
Cryptogenography:

Anonymity without trust

Sune K. Jakobsen

A thesis submitted in partial fulfillment of the requirements of the

Degree of

Doctor of Philosophy

2016

1

sunekjakobsen@gmail.com

Declaration

I, Sune K. Jakobsen, confirm that the research included within this the-

sis is my own work or that where it has been carried out in collabora-

tion with, or supported by others, that this is duly acknowledged below

and my contribution indicated. Previously published material is also

acknowledged below.

I attest that I have exercised reasonable care to ensure that the work is

original, and does not to the best of my knowledge break any UK law,

infringe any third party’s copyright or other Intellectual Property Right,

or contain any confidential material.

I accept that the College has the right to use plagiarism detection soft-

ware to check the electronic version of the thesis.

I confirm that this thesis has not been previously submitted for the award

of a degree by this or any other university.

The copyright of this thesis rests with the author and no quotation from

it or information derived from it may be published without the prior

written consent of the author.

Signature: Date:

Details of collaboration and publications:

I published most of the results in Chapter 3, Section 5.4 and Chapter 6

(except Section 6.2) at ICALP 2014 [47]. A longer version of that paper

has been published on arXiv [48] and has been submitted to a journal.

Sections 5.1-5.3 are based on work I published at ITCS 2014 together

with Joshua Brody, Dominik Scheder and Peter Winkler [9]. I defined

the cryptogenography game and invented all the protocols we used. I

also found and proved the concavity characterization, which was used to

prove the upper bound.

2

Finally, Chapter 7 is based on an ITCS 2016 paper [50] I published

together with Claudio Orlandi. A longer version of that paper can be

found on arXiv [49]. I had the idea that anonymous steganography might

be possible and some idea about the kind of technique that was needed

to do it. I mentioned the problem to Claudio Orlandi and together we

found a construction that works. I proved the lower bound, and after the

publication of the conference version I have strengthened the definition

of anonymous steganography scheme.

3

Abstract

The usual methods of getting anonymity, such as using a VPN or the

Tor network, requires some amount of trust: You have to either trust a

particular server or trust that not too many servers in a network have

been corrupted. In this thesis, we will explore how much we can do

without this assumption.

Throughout the thesis we will assume that there is an adversary who can

see all messages sent, that no two people have access to shared random-

ness and for much of the thesis we further assume that the adversary

has unbounded computational power. In this case, it is impossible for

one or more leakers to send any information without revealing some in-

formation about who they are. We define a measure of suspicion, which

captures the anonymity loss of revealing information in this model: to

reveal one bit of information, you will, in expectation, have to become

one bit more suspicious. This measure is used to compute the exact

amount of information a group of leakers can reveal if they want to keep

reasonable doubt about who the leakers are. We also get exact results for

the case where some people, censors, are trying to obstruct the leakage

by sending misleading messages. The main result in these models is that

(even without censors) the leakers can only reveal a very small amount

of information. However, the protocols shown to exists might still be a

useful alternative to warrant canaries.

We also consider the case where the adversary has bounded computa-

tional power. In this model, we show that it is still impossible for one

leaker to reveal information without losing some anonymity. However, if

we give the leaker access to a small anonymous channel, she can use this,

combined with steganography, to reveal a large amount of information

anonymously.

4

Acknowledgements

I would like to thank my supervisors, Peter Keevash and Søren Riis, for

giving their invaluable support and advice, and for giving me the freedom

and independence to pursue my own research interests, even when they

brought me far away from the original topic of the PhD.

I would also like to thank my co-authors on the papers that became

part of this thesis, Joshua Brody, Dominik Scheder, Peter Winkler and

Claudio Orlandi, as well as my other co-authors, Jakob Grue Simonsen,

Troels B. Sørensen and Vincent Conitzer. You have influenced both my

thinking and my writing, and hence this thesis.

Peter Bro Miltersen deserves special thanks for hosting me for a visit

at Aarhus University, where much of the work in Chapter 7 was done.

I also want to thank all the people I met at Aarhus, for making it a

particularly enjoyable month.

I am extremely grateful to my parents, who taught me everything from

walking to solving systems of linear equations, who always encouraged

me to think, and who did an incredible amount of work to help me pursue

my interests. Without the great start to life they gave me, this thesis

would not have been possible. I also want to thank my mother and my

sisters for their unwavering support during my PhD.

I am thankful to my friends among the PhD students at Queen Mary,

with whom I shared my PhD journey. You have all been great travel

companions in the figurative sense, and several of you in the literal sense.

I also want to thank all my other friends and family members for all the

good times we have shared.

5

Finally, I would like to thank everyone who has ever played Mafia or

Werewolf with me. You have helped fuel my desire to understand the

theory behind hinting at information.

