 

albeit in the cerebral vasculature (Xu et al., 2004). Overall, these findings 

indicate that MRP4 and MRP5 are capable of regulating vascular homeostasis, 

with the inhibition of both proteins likely to elicit an additive, more advantageous 

effect. However, to elucidate the precise role of each in vascular reactivity will 

necessitate the use of MRP4 and MRP5 KO mice (Borst et al., 2007).  

 

A similar pattern of activity with MRP inhibition was observed in parallel 

experiments in cultured hCASMC. I found concentration-dependent reductions 

in proliferation with MK571 alone and, in addition, a subthreshold concentration 

of MK571 potentiated the anti-proliferative effects of ANP and D-NO, with a 

preference toward sGC activation (in contrast to the vascular reactivity data). 

Similar to the vascular reactivity experiments, the ability of MRP inhibition per 

se to attenuate VSMC proliferation is likely due to intrinsic cGMP production, 

supported by MK571 alone generating small increases (~10 % in 15 min) in 

intracellular cGMP in VSMCs as measured by FRET (Krawutschke et al., 2015); 

when sustained over several days this could potentially have inhibited VSMC 

proliferation. In addition, MRP4 expression has been found to be significantly 

increased in proliferating hCASMCs compared to quiescent cells, increasing the 

quantity of cGMP (and cAMP) egressed; thus, an anti-proliferative effect of 

MRP inhibition can be achieved (Sassi et al., 2008). To emphasise the effect of 

MRP inhibition on intracellular cGMP concentrations and VSMC proliferation, 
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previous studies have shown that in primary hCASMCs rendered deficient in 

MRP4 or MRP5 using siRNA, there is a significant increase in the intra:extra -

cellular cGMP and cAMP ratios under basal conditions, that results in a 

concomitant attenuation of growth (Sassi et al., 2008). However, in these 

studies the authors concluded that this was mainly a cAMP-driven phenomenon 

because the use of the PKG inhibitor, KT5823, did not affect proliferation.  

 

My data demonstrate that MRPs possess the capacity to extrude cGMP in 

terms of functional vasorelaxation and VSMC proliferation, but I didn’t observe 

changes in VSMC intra:extra -cellular cGMP ratios in the presence of MK571 

alone. The anti-proliferative effect of the NO donor, D-NO, was significantly 

enhanced when combined with MK571; however, I observed no difference in 

the VSMC intra:extra -cellular cGMP ratio. In contrast, the extracellular cGMP 

concentrations after pGC activation with ANP showed a substantial, significant 

increase, which was attenuated by MRP inhibition. This reflects my findings in 

vascular reactivity studies where MRPs appear to be preferentially coupled to 

pGC. The apparent lack of difference in VSMC intra:extra -cellular cGMP ratio 

with MRP inhibition alone may have resulted from not allowing sufficient time for 

cGMP to accumulate under basal conditions, since my measurements were 

performed after 24 h compared with those of Sassi et al., (2008) after 72 h. In 

addition, smaller levels of intra:extra -cellular cGMP may have been detectable 

using a more sensitive technique such as FRET. This may also explain the lack 

of difference in the VSMC intra:extra -cellular cGMP ratio with D-NO, where 

significant differences in proliferation were noted over the whole 96 h growth 

period but changes in intra:extra -cellular cGMP after 24 h may have been too 

small to measure by ELISA. In addition, signal compartmentalisation may have 

come into play, where less of the cGMP signal generated from sGC activation 

was under the influence of MRPs compared with that of pGC activation (Figure 

71). 

 

The vasodilatory effect of MRP inhibition alone may only be an isolated vessel 

phenomenon, because MK571 did not significantly affect MABP in 

anaesthetised and conscious mice, despite the compound having a relatively 

long plasma half-life (two to three hours in humans; Margolskee, 1991) and the 



172 

 

dose used (25 mg/kg/day) having previously been shown to effectively reverse 

experimental PH (Hara et al., 2011). However, MK571 did exhibit a preference 

to potentiate pGC activation evident by significantly enhanced reductions in 

systemic BP elicited by acute bolus doses of ANP (but not NO). This suggests 

in situations where endogenous circulating levels of NPs are increased (e.g. 

heart failure, MI and PH) that MRP inhibition will potentiate reductions in BP, 

and the lack of an observable effect of MRP inhibition on MABP, in conscious 

mice, may be due to low basal circulating concentrations of circulating NPs. 

This should not be a surprise as the MRP4, MRP5 and MRP4/MRP5 double KO 

mice all lack an obvious phenotype, suggesting under basal conditions MRPs 

aren’t essential to vascular homeostasis (Borst et al., 2007). However, longer-

term MRP4 deficiency results in cardiac hypertrophy, as observed in aging (9 

month old) MRP4 KO mice, which is not apparent in the same strain at 3 

months (Sassi et al., 2012). Thus, in health this mechanism may not be crucial 

to the maintenance of cardiovascular homeostasis in vivo, whereas its role may 

be triggered in cardiovascular disease characterised by enhanced circulating 

levels of NPs (e.g. heart failure, PH and MI; Potter et al., 2006). 

 

Overall, my data describe in detail the role of MRPs in regulating several facets 

of vascular homeostasis, vessel reactivity, VSMC proliferation and BP in vivo, 

by augmenting cGMP signalling. Furthermore, this thesis provides further 

evidence to support the importance of MRPs in contributing to cGMP 

compartmentalisation through the ability of MK571 to favour pGC over sGC 

activation. 

 

5.2.1 Effect of MRPs in cardiovascular disease 

 

A key observation of the potential impact of MRPs in cardiovascular disease 

was made by Hara et al., (2011), who showed that MRP4 expression is 

significantly increased in the pulmonary arteries of PH patients and in the lungs 

of mice exposed to hypoxia. Furthermore, MRP4 expression is increased in 

proliferating VSMCs compared to quiescent cells, suggesting in vascular 

diseases characterised by VSMC hyperplasia, MRPs could be reducing the 
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anti-proliferative effect of cyclic nucleotides (Sassi et al., 2008). Also, MRP5 

expression is increased in blood vessels and cardiomyocytes in the hearts of 

patients with ischaemic cardiomyopathy (Dazert et al., 2003). Overall, this 

demonstrates that in cardiovascular diseases (e.g. PH), MRP expression 

increases substantially, similar to that observed with PDEs, blunting the anti-

proliferative and blood pressure lowering potential of endogenous NO and NP 

signalling (Wharton et al., 2005). Therefore, inhibiting MRPs per se to treat 

cardiovascular disorders could pose an attractive therapeutic target, in addition 

to also being an effective adjuvant to other cGMP elevating agents.  