6

7

Contents

Contents 8

List of Figures 11

1 Introduction 13

1.1 Scope of the thesis . 14

1.1.1 Unbounded computational power 14

1.1.2 Non-leakers will not help leakers 15

1.2 Contributions of the thesis . 16

1.2.1 Suspicion . 16

1.2.2 Information theoretic cryptogenography 17

1.2.3 Resilient cryptogenography . 17

1.2.4 Cryptogenography games . 18

1.2.5 Anonymous steganography . 18

1.3 Notation and preliminaries . 18

2 Previous Work 23

2.1 Definition of anonymity . 23

2.2 Ways of communicating anonymously 26

2.3 Other related ideas . 30

3 Information Theoretic Cryptogenography 34

3.1 Bounds on I(X;T) . 37

3.1.1 Suspicion . 37

3.1.2 Keeping reasonable doubt . 45

8

CONTENTS

3.1.3 Why use reasonable doubt? 52

3.2 Reliable leakage . 56

3.2.1 General L-structures . 67

3.3 Adaptive cryptogenographic protocols 75

4 Resilient Cryptogenography 89

4.1 Generalized list decoding . 108

4.2 Minimal list size . 116

4.3 Capacity . 121

4.4 Getting the best of both . 128

4.5 Few leakers and censors . 131

5 Cryptogenography Games 136

5.1 Model . 137

5.2 Cryptogenography game protocols . 139

5.2.1 Two player cryptogenography game 139

5.2.2 Cryptogenography game protocols with many players 141

5.3 Hardness results . 150

5.4 Multiple leakers . 163

6 Hiding Among Innocents 176

6.1 Hiding among innocents without censors 177

6.2 Hiding among innocents with censors 187

7 Anonymous Steganography 194

7.1 Definitions . 196

7.1.1 How to use the scheme . 197

7.1.2 Properties . 197

7.2 Building blocks . 200

7.2.1 Indistinguishability obfuscation. 200

7.2.2 IND-CPA public-key encryption scheme 200

7.2.3 Homomorphic encryption . 201

7.2.4 Pseudorandom functions . 202

7.2.5 Somewhere statistically binding vector commitment scheme . . 202

9

CONTENTS

7.3 A protocol for anonymous steganography 205

7.4 Lower bound . 212

8 Summary and Conclusions 225

References 228

10

List of Figures

3.1 Protocol from Example 1 . 39

3.2 Illustration of Theorem 3.5 . 47

3.3 Protocol from Example 2 . 50

3.4 Protocol from proof of Theorem 3.9 60

3.5 Protocol from proof of Theorem 3.12 64

3.6 Protocol from proof of Lemma 3.16 70

3.7 Protocol from proof of Lemma 3.17 72

3.8 Diagram of models for adaptive leakage 77

3.9 Protocol from proof of Proposition 3.23 82

3.10 Protocol from proof of Proposition 3.26 85

3.11 Illustration of advantage of adaptive models 88

4.1 Censor protocol proof of Lemma 4.8 105

4.2 Censor protocol proof of Theorem 4.1 107

4.3 Protocol from proof of Theorem 4.16 120

4.4 Plots of capacities as function of bc without censors (bc = 0) and with

bm = 0.3 and bm = 0.95 . 123

4.5 Protocol πc defined in Definition 4.8 125

4.6 Plots of capacities as function of bl for several values of bc and with

bm = 0.3 and bm = 0.95 . 127

4.7 Protocol from proof of Theorem 4.25 130

4.8 Plot of capacity for infinitesimal bl as function of bc with bm = 0.3

and bm = 0.95 . 135

5.1 Protocol from proof of Lemma 5.1 . 138

11

LIST OF FIGURES

5.2 Protocol from proof of Theorem 5.2 140

5.3 Majority-Votes Protocol . 142

5.4 Continuous protocol . 144

5.5 Continuous protocol proving Corollary 5.7 145

5.6 Protocol from proof of Lemma 5.8 . 146

5.7 Protocol proving Corollary 5.9 . 148

5.8 Protocol proving Theorem 5.10 . 149

5.9 Protocols from proof of Proposition 5.23 165

5.10 Protocols from proof of Proposition 5.24 166

5.11 Protocol from proof of Lemma 5.30 171

5.12 Plot of upper and lower bounds on Succ 174

6.1 Protocol from proof of Theorem 6.1 185

6.2 Example of construction of ιπ . 186

6.3 Protocol from proof of Theorem 6.3 193

12

Chapter 1

Introduction

In 2013, when an NSA contractor, Edward Snowden, leaked thousands of documents

revealing the scale of NSA’s mass surveillance, it started an international debate

about surveillance, privacy and anonymity. From the leaked files and from the

following debate, we learned that NSA’s goal is to “collect it all” [35]. It also became

widely known that for some purposes, such as locating and justifying killing people1,

the US government considers metadata (data about who communicates with whom,

when) to be sufficient. Such metadata cannot be hidden by just encrypting your

messages, as encryption itself does not provide anonymity.

In the debate following the Snowden leakage, people have questioned whether

we should be allowed to have secure communication. For example, during a speech

last year, 2015, the current prime minister of the United Kingdom, David Cameron,

asked rhetorically if we should allow people to communicate in ways that cannot be

deciphered by the government, and answered “no, we must not” [73]. This raises the

question: is it possible to prevent anonymous communication by banning it? In other

words, if an adversary will punish anyone it believes is attempting to communicate

anonymously or is helping others to do so, will it still be possible for people to

communicate anonymously? In this thesis, we will explore various models, in an

attempt to answer the question in the case where the adversary is able to punish

anyone connected to the network.

1Former head of the NSA, Michael Hayden, said “We [US government] kill people based on
metadata” [26].

13

1.1 Scope of the thesis

The word “cryptogenography” was coined by Peter Winkler, one of my co-authors

on the paper “Cryptogenography” [9]. It is composed of three parts, crypto-geno-

graphy, each originating from Greek, and translates to hidden-origin-writing.2 The

idea is that people send public messages, each of which can be traced back to a

sender. The sequence of all the message is called the transcript and will be denoted

T . When everyone has written their messages, the resulting transcript T can be

interpreted as a message G(T). We want to construct G in such a way that any

small subset of the people can make it likely that G(T) will give the message they

intended to send, but in such a way that an observer cannot determine who these

people are.

In this thesis we consider a much stronger adversary than what is typical in

anonymity research. Throughout the thesis, we will assume that the adversary can

see all messages people sent. Such an adversary is called a global adversary, and is

common in anonymity research, but we will further assume the adversary knows any

randomness that is shared between at least two people. In some chapters, we will

also assume that the adversary has unbounded computational power and in some

chapters we will assume that the non-leakers are not willing to help the leakers. We

will now consider these assumptions in more detail.