 

Indeed, the potential power of MRP inhibition alone can be predicted when 

considering the increased levels of circulating ANP, BNP and CNP in patients 

with cardiovascular diseases such as PH, MI and congestive heart failure 

(Kaiser et al., 2015; Potter et al., 2006). Synergy between cGMP elevating 

agents (e.g. PDE and NEP inhibitors) has been well characterised in 

experimental models of PH and fibrosis (Baliga et al., 2014, 2008). Indeed, 

cGMP/cAMP -elevating combination therapies have been shown to be effective 

in patients with PH (e.g. epoprostenol and sildenafil; Simonneau et al., 2008). 

This gives credence to the idea that combination of NP elevating agents (e.g. 

NEP inhibitors and/or PDE inhibitors) with MRP inhibitors is also likely to be of 

therapeutic benefit. Indeed, the link between two such mechanisms, cGMP 

degradation due to PDEs and efflux by MRPs, has been demonstrated through 

greater elevations in VSMC intracellular cGMP concentrations in the presence 

of MRP inhibitors when combined with PDE inhibitors such as sildenafil and 

IBMX (Hara et al., 2011; Krawutschke et al., 2015; Sassi et al., 2008). However, 

the relationship between PDEs and MRPs is not straight-forward. Firstly, 

treatment with the PDE5 inhibitor, sildenafil, in normoxic WT mice and PASMCs 

from patients with PH results in a significant increase in MRP4 expression, 

suggesting a compensatory mechanism to cope with the increased intracellular 

concentrations of cGMP, which may contribute to tachyphylaxis (Hara et al., 

2011). This observation is particularly pertinent as PDE5 inhibitors are already 

prescribed to patients with PH and therefore could result in increased MRP 

expression and reduced therapeutic value. Second, the PDE5 inhibitor sildenafil 

and the PDE3 inhibitor trequinsin have each been identified as inhibitors of 
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MRPs (Chen et al., 2002; Jedlitschky et al., 2000; Reid et al., 2003). This 

observation has muddied the waters somewhat when measuring increases in 

intracellular cGMP; are changes due to a PDE inhibition, MRP inhibition or 

both? This observation leads to the assumption that possible concomitant 

inhibition of PDE5 and MRPs may contribute to the current therapeutic benefit 

of sildenafil, and combining cGMP efflux inhibitors with elevators should be 

explored. Indeed, to support this concept of combination therapy, in the heart 

PDE9 is the predominant isoform that degrades cGMP generated by NPs, 

whereas PDE5 favours NO (Lee et al., 2015). My data show that MRPs also 

favour NP generated cGMP over NO/sGC. Therefore, in diseases characterised 

by elevating responses by NPs appear more advantageous, inhibiting MRPs 

may pose a more attractive therapeutic target (e.g. heart failure, PH and MI; 

Potter et al., 2006)  

 

Other synergistic effects of cyclic nucleotide transport by MRPs have been 

observed in VSMCs (and ECs). Here, increasing intracellular cAMP 

concentrations through adenylyl cyclase activation using forskolin causes an 

increase in intracellular cGMP due to attenuation of cGMP eggression (Hamet 

et al., 1989). Further evidence of this phenomenon is provided by studies from 

(Krawutschke et al., 2015) in which human VSMC intracellular cGMP levels 

were increased by the β-adrenoceptor agonist, isoproterenol (isoprenaline), but 

not by inhibition of PDE3 with cilostamide. This reflects, somewhat, the same 

cyclic nucleotide cross-talk observed with PDEs and would naturally lead to the 

prediction that cAMP based treatments such as the IP receptor agonists 

treprostinil, epoprostenol and iloprost, used in the treatment of PH could be 

exercising further therapeutic effect by additionally elevating intracellular VSMC 

cGMP levels because of cAMP directly inhibiting MRPs (Figure 71). 
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Figure 72. An illustration of the potential cardiovascular benefits of MRP 

inhibition. 

Cyclic adenosine-3',5'-monophosphate (cAMP), cyclic guanosine-3',5'-

monophosphate (cGMP), multidrug resistance protein (MRP). 

 

Multidrug resistance proteins may also exert an effect on the process of 

angiogenesis and repair from vascular injury. Fibroblasts from MRP4 KO mice 

migrate faster and exhibit improved wound healing capability compared to WT 

littermates, which is due to higher intracellular cGMP (and cAMP) 

concentrations (Sinha et al., 2013). Indeed, MRP4 knockdown in EC results in 

enhanced migration and survival because of increased intracellular cyclic 

nucleotide levels (Tagami et al., 2010; Figure 72). The pro-angiogenic factor 

VEGF, present at high levels in PH, is implicated in this process as it leads to 

decreased EC MRP4 expression (Tagami et al., 2010). Overall, this intimates 

that MRPs may play a key role in vascular cell migration, which could be 

particular pertinent in disease states. For example, in fibrotic disorders including 
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PH, pulmonary fibrosis and cardiac fibrosis, MRP inhibition in fibroblasts could 

not only enhance migration and therefore wound repair, but also prevent 

excessive fibrosis by attenuating myofibroblast differentiation which is 

responsible for synthesis and deposition of extracellular matrix, specifically 

collagen (Camelliti et al., 2005; Figure 72). Increasing intracellular cAMP 

(Swaney et al., 2005), and cGMP (Baliga et al., 2014) through PDE5 and NEP 

inhibition, has already been demonstrated to reduce fibrosis. Dual prescription 

of IP receptor agonists with either PDE5 inhibitors or sGC stimulators is already 

in use for the treatment of PH; therefore, targeting both types of cyclic 

nucleotide simultaneously through MRP inhibition poses an obvious advantage 

(Simonneau et al., 2013). 

 

In sum, my thesis contributes to the understanding of the cGMP-dependent 

effects of MRPs in vascular homeostasis by demonstrating their ability to 

modulate vascular reactivity, VSMC proliferation and BP in vivo. This suggests 

that the use of MRP-targeted therapy poses an attractive option for the 

treatment of cardiovascular disease, and quite possibly could already be in play 

in the treatment of PH due to off-target effects of PDE inhibitors.  
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5.3 The role of C-type natriuretic peptide and 

its cognate receptor natriuretic peptide 

receptor-C in pulmonary hypertension  

 

Pulmonary hypertension is a devastating and severe pan-vasculopathy with a 

seven year survival rate upon diagnosis. The pathogenesis of PH appears to 

initiate with endothelial dysfunction and develops in to a complex multifaceted 

disease, which particularly benefits from a combination therapy paradigm (Gali 

et al., 2013). CNP is a powerful vasoprotective peptide acting through both 

NPR-C and NPR-B. CNP has been found to be particularly beneficial in the 

protection against vascular diseases (Moyes et al. 2014); however the 

pharmacodynamic effect of CNP in PH is controversial with some studies 

demonstrating beneficial effects (Itoh et al., 2004; Kimura et al., 2016; 

Murakami et al., 2004) and others no effect at all (Casserly et al., 2011). The 

vascular actions of CNP are considered to be through NPR-B stimulation and 

cGMP-dependent mechanisms, the latter of which is exploited in the treatment 

of PH. Additionally, CNP is secreted by endothelial cells in response to shear 

stress and inflammogens, both of which are increased in PH (Wilkins, 2012). 

Thus, experiments were designed to tease out the exact role of endogenously 

generated CNP in PH by using ecCNP KO mice in the hypoxia plus SU5416 

experimental model. Furthermore, to investigate through which receptor CNP 

initiates any potential beneficial effect I utilised global NPR-C KO mice in the 

same preclinical model of PH. Furthermore, since CNP has been demonstrated 

to exert a pronounced anti-fibrotic capability (Kimura et al., 2016; Murakami et 

al., 2004; Soeki et al., 2005), I utilised the bleomycin-induced model of PH and 

investigated the effect of global NPR-C KO on pathogenesis.  
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5.3.1 The role of endothelial cell-derived C-type 

natriuretic peptide in pulmonary hypertension  

 

5.3.1.1 Hypoxia plus SU5416 model of PH 

 

To investigate the role of CNP in PH I utilised an animal model that has recently 

been reported to best recapitulate the characteristic of this disease in mice. The 

hypoxia plus SU5416 model of PH, originally reported by Ciuclan et al., (2011), 

is described as a severe model of PH best mirroring the histopathological 

features and progressive nature of the disease found in humans. In addition, 

this murine model was described to be similar to that published by 

Taraseviciene-Stewart et al., (2001) in rats, which has been thoroughly 

characterised and accurately represents the disease found in patients (Abe et 

al., 2010). Therefore, as I had mice available to me that were either deficient in 

CNP from ECs specifically or NPR-C globally, it logically led me to use this 

murine model to investigate the role of each of these proteins in the 

development of PH. Firstly, as this model hasn’t previously been used in our lab 

I performed experiments to determine whether the PH phenotype reported 

could be reproduced in our lab.  

 

In WT mice exposed to hypoxia plus SU5416, as described by Ciuclan et al., 

(2011) I observed large increases in RVSP and RVH indicative of PH. When 

mice were removed from the chronic hypoxic insult there was a reduction in 

RVSP and RVH indicating reversal of this pathology. These results suggest that 

without the continuous insult of hypoxia the mice recover spontaneously, such 

that the PH phenotype is not irreversible and progressive like the hypoxia plus 

SU5416 model in rats, and more importantly what’s observed in patients. In 

addition, I also investigated whether a longer period of chronic hypoxia (5 

weeks instead of three) resulted in a more severe phenotype. Although, 5 

weeks hypoxia did not cause further increases in RVSP and RVH, the values 

remained essentially the same as at the 3 week time-point, suggesting that the 

hypoxic insult sustains pathology. In addition, to determine whether this model 
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was more akin to the disease characterised by the development of severe 

complex lesions and occluded vessels I qualitatively analysed lungs from mice 

exposed to 5 weeks hypoxia plus SU5416. I assumed this extended model 

would exhibit a more severe pathology than 3 weeks hypoxia, thus increasing 

the chance of detecting signs of advanced vascular lesion. However, I did not 

detect any complex lesions or occluded vessels in the lungs of these mice. In 

conclusion, using this model I was able to recapitulate the findings originally 

published by Ciuclan et al., (2011); this model generates a severe PH 

phenotype whilst the animals are continuously exposed to hypoxia but, in 

contrast to the original findings of Ciuclan et al., (2011), this phenotype reverses 

when animals are removed from hypoxia. In addition, I did not detect the 

presence of complex lesions or occluded vessels derived from hyper-

proliferative ECs suggesting that this model may not completely recapitulate the 

human disease as originally concluded. In fact, my observations are mirrored by 

those of Vitali et al., (2014) who whilst performing an in-depth investigation of 

this model also found that PH like pathologies, RVSP and RVH, regress once 

mice are returned to normoxia. Interestingly, this group found that hypoxia plus 

SU5416 treated mice exhibited significant vascular pruning, which is thought to 

arise from the development of angio-obliterative lesions, also observed in PH 

patients and the rat hypoxia plus SU5416 model (McLaughlin and McGoon, 

2006; Taraseviciene-Stewart et al., 2001). However, vascular pruning or angio-

obliterative lesions are not characteristics of the mouse chronic hypoxia model 

of PH, demonstrating advantages of the current model. In addition, the original 

report demonstrated that when SU5416 is combined with hypoxia in mice, it 

causes a shift from an apoptotic to a hyper-proliferative EC phenotype, a 

hallmark of PH, but not observed in hypoxia alone models. In sum, no one 

animal model recapitulates all the characteristics of PH (Stenmark et al., 2009), 

but I believe the combination of SU5416 with hypoxia better reflects the 

endothelial dysfunction found in the human disease and therefore allowed me to 

more appropriately investigate the vascular protective effects of CNP and NPR-

C.  

 

To ensure the continual use of this model was economically viable, I 

investigated possible differences in potency of SU5416 sourced commercially 



180 

 

compared to that synthesised in-house, the latter being significantly cheaper. I 

did not find any differences in the degree of PH developed when using either 

source of SU5416. Therefore the less expensive SU5416 (synthesised in-

house) was selected and used for all subsequent experiments involving 

transgenic animals. 

 

The pathophysiological effect of endothelial cell-derived CNP (ecCNP KO 

mouse) deletion in mice has been well characterised (Moyes et al., 2014). Both 

male and female ecCNP KO mice exhibit increased leukocyte adhesion and 

platelet aggregation, which contribute to an enhanced development of aortic 

atherosclerotic plaques and aneurysms (males only, 50 %) when compared to 

WT littermates. However, only female ecCNP KO mice are inherently 

hypertensive. These data along with those demonstrating the ability of CNP to 

modulate EC and VSMC growth (Khambata et al., 2011), suggest that 

endothelial cell-derived CNP is an essential regulator of vascular homeostasis. 

These striking findings led to the hypothesis that ecCNP plays an essential role 

in a disease characterised by inflammation, thrombosis, endothelial dysfunction 

and VSMC proliferation; an excellent example being PH. 