1.1.1 Unbounded computational power

In Chapters 3-6 we will be assuming that the adversary has unbounded computa-

tional power. In practice, it is of course not possible to have unbounded computa-

tional power, but it could be used as a model of an adversary who has an extremely

large amount of computational power or has an efficient way of solving problems in

NP, possibly using quantum computers.3

Perhaps a more realistic scenario is one where the leakers cannot trust their own

devices. Typically in anonymity research, we consider a person and their computer

2Contrary to what was suggested by Richard J. Lipton [56], the name was not inspired by the
word “steganography”. However, Lipton’s comparison with steganography has inspired some of
the later research in this thesis, in particular Chapter 6.

3The adversary having quantum computers is not in itself enough to justify the assumption of
unbounded computational power, as you might still be able to use post-quantum cryptography [6].

14

to be one node, which can communicate with the rest of the world. However, if there

is a risk that your computer has been hacked, or if you have limited control over

what programs run on your computer or what information they reveal, the computer

effectively becomes part of the “rest of the world”. This means that any encryption

would have to happen in the head of the sender. As computers have much more

computational power than humans, at least for purposes related to cryptography, it

is then reasonable to model the adversary’s computational power as unbounded.

1.1.2 Non-leakers will not help leakers

In Chapter 6 and Chapter 7 we will assume that no non-leakers are willing to help the

leakers. Furthermore, the results in Chapter 6 imply that the results in Chapters 3-5

also hold under this assumption. This assumption is why “anonymity without trust”

is part of the title of this thesis: we are exploring how you can send information

anonymously, if you cannot trust anyone.

At the time of writing, it seems that many people are willing to help others

communicate anonymously. For example, the Tor network currently has around

7000 relays [63]. However, we will now argue, in three different ways, that if it

was illegal to help leakers be anonymous, then it is reasonable to use a model that

assumes that non-leakers will not help the leakers.

First the obvious argument: people tend not to do things they might be punished

for, and if you help others to be anonymous, there will always be a risk that you

will be discovered. This would probably stop many people from helping leakers send

information anonymously, especially if the punishment was severe, but there might

still be people willing to take the risk.

The second argument is by (informal) reduction. Suppose you have a protocol

that ensures that l leakers can leak some information, with the help of h helpers

while preserving the anonymity of both the leakers and helpers. Then l + h leakers

can use this protocol to reveal the same amount of information while all of them

preserve anonymity: they simply choose h of them who will forget their information,

and act as helpers in the original protocol. Thus, l leakers and h helpers can at most

leak the same amount of information anonymously as l+h leakers. This shows that

upper bounds, in the case with any number of leakers but no helpers, translate to

15

upper bounds in the case where there is a bounded number of helpers.

Finally, we will consider what happens when the leakers cannot trust any of the

helpers. This scenario might be plausible if it is illegal to be a helper and helpers

risk losing their anonymity. In that case there might not be any helpers, but there

might be many censors pretending to help the leakers, but who are just trying

to reveal the leakers. Suppose you have a protocol that allows l leakers to reveal

information with the help of h helpers. Assume further that the protocol ensures

that leakers are going to keep their anonymity, even if all the helpers collaborate

with the adversary. We will assume that the protocol gives a randomized algorithm

that the helpers should follow if they are honest. We can now construct a protocol

which allows l leakers to reveal some information without the use of helpers. The

leakers will simply use some public randomness to simulate some imaginary helpers.

The leakers would then send their messages as if the imaginary helpers existed and

were sending the simulated messages. Now, anyone seeing the communication can

simulate the helpers, so anyone can compute the transcript as it would have been

if the helpers were really there. Hence the resulting protocol will be as good for

revealing information as the original protocol. Furthermore, the leakers preserve

anonymity, as we assumed that the adversary in the original protocol had access to

all the helper’s information.

1.2 Contributions of the thesis

1.2.1 Suspicion

In Chapter 3 we define a measure of suspicion, which exactly captures the price for

revealing information, when observed by a computationally unbounded adversary:

in order to reveal one bit of information, you will in expectation become at least one

bit more suspicious, and you can always reveal one bit4 for the price of getting one bit

more suspicious in expectation. This measure will be useful in all the chapters where

the adversary has unbounded computational power (all chapters except Chapter 7).

4In the sense of mutual information.

16

1.2.2 Information theoretic cryptogenography

In Chapter 3 we will consider a model where an adversary has unbounded computa-

tional power and can observe any message sent. Intuitively, it should be impossible

to reveal any information in this model, without losing anonymity. However, we

will see that many people can collaborate to reveal the information, by each making

hints towards the information, in a way that ensures that no one will look guilty

beyond reasonable doubt. If each person is a leaker with probability bl and they

want to ensure that an observer never says that there is probability above bm > bl

for the person being a leaker, then we can leak −bl log(1−bm)+bm log(1−bl)
bm

bits of infor-

mation per total number of people communicating. When there is a small number

of leakers, this means that they can leak − log(1−bm)
bm

− log(e) bits per leaker. We will

also prove matching upper bounds. In particular, this result proves the intuition

that a single leaker cannot reveal much information, when always observed by an

adversary with unbounded computational power, while keeping reasonable doubt.

This holds even if non-leakers try to help the leaker. We will also consider various

models where non-leakers can become leakers. Throughout this chapter we will as-

sume that non-leakers collaborate with the leakers, but a result in Chapter 6 implies

that this assumption is not necessary.

1.2.3 Resilient cryptogenography

In Chapter 4 we add censors to the model above. Censors are people who send

misleading messages in an attempt to prevent the leakage of information.5 We show

that if each person is a censor with probability bc, then the censors can prevent

any leakage of information if and only if bl + bc ≥ bm. In the case bl + bc < bm

the censors have two effects. First, they can lower the capacity, that is, they can

ensure that each leaker can only reveal a smaller number of bits than if there were

no censors. We find matching upper and lower bounds for the resulting capacity.

Secondly, the censors can create some ambiguity about the information x that the

leakers try to leak. An observer who watches the communication will not necessarily

be able to deduce the correct secret x, but will only be able to write down a list

5They could also attempt to reveal the leakers, but for the protocols we consider, the censors’
messages will not affect the leakers’ anonymity.

17

of 1 + b bc
bl
c elements which, with overwhelming probability, will contain x. Again,

we will assume that people who are not leakers or censors will collaborate with the

leakers, but a result in Chapter 6 shows that this assumption can be removed.

1.2.4 Cryptogenography games

In Chapter 5 we analyse a game where one or more leakers in a group of people

want to reveal one or more bits of information. The leaker(s) win if an observer,

who is on their team, can guess the information, but an adversary who has the same

information cannot guess any of the leakers. For most of the chapter, we consider

what happens when we have one leaker and one bit of information. We show that

when there are only two people the probability of winning is at least 1
3

and at most
3
8
,6 and for a large number of people the winning probability is more than 0.5644 and

at most 3
4
. In the case where the number of leakers and bits of information tends to

infinity, we show that if bits per leaker tends to zero, the winning probability tends

to 1 and if the ratio tends to infinity, the winning probability tends to 0.

1.2.5 Anonymous steganography

Finally, in Chapter 7 we consider the case where the adversary has bounded com-

putational power, and where one leaker is trying to reveal information without help

from non-leakers. Furthermore, we will assume that the leaker has access to a small

or expensive anonymous channel. In this model we will see that the leaker can use

steganography and the small anonymous channel to anonymously reveal a much

larger amount of information than what she can send over the small channel. We

will also see that in this model it is impossible to reveal information anonymously

without using a small anonymous channel to bootstrap the communication.

1.3 Notation and preliminaries

We let [n] denote the set {1, . . . , n}. For a tuple or infinite sequence a, we let ai

denote the i’th element of a, and, unless stated otherwise, ai denotes the tuple of the

6The lower bound has since been improved to 0.3384 and the upper bound to 0.3672 [5].

18

i first elements from a: (a1, . . . , ai). We use a−i to mean (a1, . . . , ai−1,⊥, ai+1, . . . , an)

and (a−i, b) to mean (a1, . . . , ai−1, b, ai+1, . . . , an) . Similar notation is used if A is a

tuple or sequence of random variables. For tuples a and b of na and nb elements we

let a ◦ b denote the tuple (a1, . . . , ana , b1, . . . , bnb). If a′ is a single element, we abuse

notation and write a ◦ a′ instead of a ◦ (a′).

A function is negligible if it goes to 0 faster than the inverse of any polyno-

mial. We write poly(·) and negl(·) to mean some polynomial and negligible function

respectively.

Unless stated otherwise, all random variables in this thesis are assumed to be

discrete. Random variables are denoted by capital letters and they take values from

the set denoted by the calligraphic version of the same letter (e.g. X takes values

from X). Specific values taken by a random variable are denoted by the lower case

version of the same letter. If X and Y are random variables and Pr(Y = y) > 0, we

let X|Y=y denote the random variable X conditioned on Y = y. That is

Pr(X|Y=y = x) =
Pr(X = x, Y = y)

Pr(Y = y)
.

We typically write Pr(X = x|Y = y) instead of Pr(X|Y=y = x).

In the rest of this section we will give some definitions and results from infor-

mation theory. For an introduction to these concepts and for proofs, see Cover and

Thomas [18]. For a random variable X and a value x ∈ X with Pr(X = x) > 0 the

surprisal or the code-length7 of x is given by

− log(Pr(X = x)),

where log, as in the rest of this thesis, is the base-2 logarithm.

7If − log(Pr(X = x)) is an integer for all x ∈ X , and we want to find an optimal prefix-free
binary code for X, the length of the code for x should be − log(Pr(X = x)), thus the name code-
length. If they are not integers, we can instead use d− log(Pr(X = x))e and waste at most one
bit.

19

The entropy of X, H(X), is the expected code-length of X

H(X) =Ex [− log(Pr(X = x))]

=−
∑
x∈X

Pr(X = x) log(Pr(X = x)),

where we define 0 log(0) = 0.

The entropy of a random variable X can be thought of as the uncertainty about

X, or as the amount of information inX. For a tuple of random variables (X1, . . . Xk)

the entropy H(X1, . . . Xk) is simply the entropy of the random variable (X1, . . . , Xk).

The entropy of X given Y , H(X|Y) is

H(X|Y) =
∑
y∈Y

Pr(Y = y)H(X|Y=y). (1.1)

A simple computation shows that

H(X|Y) =H(X, Y)−H(Y).

The mutual information I(X;Y) of two random variables X, Y is given by

I(X;Y) = H(X) +H(Y)−H(X, Y) = H(Y)−H(Y |X).

This is known to be non-negative.

The mutual information satisfies a data processing inequality

I(X; f(Y)) ≤ I(X, Y) (1.2)

for any function f and discrete random variables X, Y . This says that you cannot

get more information about X out of Y by computing some function on Y .

The mutual information I(X;Y |Z = z) of X and Y given Z = z is given by

I(X;Y |Z = z) = I(X|Z=z;Y |Z=z),

where the joint distribution of (X|Z=z, Y |Z=z) is given by (X, Y)|Z=z. The mutual

20

information I(X;Y |Z) of X and Y given Z is

I(X;Y |Z) = EzI(X;Y |Z = z).

A simple computation shows that

I(X;Y |Z) = H(X,Z) +H(Y, Z)−H(X, Y, Z)−H(Z).

We will need the chain rule for mutual information,

I(X; (T1, . . . Tk)) =
k∑
i=1

I(X;Ti|(T1, . . . , Ti−1)).

Intuitively, this says that the information (T1, . . . , Tk) gives about X is the sum of

the information each of the Tis reveals, given the previous Tis.

Let X and Y be jointly distributed random variables, and f : Y → X a function.