 

Male and female ecCNP WT and KO mice when exposed to hypoxia plus 

SU5416 developed PH evidenced by significantly increased RVSP, RVH and 

muscularisation of the pulmonary small arteries. However, no significant 

differences in RVSP, RVH and extent of muscularisation were observed 

between genotypes. Overall, these data show that CNP derived from ECs 

specifically is not essential in the development of PH using this model. This 

finding is surprising as endothelium-derived CNP has previously been shown to 

protect against the pathogenesis of vascular disease (atherosclerosis; Moyes et 

al., 2014). In addition, the importance of endothelium-derived CNP in vascular 

function is more evident in female ecCNP KO mice than males; for this reason I 

studied both sexes in the experimental model of PH but no overt changes were 

apparent in either sex. If anything, one would predict that female ecCNP KO 

mice would have exhibited a pulmonary hypertensive phenotype, assuming the 

higher blood pressure in the systemic vasculature would be mirrored in the 

pulmonary circulation. However, I did not observe a high RVSP in female 
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ecCNP KO mice, under normoxic conditions suggesting ecCNP in females has 

a disparate function between the pulmonary and systemic circulation. 

Furthermore, a hallmark of PH is the development of thrombi in the pulmonary 

circulation exacerbated by vascular lesions, this is due to enhanced platelet 

aggregation and inflammation that precedes vascular remodelling and predicts 

survival (Rabinovitch et al., 2014). Therefore, the significant anti-thrombotic and 

leukocyte adhesive properties of ecCNP should be vital to disease 

pathogenesis. Again, this should lead to a worsening of the PH phenotype in 

ecCNP KO mice. However, whilst this may potentially be the case in PH 

patients, this characteristic of the disease may not be best recapitulated in the 

mouse hypoxia plus SU5416 model. Chronic hypoxia in both rodents and 

humans is characterised by inflammation consisting of increased infiltration of 

macrophages and neutrophils, with enhanced secretion of pro-inflammatory 

cytokines such as TNF-α, IL-1β , IL-6, and IL-8 that increase the risk of aberrant 

platelet aggregation (Stenmark et al., 2006b). Rats and mice exposed to 

hypoxia plus SU5416 also have increased secretion of pro-inflammatory 

cytokines and leukocyte recruitment (Ciuclan et al., 2011; Taraseviciene-

Stewart et al., 2001). Although differences in the inflammatory cell profile have 

been noted; the rat hypoxia plus SU5416 model has only a small number of 

macrophages in the alveolar space whereas the mouse hypoxia plus SU5416 

model demonstrates a significant expression of the macrophage recruitment 

marker CD68, which is also found in plexiform lesions of PH patients 

(Rabinovitch et al., 2014). Regardless, using the mouse hypoxia plus SU5416 

model with its pro-inflammatory phenotype should have illustrated the vital anti-

inflammatory properties of EC-derived CNP present in WT mice but absent in 

KOs, which should have resulted in a more severe phenotype in KOs; it remains 

unclear why this was not observed.  

 

Anti -thrombotic and -inflammatory characteristics of CNP have been 

demonstrated with CNP infusion (0.75 μg/h) in the rat monocrotaline model of 

PH resulting in both reversal of established disease and prevention of its 

progression (Itoh et al., 2004). Specifically, CNP decreases 

monocyte/macrophage infiltration and reduces expression of pro-thrombotic 

markers. In addition, CNP infused (2.5 mg/kg/min) prophylactically significantly 
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attenuates the number of macrophage, neutrophil and lymphocyte lung 

infiltrates caused by LPS (Kimura et al., 2015). In contrast, but mirroring my 

own findings, Casserly et al., (2011) reported that CNP infusion (0.75 and 2.25 

µg/h) had no beneficial effect in rats exposed to either chronic hypoxia alone or 

hypoxia plus SU5416. When CNP was used in the monocrotaline model of PH it 

was shown to suppress pulmonary EC apoptosis and increase proliferation, in 

addition to reducing VSMC proliferation. This suggests CNP aided the 

maintenance of the endothelial barrier, the initial site of monocrotaline insult, 

inhibiting VSMC proliferation (Itoh et al., 2004; Rosenberg and Rabinovitch, 

1988). Moreover, when VEGF is added to ECs this same pro-proliferative EC 

phenotype also occurs (Alon et al., 1995; Gerber et al., 1998). Furthermore, this 

forms the foundation for the rat and mouse hypoxia plus SU5416 model where 

VEGFR inhibition prevents VEGF mediated EC survival and instead 

encourages EC apoptosis, leading to the selection of a hyper-proliferative 

apoptotic-resistant EC phenotype (Taraseviciene-Stewart et al., 2001). Akin to 

VEGF, CNP has the ability to promote endothelial cell proliferation, which has 

been demonstrated extensively to aid neovascularisation, enhancing wound 

repair after vascular injury (Furuya et al., 1995, 1991; Khambata et al., 2011; 

Kühnl et al., 2005; Morishige et al., 2000; Ohno et al., 2002; Pelisek et al., 

2006); thus, it is perplexing that I didn’t observe a more severe PH-like 

phenotype in mice absent of EC derived CNP. 

 

A speculative explanation for the disparity in effectiveness of exogenously 

administered CNP (monocrotaline v hypoxia or hypoxia plus SU5416) may 

depend on the type and degree of pathogenic insult that initiates these different 

in vivo models. Different vascular insults may result in different mechanisms 

that modulate EC and VSMC growth, which also determine the effectiveness of 

CNP in attenuating a phenotype in one model over another. Chronic exposure 

to hypoxia in general, and hypoxia plus SU5416 models of PH, results in an 

increased secretion of VEGF (Ciuclan et al., 2011; Stenmark et al., 2006b; 

Taraseviciene-Stewart et al., 2001). VEGF administered to ECs under routine 

culture significantly reduces CNP secretion and expression (Doi et al., 1996). 

Moreover, exposing VSMC to hypoxia increases expression of VEGF but not 

bFGF, which contrastingly increases CNP secretion by ECs (Brogi et al., 2008; 
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Suga et al., 1992b). Although there are many different mitogens and pro-

inflammatory cytokines secreted during hypoxia that can simultaneously 

increase and decrease CNP secretion, these specifics illustrate that the precise 

mix of mitogens and pro-inflammatory cytokines generated by hypoxia 

determine the balance between enhanced or suppressed CNP secretion. 

Furthermore, it may not just be whether CNP itself is secreted but also the 

simultaneous secretion of vasoconstrictive, pro-vascular remodelling agents. 

Suga et al., (1992b) demonstrated a number of different mediators that 

significantly increase CNP secretion from EC cells such as TGF-β, bFGF, 

thrombin and arginine-vasopressin (AVP); however, the same factors also 

simultaneously increase ET-1 production suggesting that the secretion of 

vasodilator/anti-proliferative factors are balanced with vasoconstrictive/pro-

proliferative ones. Furthermore, 8-bromo-cAMP and 8-bromo-cGMP, membrane 

permeable PKA and PKG activators, respectively, increase CNP secretion from 

ECs in the absence of increased ET-1 secretions. This suggests a potential 

beneficial positive feedback mechanism where by increased cAMP and cGMP 

production by either GC or adenylyl cyclase in response to NO, NPs or PGI2 

elevates CNP secretion. Therefore, in PH characterised by reduced cGMP and 

cAMP signalling, and enhanced ET-1 signalling, it is conceivable that the 

disease is by nature one of deficient CNP secretion and that its absence in the 

ecCNP KO I studied does not affect pathogenesis because CNP secretion is 

also reduced in WT mice. 

 

Another point to consider is whether endothelial cell-derived CNP is the 

predominant source of CNP. If endothelial cell-derived CNP isn’t a major player 

in the protection against PH pathogenesis, as suggested by my results, could 

CNP produced from another cell-type be more important? Elegant studies 

performed by Chauhan et al., (2003), clearly demonstrate that ACh-induced 

CNP secretion from resistance arteries (mesenteric) is dependent completely 

on the presence of an intact endothelium. However, there are alternative lines 

of evidence demonstrating CNP is secreted by other cell-types, which could 

potentially play a role in PH; these include VSMC (Casco et al., 2002; Kelsall et 

al., 2006; Mendonca et al., 2006; Naruko et al., 2005, 1996; Suga et al., 1998; 

Woodard et al., 2002), macrophages (Casco et al., 2002), fibroblasts (Chrisman 
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and Garbers, 1999; Horio et al., 2003) and cardiomyocytes (Del Ry et al., 2011; 

Kelsall et al., 2006). 

 

Vascular SMCs could be considered ideally located to elicit beneficial autocrine 

and paracrine effects on CNP secretion. ECs co-cultured with VSMCs 

significantly increase EC secreted CNP but only when the cells are in direct 

contact demonstrating a reciprocal relationship between VSMCs and ECs. This 

effect is dependent on the release of TGF-β from VSMCs when in direct contact 

with ECs, and lends support to the overall importance of an intact endothelium. 

However, ecCNP KO mice are absent of endothelial cell-derived CNP 

suggesting if this mechanism was significant, a worse phenotype would have 

been observed in KO mice using this model (Komatsu et al., 1996). In addition, 

mitogens such as PDGF, the expression of which is increased in hypoxic 

mammals and PH patients, enhances CNP expression in VSMCs and ECs from 

humans, but does the opposite in rodents (Mendonca et al., 2006). This 

suggests that the release of mitogens such as PDGF with chronic hypoxia in 

rats may decrease the secretion of CNP from VSMC possibly contributing to 

pathogenesis, whereas in humans it appears hypoxia may increase the 

secretion of VSMC-derived CNP reducing disease progression. Therefore, 

endogenous CNP secretion from both ECs and VSMCs in mice exposed to 

hypoxia plus SU5416 may play an inherently menial role in preventing disease 

progression because secretion of this peptide is inhibited in both WT and 

ecCNP KO mice due to mitogen-triggered downregulation. However, similar to 

that observed in ECs, the combination of specific mitogens and cytokines may 

determine the extent to which CNP is secreted by VSMCs. Thus, it is difficult to 

conclude whether in the mouse hypoxia plus SU5416 model there is a 

compensatory effect of elevated CNP secretion from VSMCs in the absence of 

ecCNP, or that inherently CNP secretion is attenuated in both cell-types; 

regardless, this would account for no observable difference between ecCNP KO 

and WT mice.  

 

Macrophage lung infiltration is a common component in the mouse hypoxia plus 

SU5416 model of PH, but absent in the rat model (Ciuclan et al., 2011; 

Taraseviciene-Stewart et al., 2001). In addition, macrophage pulmonary 
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infiltrates are also a common feature in PH patients (Rabinovitch et al., 2014). 

Macrophages can secrete CNP, specifically when monocytes are exposed to 

pro-inflammatory stimuli (e.g. TGF-β) causing them to differentiate into 

macrophages (Kubo et al., 2001). Further, Suga et al., (1992b) showed that co-

culturing macrophages with ECs increases EC-derived CNP secretion by ~10-

fold. Therefore, macrophages secrete CNP themselves and also increase EC-

derived CNP secretion. The importance of one mechanism over the other as a 

vasoprotective effect has already been shown. Macrophages are a predominant 

feature in atherosclerosis (Casco et al., 2002) but the absence of ecCNP in 

mice results in enhanced atherosclerotic lesions with increased macrophage 

infiltration meaning that the CNP secreted by macrophages is not significant 

enough to compensate for the lack of EC-derived CNP (Moyes et al., 2014). 

Therefore, in my studies it would be reasonable to assume that CNP derived 

from macrophages did not compensate for the lack of ecCNP.  

 

Fibroblasts are known to accumulate in the pulmonary vascular adventitia of PH 

patients and also during chronic hypoxia, this is followed by fibroblast migration 

into the intimal and medial layers, forming part of the vascular lesion through 

proliferation and production of extracellular matrix (Stenmark et al., 2006a). In 

fact, rat cardiac fibroblasts secrete CNP which is significantly enhanced through 

stimulation with TGF-β, bFGF, and ET-1 (Horio et al., 2003). C-type natriuretic 

peptide released by fibroblasts can act as an autocrine signal by inhibiting 

fibroblast differentiation, migration and collagen deposition (Li et al., 2015). 

Therefore, fibroblast-derived CNP is a potential source of CNP that could have 

blunted any detrimental effects of ecCNP deletion. 

 

CNP is expressed and secreted by the heart, particularly in cardiac disorders 

such as heart failure (Kalra et al., 2003), suggesting that CNP acts in an 

autocrine fashion to attenuate cardiac remodelling. Although this could account 

for a lack of significant difference in RVH between WT and ecCNP KO mice in 

the PH model it is unlikely to account for a similar phenotype with respect to 

vascular remodelling. In particular, CNP does not have endocrine capabilities 

akin to ANP and BNP as it has a very short half-life in the circulation. 

Nonetheless, it would be of interest to evaluate the phenotype of 
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cardiomyocyte-specific CNP null mice which have recently been developed by 

our lab (Moyes et al., 2015).  