We think of f(Y) as a guess about what X is. The probability of error, Pe is now

Pr(f(Y) 6= X). We will need (a weak version of) Fano’s inequality,

Pe ≥
H(X|Y)− 1

log(|X |) . (1.3)

A discrete memoryless channel (or channel for short) q consists of a finite input set

Y , a finite output set Z and for each element y ∈ Y of the input set a probability

distribution q(z|y) on the output set. If Alice has some information X that she

wants Bob to know, she can use a channel. To do that, Alice and Bob will have

to both know a code. An error correcting code, or simply a code, c : X → Yn is

a function that for each x ∈ X specifies what Alice should give as input to the

channel. Here n is the length of the code. Now the probability that Bob receives

Zc = z1 . . . zn when X = x is given by

Pr(Zc = z|X = x) =
n∏
i=1

q (zi|c(x)i) .

Bob will then use a decoding function G which sends outputs z to guesses about X.

A rate R is achievable if for all ε > 0 there is a n > 0 such that for X uniformly

21

distributed on {1, . . . , 2dRne} there is a code c of length n for q and a decoding

function G giving Pr(G(Z) = x|X = x) > 1− ε for all x ∈ X .

For a distribution p on the input set Y we get a joint distribution of (Y, Z) given

by Pr(Y = y, Z = z) = p(y)q(z|y). Now define the capacity C of q to be

C = max
p
I(Y ;Z),

where max is over all distributions p of Y and the joint distribution of (Y, Z) is as

above. Shannon’s Noisy Coding Theorem says that any rate below C is achievable,

and no rate above C is achievable [67].

If p, q : X → [0, 1] are two probability distributions on X we have the inequality

−
∑
x∈X

p(x) log(p(x)) ≤ −
∑
x∈X

p(x) log(q(x)), (1.4)

with equality if and only if p = q. The interpretation is, if X’s distribution is given

by p, and you encode values of X using a code optimized to the distribution q, you

get the shortest average code-length if and only if p = q.

For discrete probability distributions p and q over X , the Kullback-Leibler diver-

gence of q from p is defined by

D(p||q) =
∑
x∈X

p(x) log

(
p(x)

q(x)

)
.

For numbers p, q ∈ [0, 1], the Kullback-Leibler divergence D(p||q) is the Kullback-

Leibler divergence of the {0, 1}-distribution where 1 has probability q from the

{0, 1}-distribution where 1 has probability p.

The Kullback-Leibler divergence is a measure of how far p is from q, but is not

symmetrical in p and q, that is, in general D(p||q) 6= D(q||p). We can also write the

Kullback-Leibler divergence as

D(p||q) =
∑
x∈X

p(x) log(p(x))−
∑
x∈X

p(x) log(q(x)).

Thus, inequality 1.4 implies that D(p||q) ≥ 0 with equality if and only if p = q.

22

Chapter 2

Previous Work

2.1 Definition of anonymity

The word “anonymous” comes from the Greek word for “without a name”, and

intuitively we might think of a person as anonymous if we cannot name the person.

We will now give a more precise definition of anonymity.

First of all, anonymity depends on an adversary, also sometimes called the at-

tacker or, when passive, the observer. Anonymity is also with respect to a particular

role R [52]. In anonymity research R is typically either the role of being the sender

or the receiver of a message, but it could also be other things, such as attending a

demonstration. In this thesis, we will only focus on sender anonymity, that is, R
will always be the sender of a message.

A person who wants anonymity, Lea1, does not mind that the adversary knows

that she exists and knows her name. In fact we will assume that the adversary has

a way to refer to any particular person. In the real world, this could be a name

and address, a social security number or a physical body, but in our mathematical

formulation, it will simply be a number. Lea also does not mind that the adversary

realize that a particularly message m exists, and that someone must have played

the role R of sending that message. When we say that Lea has anonymity, it means

that the adversary cannot know if Lea played the role R. This is the unlinkability

1We follow a naming convention suggested by Nadia Heninger in private communication with
Claudio Orlandi [50]: the leaker is called Lea and the recipient is Joe the journalist.

23

definition from Pfitzmann and Hansen [62].

If the adversary has no information at all about who was playing role R, the

person has perfect anonymity, and conversely if the adversary can link R to a

name/identifier with certainty, there is no anonymity at all. Typically, when a

person is trying to keep anonymity, we will be somewhere in between these two

extremes, and we need some way of measuring the amount of anonymity. As we will

see, there are many possible measures we could use.

One measure is the size of the anonymity set. The anonymity set for R for a

particular adversary A is the set of people who, given the adversary’s knowledge,

might be R [14, 62]. The disadvantage in using the size of the anonymity set as a

measure of anonymity, is that it ignores some information, for example, the adversary

might be 99.9% sure about who R is, and yet be unable to rule out any particular

person from being R. In this case there is almost no anonymity, yet the anonymity

set is as large as possible.

Another possible measure, is to use the adversary’s uncertainty, measured us-

ing the Shannon entropy, as a measure of the anonymity. This approach was sug-

gested by Diaz, Seys, Claessens and Preneel [21] and independently by Serjantov and

Danezis [66]. In each of these papers, we compute the distribution of the person,

I, who had role R given the knowledge of the adversary, and compute the Shannon

entropy, H(I), of the resulting variable. Diaz et al. [21] suggested using H(I)
HM

, where

HM is the maximal possible entropy of I, as a measure of the amount of anonymity

a system preserves. This measure is in the interval [0, 1], and gives us a measure

of how large a fraction of the possible anonymity a system preserves. Serjantov

and Danezis suggested simply using H(I) as a measure of the anonymity. This has

the theoretical advantage that it is independent of which users are considered to be

“part of the protocol” and it gives a measure of how much anonymity the sender

has, rather than how large a fraction of the possible anonymity the sender has.

The entropy, H(I), measures how much information the adversary would, on

average, have to get from elsewhere to completely reveal who had role R. However,

as pointed out by Tóth, Hornák, and Vajda [69], this measure does not capture all

the relevant information. For example, if the adversary estimates that one particular

suspect send a message with probability 50%, and otherwise has no idea who the

leaker is, the entropy is 1+ 1
2

log(world population−1) ≈ 17.4 bits, or approximately

24

the same as if the adversary has no idea who among 217.4 ≈ 170 000 people had sent

the message. It is clear that in 50% of the cases, the leaker would strongly prefer

the second scenario, while the leaker would be almost indifferent in the other 50%

of the cases.

From the point of view of one particular leaker, it is probably more relevant how

suspicious she might appear to the adversary. For this reason, Tóth, Hornák, and

Vajda [69] suggested using a measure which we will call reasonable doubt. We say

that the adversary has reasonable doubt (at the bm level) about who had role R if,

whenever the anonymity system is used, the adversary will never estimate anyone

to have had role R with probability above bm.

A similar looking definition is the probability of error as suggested by Chatzikoko-

lakis, Palamidessi and Panangaden [12]. They imagine that the adversary will al-

ways make a guess about one person she thinks is a leaker2, and they defined the

probability of error to be the probability that the adversary is wrong about this

guess. Reasonable doubt at the bm level is a strictly stronger requirement than the

probability of error being at least 1 − bm. For a proof of this and more discussion

about the requirement of reasonable doubt, see Section 3.1.3

Clauß and Schiffner [16] suggested a measure similar to that of Serjantov and

Danezis, but using Rényi-Entropy (a generalization of Shannon entropy) instead

of Shannon entropy. At first, this seems to contain all the above as special cases:

Shannon entropy is a special case of Rényi-Entropy, the size of the anonymity set

is the exponential of the max-entropy, which is a special case of the Rényi-Entropy,

and finally, the maximal probability bm with which someone is estimated to have

role R, is exponential in the min-entropy. However, there is a subtle difference, as

Clauß and Schiffner (as well as [21, 66]) only seem to suggest a way of measuring

the anonymity given a particular run of the anonymity system, while the bm level

of reasonable doubt in Tóth et al. [69] is about the worst case run. Several other

measures of the anonymity of communication have been suggested [3, 24,32,79].

Finally, Backes et al. [2] suggests measuring anonymity using the language from

differential privacy [23]: we say that two random variables D0 and D1 are (ε, δ)-

differentially private if, for any adversary A taking values of D0 and D1 as input and

2In [12] it is assumed that there is only one sender/leaker, but it can be generalised to a situation
where the number of leakers in not fixed or known.

25

outputting 0 or 1 we have: Pr(A(Di) = 0) ≤ eε Pr(A(D1−i) = 0) + δ for i ∈ {0, 1}.
Similarly, we say that D0 and D1 are computationally (ε, δ)-differentially private

if the inequality holds for all PPTs (Probabilistic Polynomial Time algorithms) A.

Now, we can define an anonymous communication protocol to be (ε, δ)-anonymous

if, for any two people plr0 and plr1, the adversarial view (the information available

to the adversary) D0 when plr0 sends a message and the adversarial view D1 when

plr1 sends the message are (ε, δ)-differentially private. The advantage in this defi-

nition is that it works no matter what prior information the adversary might have:

no matter how suspicious or innocent Lea looks to the adversary before the commu-

nication, if Lea uses a (ε, δ)-anonymous communication system to send a message,

the probability that the adversary will take a particular action against Lea, is only

a multiplicative factor of eε plus a constant of δ higher, than the probability that

the adversary would take the action against Lea if another person was sending the

message.

In this thesis, we will mostly use the measure from Tóth et al. [69], which we call

reasonable doubt, as well as a new measure of suspicion. The measure of suspicion

might seem unnatural at first, and we do not think that people who want to stay

anonymous will care about minimizing this particular measure. However, we will

see that suspicion captures exactly the anonymity you lose – seen from an adversary

with unbounded computational power who can see any message – when you send

information: to send one bit of information, you will, on average, have to become

one bit more suspicious. Knowing that suspicion is the currency with which you pay

to reveal information, makes it possible for a leaker to make the optimal trade-off

between sending information and keeping anonymity as measured by a measure she

does care about, such as reasonable doubt. The measure of suspicion might also

be useful for evaluating anonymous communication systems, which makes stronger

assumptions about the adversary, as it tells us how much information we could have

revealed without making such assumptions.

2.2 Ways of communicating anonymously

The simplest possible way to communicate anonymously, is to communicate through

a trusted party. For example, if Lea has a story she wants the world to know about,

26

she might reveal it to a journalist, Joe, and ask him not to give away any information

that might identify her. While this method is simple, it is not very secure: Joe will

know who Lea is, and can always choose to reveal her identity. This would be a

problem if Joe is not trustworthy, for example, he might use this information to

blackmail Lea. Even if Joe is trustworthy, he might be forced, possibly by law, to

reveal Lea.

The anon.penet.fi mail relay was essentially an email version of the journalist

example above [19], except that it allowed communication to go both ways. This

service, running from 1993 to 1996, would store email addresses and corresponding

pseudonymous addresses. People could send an email through this system, and

the recipient would only see a pseudonymous address. Conversely, emails sent to

the pseudonymous address would be forwarded to a corresponding non-anonymous

address. However, in 1996, anon.penet.fi was obligated by a Finnish court to reveal

the email address of one of its users [39], and the service closed the same year,

because it could no longer protect the identity of its users [40].

Similar systems, called virtual private networks or VPNs, exist for web browsing,

for example Anonymizer [1]. Such services can choose not to keep logs in an attempt

to avoid legal attacks. However, the user still needs to trust one particular company.