 

The study by Casserly et al., (2011) demonstrating little or no effect of CNP 

infusion in rats exposed to hypoxia or hypoxia plus SU5416 noted significantly 

elevated plasma levels of CNP, implying adequate activation of NPR-B (or 

possibly NPR-C). This led to the assumption that the observed lack of effect 

was likely due to decreased receptor expression. The authors showed that 

NPR-B protein expression was undetectable in the lungs of rats exposed to 

hypoxia plus SU5416 and treated with CNP. However, Li et al., (1995) showed 

a 2-fold increase in NPR-B expression in lungs from rats exposed to 4 weeks 

hypoxia, suggesting either the hypoxia plus SU5416 combination or continuous 

CNP infusion decreases NPR-B expression. Continuous CNP infusion has been 

commonly used and demonstrated to be of therapeutic value in a wide range of 

experimental models, for example reducing intimal thickening from vascular 

injury (1 µg/kg/h; 5 or 14 day infusion; Furuya et al., 1995), decreasing Ang-II 

induced cardiac hypertrophy and fibrosis (0.05 µg/kg/min; 2 week infusion; 

Izumiya et al., 2012), attenuating the magnitude of cardiac infarct area and 

fibrosis due to experimental MI (0.1µg/kg/min; 2 week infusion; Soeki et al., 

2005) and preventing monocrotaline induced PH (0.75 µg/hour; 4 and 8 week 

infusion; Itoh et al., 2004). Consequently, CNP infusion does not appear to 

attenuate either NPR-B or NPR-C signalling otherwise CNP would not have 

exhibited a therapeutic effect. In addition, desensitisation does not appear to 

occur in disease models since infusion of both ANP and BNP significantly 

reduce severity of PH developed from chronic hypoxia in rats (Jin et al., 1990; J 

R Klinger et al., 1998). In fact, exposure of rats to chronic hypoxia (4 weeks) 

causes a ~2-fold increase in NPR-B lung expression (Li et al., 1995). In sum, 

these data suggest that the hypoxia and SU5416 combination itself, and not 

CNP infusion per se, decreases lung NPR-B protein expression preventing any 

beneficial effect of CNP. Thus, in my studies, the reason underlying a lack of 

effect of ecCNP KO may well reside with a decrease in NPR-B expression 

which abrogated any beneficial effect of an increased CNP secretion in WT 

mice. In addition to activating NPR-B, CNP also activates NPR-C (Chauhan et 

al., 2003; Moyes et al., 2014; Villar et al., 2007). NPR-C expression has been 
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shown previously to be highly sensitive to hypoxia, being significantly reduced 

in the lungs of mice (~20 %) after just 48 h hypoxia, with a further decrease 

after 4 weeks (Li et al., 1995). Indeed, a reduction in NPR-C expression was 

originally alluded to by Klinger et al., (1994), reporting that ANP clearance was 

reduced in the lungs of rats exposed to 3 weeks hypoxia. This has also been 

shown in mice exposed to chronic hypoxia where lung NPR-C mRNA 

expression is significantly reduced in both WT and ANP KO mice, suggesting a 

reduction in NPR-C expression is independent of circulating NP concentrations 

and most probably due to the hypoxic insult itself (Sun et al., 2000). In fact it is 

not hypoxia per se that decreases NPR-C expression but rather the 

combination of hypoxia-responsive growth factors, FGF and PDGF, that 

activate tyrosine kinase receptors, decreasing NPR-C expression in rat 

pulmonary VSMCs (Sun et al., 2001). Thus, NPR-C is most highly expressed in 

the lung under basal conditions suggesting a prominent role in the pulmonary 

circulation. However, if NPR-C played a critical role in the pulmonary circulation 

I would have expected NPR-C KO mice to develop spontaneous PH, similar to 

that observed with eNOS KO mice (Steudel et al., 1997), but this was not the 

case (see 5.3.2). 

 

In sum, the lack of an overt effect between WT and ecCNP KO mice using the 

murine hypoxia plus SU5416 model of PH may have been due to a 

compensatory increase in cardiac-derived CNP attenuating an effect on RVH 

and/or fibroblast-derived CNP ameliorating an effect on vascular remodelling. 

Moreover, decreased expression of CNP, NPR-B and NPR-C in the setting of 

PH entails that, in both WT and ecCNP KO mice the capacity of the peptide to 

elicit any beneficial effects would have been absent.   
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5.3.2 The role of natriuretic peptide receptor-C in 

pulmonary hypertension 

 

5.4.2.1 Hypoxia plus SU5416 model of PH  

 

Initially, I hypothesised that CNP can elicit a cGMP-dependent beneficial effect 

in PH via activation of NPR-B and production of cGMP. To study this possibility 

I planned to exploit the NPR-B KO mouse colony maintained by our lab, but the 

availability of such animals was markedly reduced as a result of poor fecundity 

and innately poor survival. However, since recent evidence points to an 

important signalling function for NPR-C in the heart and vasculature (Anand-

Srivastava, 2005; Moyes et al., 2014; Rose and Giles, 2008), I decided to 

explore the phenotype of global NPR-C null animals. Although the signalling 

pathways triggered by NPR-C activation are not mediated by cGMP, rather Gi/o 

G-proteins, NPR-C does possess a NP clearance function, suggesting that 

depletion of this receptor could increase cGMP signalling indirectly (Matsukawa 

et al., 1999). 

 

Male NPR-C KO mice exhibit a hypotensive phenotype, which has been 

attributed to a reduction in NP clearance (Matsukawa et al., 1999; Moyes et al., 

2014). In contrast, female NPR-C KO mice exhibit a hypertensive phenotype 

resulting from the role of this receptor in orchestrating the EDHF-like activity of 

CNP. Furthermore, male and female NPR-C KO mice demonstrate enhanced 

vascular wall leukocyte adhesion properties, similar to male and female ecCNP 

KOs (Moyes et al., 2014). In addition to NPR-B, NPR-C mediates the anti-

proliferative effects of CNP on VSMC and pro-proliferative effects on ECs 

(Khambata et al., 2011). In sum, deletion of NPR-C increases inflammation and 

disables the ability of CNP to prevent aberrant VSMC mitogenesis and sustain 

the endothelial barrier; collectively these facets of CNP biology led to the 

hypothesis that the absence of NPR-C signalling would be severely detrimental 

to the development of PH, a disease characterised by inflammation, VSMC 

proliferation and endothelial cell dysfunction. Therefore, using the same mouse 
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hypoxia plus SU5416 model of PH described above, I investigated the effect of 

global deletion of NPR-C on disease severity.  