We know that other types of companies have been forced to collaborate with intelli-

gence services while being prohibited from revealing this (this happened to Lavabit,

and caused the company to shut down [55] and it probably also happened to Mi-

crosoft, Google, Yahoo, Facebook and Apple as part of the Prism-program [36]), so

even a user who trusts the intentions of the people behind the company, might not

want to trust the company. Furthermore, even if the company can be trusted, an

attacker who can observe all information going through the server, might be able to

break the anonymity using traffic analysis.

Crowds [65] is another suggested method of achieving anonymity. To visit a

webpage, a crowd-user would relay its request through another crowd-user. This

second user will randomly choose either to send the request to the webpage, or to

a third crowd-user. If the request is sent to a third crowd-user, this user will not

know how many users have forwarded this request, so it will again either send the

request to the web-page or to another crowd-member. The probability pf that the

request is forwarded is some constant. The hope is that a weak adversary – for

27

example an adversary who only controls a small number of crowd members, and

who can only see messages sent through these crowd members – cannot be certain

that any particular person is the sender of a message: she could just be relaying the

message for someone else. However, even an adversary who only controls a single

crowd member, might be able to use timing information to deduce that the person

sending request to it, is the original sender for the message. This effect could be

minimized by inserting time delays [65], but because the protocol corresponds to an

untimeable game [51] this leakage cannot be completely avoided. A more serious

problem is that crowds does not provide anonymity against a global adversary.

In the first paper in the field of anonymous communication [13], Chaum in-

troduced the concept of a Mix. This is a server that takes as input a stream of

messages, each of which has been encrypted, possibly with multiple layers of en-

cryption. The output of the mix is the same messages with the outermost layer of

encryption removed. The mix will output several messages at the same time, and

all the messages in each batch are sorted lexicographically. If done correctly, this

ensues that an outside observer cannot link any of the input messages to any of the

output messages.

If many people send messages through a sequence of mixes, called a cascade of

mixes, then an adversary would have to compromise each of the mixes to link an

input message to an output message. In particular, it provides anonymity against an

adversary who can observe all messages sent. One disadvantage is that if two people

sent many messages to each other, a relatively weak adversary, who only observes the

first and the last mix in the cascade, would be able to use traffic analysis. Another

disadvantage is that each message has to go through all the mixes. This means

that the system does not scale well, and that any one of the mixes can completely

obstruct the system.

Another possibility is to use a network of mixes, where each person can choose

which route their message takes through the network. This has the advantage that

the first and last mix on the route will be different for different people, which pre-

vents weak adversaries from doing a timing attack. Babel [37], Mixmaster [60] and

Mixminion [20] all use a network of mixes to allow users to send emails anonymously.

Onion Routing [34] is superficially very similar to mix networks, but does typ-

ically not involve any mixing [68]. This allows the servers to forward a message

28

immediately after receiving it, instead of waiting for other messages to mix it with.

This in turns lowers the latency (the time from when a message is sent by the original

sender to when it is received by the intended recipient) which makes onion routing

suitable for web browsing. Instead of basing its security on mixing, onion routing

bases its security on the assumption that it is difficult for an adversary to observe

a large part of the network. In particular, Tor [22], which is an implementation of

onion routing, does not attempt to provide anonymity against a global adversary or

even against an adversary who controls both the first and the last onion router on

a path. These important differences between onion routing and mix networks were

pointed out by Syverson [68].

Tor also allows for the use of hidden services [22]. These are provided by servers

connected to the Tor network, in a way that does not reveal the server’s IP-address.

One particular kind of hidden service is SecureDrop [27], which is a whistleblower

system that media can host. It makes it possible for whistleblowers to connect to

the system through Tor, and upload documents and messages to journalists.

DC-nets, named after the dining cryptographers problem, gives a way of commu-

nicating information anonymously, even against a global adversary [14]. The only

assumption needed is that any two people have access to shared randomness, which

is not seen by the observer. This can be seen as a special case of secure multi-party

computation. In the general case of secure multi-party computation, each player has

an input to a function and we want to compute a function of these inputs, without

revealing any further information. If this function simply computes the list of in-

puts in lexicographical order, we have a way of publishing information anonymously.

Secure multi-party computation is possible against a global adversary if we assume

either that the adversary has bounded computational power or that any two people

have access to shared randomness unknown to the observer [4]. Furthermore, it

works even if the attacker can corrupt some participants, as long as less than one

third of the participants can be corrupted. Both DC-nets and multi-party compu-

tation have the disadvantage that the amount of communication required for each

participant is at least linear in the size of the anonymity set, which makes them

impractical for large scale use.

Several recent papers have attempted to construct practical protocols, that pro-

vide anonymity against traffic analysis. One such paper is Dissent [77]. In this

29

paper, the authors suggest having a relatively small number of servers, say 5, which

will communicate in a way similar to DC-nets. The idea is that clients, who wish

to browse the web, will generate a request, and secret share this request among the

servers, that is, the client sends the request in such a way that all the servers have to

collaborate to get the request. The servers now collaborate to decrypt the request

in a way that does not reveal who made which request. Unlike for DC-nets, the

communication per client no longer grows with the number of clients. To provide

anonymity, we only need one of the servers to be honest.

Another such paper is Riposte [17], which works by using PIR (private informa-

tion retrieval) [15] in reverse. In PIR, several servers contains shares of a database,

and allow users to make requests to the servers, such that, assuming that the servers

are not colluding, the servers cannot know which part of the database the user is

looking at. Riposte turns this around to allow users to upload information to a

database. The result is a sender-anonymous twitter-like system, where each user

can upload small messages. Another recent idea is Vuvuzela [70], which uses a cas-

cade of mixes and dummy messages, among other ideas, to ensure (ε, δ)-differential

privacy against traffic attack.

For a survey of the anonymous communication literature until 2008, see Danezis

and Diaz [19]. This survey contains a more detailed description of many of the sys-

tems mentioned above, as well as description of many other anonymous communica-

tion systems and attacks against such systems. Freehaven maintains a bibliography

in anonymity [28], which currently contains more than 300 papers.