 

Hypoxia plus SU5416 caused PH in both male and female WT and NPR-C KO 

mice evident by significant increases in RVSP when compared to mice under 

control (normoxic) conditions. These increases in RVSP were accompanied by 

significantly enhanced RVH in all mice except male WT. Both genotypes of 

either sex had a predominance of partially and fully muscularised pulmonary 

arterioles (<100 µm diameter) suggesting that this model was able to induce 

severe vascular remodelling characterised by VSMC proliferation. However, this 

was not affected by genotype in either sex. Despite global deletion of NPR-C 

not causing significant differences in RVSP and pulmonary vascular remodelling 

between genotypes, NPR-C KO mice did develop significantly increased RVH 

compared to WT. Overall, these data show that NPR-C is not essential to the 

development of higher RVSP and pulmonary vascular remodelling but instead 

this receptor contributes to the protection against RVH associated with the 

disease. This is surprising as both male and female NPR-C KO mice exhibit 

increased leukocyte adhesion to the vascular wall under basal conditions and 

when stimulated by the addition of IL-1β (Moyes et al., 2014). Therefore, as this 

PH model exhibits a significant inflammatory component one would expect 

pathogenesis to be exacerbated in NPR-C KO mice, and in both sexes. 

 

Arguably the most important feature of NPR-C signalling in the context of PH, is 

its ability to inhibit VSMC proliferation but enhance EC growth (Khambata et al., 

2011; Figure 73). Aberrant VSMC proliferation and EC apoptosis are key 

components of PH in humans and both the rat and mouse hypoxia plus SU5416 

models (Ciuclan et al., 2011; Taraseviciene-Stewart et al., 2001; R. M. Tuder et 

al., 2007). Therefore, the ability of CNP/NPR-C signalling to oppose these 

pathological vasculature features would be expected to offer protection against 

PH pathogenesis. However, no differences in RVSP or pulmonary vascular 

remodelling were observed between NPR-C KO and WT mice. This could be 

explained by the dual functionality of NPR-C, signalling through G-proteins and 

NP clearance (Maack et al., 1987; Matsukawa et al., 1999); in this way, the 

absence of this receptor could have also led to an enhanced presence of NPs 
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within the vasculature, increasing the beneficial effects of pGC activation on 

ECs and VSMCs, balancing out the negative effects of disabled CNP/NPR-C 

signalling. Indeed, the plasma half-life of ANP is extended in the NPR-C KO 

mice (Matsukawa et al., 1999), both BNP and CNP also bind to this receptor 

(Bennett et al., 1991), and therefore one could envisage a substantial net 

beneficial effect of reduced NP clearance. However, my results offer evidence 

to the contrary in that both male and female NPR-C KO developed significantly 

higher RVH compared to their WT counterparts. There is evidence 

demonstrating the benefit of NPR-A and/or NPR-B activation in attenuating 

cardiac hypertrophy (Knowles et al., 2001; Langenickel et al., 2006) but if 

clearance was the predominant functional role of this receptor then RVH would 

have been attenuated, when in fact the opposite was true. A direct link between 

NPR-C signalling and cardiac hypertrophy has yet to be shown. However, there 

are several possible mechanisms that might explain a protective role. For 

example, Gi/o-driven activation of PI3K/Akt might result in eNOS 

phosphorylation to produce cardioprotective NO (Watts et al., 2013), akin to the 

beneficial effect of β3-adrenoceptors (Xiao et al., 1999) and shown to occur in 

response to NPR-C activation in the vasculature (El Andalousi et al., 2013; 

Murthy et al., 2000, 1998). Also, inhibition of the cardiac sarcolemmal Na+/H+ 

exchanger (NHE) prevents the development of hypertrophy via downregulation 

of calcineurin/NFAT activation (Avkiran and Haworth, 2003); Gi/o-linked 

receptors downregulate NHE. Third, Gi/o-coupled receptors would inhibit 

adenylyl cyclase to reduce cAMP-driven hypertrophic responses (Kudej et al., 

1997). 

 

In addition to cardiomyocytes, NPR-C expressed on fibroblasts might also have 

contributed to the RVH associated with PH. NPR-C KO mice, under basal 

conditions, have substantial fibrosis in the right and left atria but not in the 

ventricles (Egom et al., 2015). Therefore, with an innate cardiac fibrotic 

phenotype it would be reasonable to assume that under high pressure, such as 

in those induced by the hypoxia plus SU5416 model, that NPR-C KO mice 

would have developed significantly greater cardiac hypertrophy and fibrosis in 

the RV. 
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In sum, global deletion of NPR-C is detrimental to the pathogenesis of PH with 

respect to RVH, but not pulmonary vascular pressure or remodelling. Thus, I 

have established a novel cardioprotective action of NPR-C that offsets the 

development of pressure-induced cardiac hypertrophy, although exactly how 

this occurs will require further investigation. The lack of effect of NPR-C deletion 

on vascular morphology and reactivity may be due to the dual functionality of 

NPR-C (clearance and signalling). 

 

5.4.2.2 Bleomycin-induced model of PH  

 

Since CNP has been reported to exert substantial anti-fibrotic effects in many 

organs, including the kidney (Hu et al., 2015) and liver (Tao et al., 1999), 

coupled to the anti-hypertrophic activity of NPR-C I identified in the previous set 

of experiments, I investigated the hypothesis that NPR-C might also prevent the 

development of PH secondary to lung fibrosis.  

 

The administration of bleomycin to male and female WT and NPR-C KO mice 

resulted in PH evident by significant increases in RVSP in all groups. However, 

only female NPR-C KO mice developed significantly elevated RVH upon 

bleomycin administration compared to controls, which was not seen with any 

other sex or genotype, hinting that the pathology developed in these mice was 

more severe. Indeed, female NPR-C KO mice administered bleomycin had 

significantly higher RVSP and RVH when compared to WT. A similar 

exacerbation in RVSP was not observed in male NPR-C KO, compared to WT, 

suggesting a sex-difference with females being more prone to pulmonary 

fibrosis than males. This was reflected in differences in lung weight, which 

showed that female NPR-C KO mice had significantly elevated lung weight 

compared to WT in response to bleomycin, whereas no difference was 

observed in male mice. This was reflected in differences in lung weight; after 

initial bleomycin instillation lung weight correlates with collagen content (Scotton 

et al., 2013), and female NPR-C KO mice had significantly elevated lung weight 

compared to WT, whereas no difference was observed in male mice. However, 

lung weight is also determined by vascular permeability leading to pulmonary 
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oedema (Scotton et al., 2009). NPR-C contributes to the regulation of 

pulmonary vascular permeability (Klinger et al., 2013), suggesting the changes 

in female NPR-C KO lung weight might be due to a combination of elevated 

pulmonary fibrosis and/or oedema. 

 

Although Moyes et al., (2014) found that both male and female NPR-C KO mice 

develop equally augmented inflammatory responses (e.g. increased leukocyte 

recruitment and atherosclerosis) I observed a profound sex-difference with 

respect to disease severity in experimental pulmonary fibrosis. In humans with 

pulmonary fibrosis males have a higher incidence and poorer survival than 

females, which would fit with my findings hinting at a more effective utilisation of 

NPR-C in females (Han et al., 2008). Pathological severity in the bleomycin 

model is known to be influenced by the female sex hormone, oestrogen, which 

exacerbates the detrimental phenotype (Gharaee-kermani et al., 2005); this is 

thought to be due to fibroblasts exhibiting differences in collagen and TGF-β 

production. Therefore, the absence of NPR-C on fibroblasts specifically might 

contribute to the sex-difference observed in my studies. The production of CNP 

is significantly enhanced in fibroblasts stimulated with TGF-β as well as other 

growth factors (e.g. bFGF and ET-1; Horio et al., 2003), and as TGF-β plays a 

key role in the deposition of extracellular matrix in both experimental and human 

pulmonary fibrosis, this likely results in a negative feedback mechanism, 

whereby CNP acts as a autocrine and paracrine messenger, activating NPR-C 

present on fibroblasts to regulate proliferation and collagen deposition, 

alongside BNP and possibly ANP (Huntley et al., 2006; Figure 73).  

 

Although the precise mechanism through which NPR-C activation inhibits 

fibrosis is not known, it is unlikely to occur through modulating intracellular 

cAMP, unlike the beneficial effects observed in RVH. In fact, powerful fibroblast 

mitogens such as lysophosphatidate are known to function through Gi/o -protein 

activation (van Corven et al., 1989) and fibroblast proliferation and extracellular 

matrix production is attenuated by increasing intracellular cAMP concentrations 

(D’armiento et al., 1973; Dubey et al., 2001; He & Grinnell, 1994; Liu et al., 

2004). Interestingly however, whilst the α-subunit of Gi/o-proteins inhibits cAMP 

production, the βγ-subunit simulates phospholipase-C (PLC). C-type natriuretic 
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peptide, acting through NPR-C with subsequent PLC stimulation, triggers an 

increase in outwardly rectifying non-selective cation currents due to transient 

receptor potential (TRP) channels in rat fibroblasts (Rose et al., 2007). 

Furthermore, a number of different TRP channels are expressed on fibroblasts 

which regulate TGF-β mediated fibroblast proliferation and collagen deposition 

(Du et al., 2010; Nilius & Szallasi, 2014; Yue et al., 2013). Therefore, the anti-

fibrotic effects of NPR-C signalling could have been mediated through 

modulation of the same TRP channels used to elicit pro-fibrotic effects of TGF-β 

(Figure 73). 

 

Figure 73. An illustration of the potential cardiovascular benefits of CNP. 

C-type natriuretic peptide (CNP), natriuretic peptide receptor-C (NPR-C), Gi/o  

-protein-coupled receptor (Gi/o -protein).  
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Overall, this demonstrates an initial proof of concept study that NPR-C is 

protective against the development of pulmonary fibrosis. This is an important 

observation because of the dual functionality of NPR-C (clearance and 

signalling) and fits well with the protective role of NPR-C in the RV I 

demonstrated in the hypoxia plus SU5416 model of PH. Again, in this setting of 

lung fibrosis, deletion of NPR-C worsens disease progression, implying that 

extending the half-life of NPs in the circulation is not the predominate effect; 

rather the signalling capacity of the receptor is more important. Pulmonary 

vascular remodelling was not analysed specifically, nor quantification of lung 

collagen content to determine differences in fibrosis between genotypes; 

however, NPR-C is known to maintain the EC barrier, prevent VSMC 

proliferation, attenuate leukocyte recruitment and reduce fibroblast proliferation, 

which would indicate that the absence of this capacity in the NPR-C KO would 

lead to an increase susceptibility to the development of pulmonary fibrosis.  

 

5.4 Conclusions & future studies 

 

I have demonstrated that MRPs can be targeted to regulate cGMP-dependent 

vascular homeostasis. Multidrug resistance proteins contribute to the tight 

control of intracellular cGMP concentrations mediated through active efflux of 

membrane located cGMP “clouds” in VSMCs; facilitating cGMP 

compartmentalisation by acting as an adjuvant to PDEs. These transporter 

proteins facilitate the termination of the cardioprotective cGMP signal generated 

by sGC and pGC; therefore, MRP inhibition represents a novel therapeutic 

paradigm for the treatment of cardiovascular diseases by enhancing NO and 

NP signalling.  

 

I have also shown that endothelial cell-derived CNP is not essential to host 

protection against PH, although alternate cellular sources of this peptide may 

offset pathogenesis using the hypoxia plus SU5416 model. In contrast, NPR-C 

has a cardioprotective capacity in PH identifying a new avenue of enquiry 

toward sustaining RV function in this disease (which is the best predictor of 

prognosis). This receptor also exhibits both a cardio- and vaso- protective 
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capacity in the bleomycin-induced model of pulmonary fibrosis with secondary 

PH, especially in females. Therefore, the development of NPR-C agonists may 

provide an effective, novel treatment for PH patients.  

 

To build on my research into the role(s) of MRPs in regulating cGMP signalling 

one would ideally acquire the MRP4 and MRP5 KO mice, and repeat vascular 

reactivity, VSMC proliferation and in vivo BP studies to accurately delineate the 

roles of these transporter proteins in vascular homeostasis. Further still, it 

would be worthwhile to, investigate the role(s) of MRP4 and MRP5, using 

pharmacological interventions and transgenic lines, in disease models 

associated with altered NO and/or NP signalling (e.g. stroke, MI, and heart 

failure). Since probenecid is already a licensed medicine, repurposing of this 

MRP inhibitor might prove a quick and inexpensive approach to improve the 

treatment of cardiovascular disease. 

 

Further elucidation of the role(s) of NPR-C in lung fibrosis and RV remodeling is 

also warranted by my thesis research. In particular, one might explore the 

cause of the increased lung weight observed in the female NPR-C KO mice by 

comparing wet to dry lung weight, the extent of pulmonary oedema, and lung 

collagen content using high performance liquid chromatography (HPLC). To 

more fully investigate a role for CNP in PH it will be necessary to generate 

VSMC, fibroblast or cardiomyocyte cell-specific CNP KO mice to better 

understand how this peptide contributes to PH pathogenesis in each cell-type, 

thereby contributing to the overall understanding of this devastating condition. 

Additionally, studies using specific agonists/antagonists of NPR-B and NPR-C, 

and/or cell-specific NPR-B and NPR-C KO mice, would allow delineation of 

these two parallel pathways in pathogenesis.  
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