2.3 Other related ideas

While some of the above methods hide whether a particular person is sending infor-

mation at any moment, they do not typically hide who is taking part in the protocol.

Thus, an attacker who has the power to punish anyone it believes is attempting to

communicate anonymously or is helping others to do so, can prevent the above

methods from being used.

Steganography is a way of hiding communication, or at least making commu-

nication look like it is a different kind of communication [29, 64]. The idea is to

embed the file you want to send, called the payload, into an “innocent” file, called

30

the covertext, to get an innocent looking file, called the stegotext. The recipient

of the message can then run an extraction algorithm on the stegotext to get the

payload. Steganography schemes that ensure that a random stegotext is indistin-

guishable to a random covertext have been suggested, both against computationally

bounded [42] and against computationally unbounded adversaries [10]. Unfortu-

nately, this requires that the distribution of the covertext is known, that you can

make exponentially many samples from the covertext or that you can break down

the covertext into smaller parts, such that for each part, you can sample from its

distribution given the previous parts. It is not clear how to do this for e.g. an image,

so in practice you have to use imperfect steganography.

While steganography itself does not provide anonymity, it can be combined with

anonymity techniques from above. For example, it can be used to hide the fact that

you are following the Tor protocol [59, 74], from a weak adversary. However, an

adversary who knows which servers are connected to the Tor network, will still be

able to see that you are connecting to one of those servers.

Another use of steganography is Message in a Bottle [45], which provides a way

for Lea – who lives in a country, Tyria, controlled by censors – to send information,

which the censors would want to censor, to the outside world. To do so, we need

the help of someone, Joe, from outside Tyria. Joe will distribute his public key,

and Lea will use this to encrypt her message. She will then embed this encrypted

message into an innocent image, and upload it to her blog. Most blogs send out a

blog ping to certain servers, and Joe goes through all such blog pings, and try to

extract messages from all images uploaded to blogs. From most blog posts he would

just get a random-looking sequence out, but from Lea’s blog post he will get the

intended message. This has been shown to be possible in practice [45]. The scheme

ensures that the censors do not learn that Lea is communicating with Joe, but Joe

will still learn who Lea is. In Chapter 7 we will see that a similar strategy can, in

theory, be used to bootstrap an anonymous channel.

One use of anonymity, is to make people give more honest answers to survey ques-

tions. However, when interviewed, people might not trust the promise of anonymity

they are given. One way to guarantee the respondent some amount of deniability

is randomized response [71]: suppose you want to know how large a fraction π of

people belong to a particular population A, but people are embarrassed to say that

31

they belong to this population. You then give the respondent a spinner, which gives

“A” with some probability p and “not A” otherwise. Now, instead of asking people

which population they belong to, you ask them to spin the spinner secretly, and

ask if the result was the population they belong to. The closer p is to 1
2

the less

information the respondent reveals, but as long as p 6= 1
2
, we still get probabilistic

information about which population the respondent belongs to. By asking suffi-

ciently many people, we can, if they are honest, get an arbitrarily good estimate of

the true fraction π of people who belong to population A.

This idea has been analyzed further by many papers in the area of privacy

preserving data mining, including Evfimievski, Gehrke and Srikant [25]. In this

paper, the authors noted a fact, which will also be useful in this thesis: let bl be the

prior probability Pr(L = 1) that the respondent is of a certain type called 1, and

let r be an upper bound on the ratio between how likely the answer a is when the

respondent is of type 1 and when she is not, that is Pr(A=a|L=1)
Pr(A=a|L6=1)

≤ r. Then to ensure

that the posterior probability Pr(L = 1|A = a) that the respondent is of type 1, is

at most bm, it is enough that r ≤ bm(1−bl)
bl(1−bm)

.

Finally, one situation where people might want to send information anonymously,

is when they are under a gag order, that is, they have been ordered by court not

to reveal some information. For example, a company might want to reveal whether

they have been forced to give FBI access to their records, but would not be allowed

to say so if they had. One solution to this problem is a so-called “warrant canary”,

often used against Section 215 of the USA Patriot Act [33,75]: as long as Section 215

has not been used to compel a company to give access to their records, the company

can regularly publish a statement saying so. If the company stops publishing such

statements, people might conclude that the company has been forced to give access

to its records, but that it is not allowed to say so explicitly.

Most citizens would not notice if a company stopped sending out such a state-

ment, so a webpage, Canary Watch [72] has been set up to keep track of them. One

disadvantage in warrant canaries is that it is not always clear how to interpret the

absence of a message: in 2014 Apple stopped publishing a statement it had previ-

ously been publishing regularly, saying that they had received no surveillance orders

under Section 215 of the USA Patriot Act. It was not clear if that was because they

had now received such an order, or simply because they changed their reporting for-

32

mat [75]. Furthermore, the legal issues around canary warrants are not settled. For

example, we do not know if a company, which has received an order which should

“kill” the canary, could be compelled to continue publishing (now false) statements

saying that it has never received such an order [33,75].

33

Chapter 3

Information Theoretic

Cryptogenography

In this chapter we consider problems where one or more players might be trying to

leak information about the outcome of a random variable X. In the main result of

this chapter we assume that n players are communicating and each of them is a leaker

with probability bl. Each leaker wants to preserve reasonable doubt, that is, she

wants to ensure that an observer who knows X and has unbounded computational

power, will never assign probability above bm > bl to the event that she is a leaker. At

the same time the leakers want reliable leakage: they want to ensure that an observer

who does not know X before the communication, will after the communication be

able to guess X correctly which probability 1 − ε on average. We let n → ∞ and

let X be uniformly distributed over {0, 1}dnRe for some R. In Corollary 3.10 we

will see that it is possible to achieve reliable leakage while keeping reasonable doubt

for sufficiently large n if R < D
(
bl
bm

∣∣∣∣∣∣ bl(1−bm)
bm(1−bl)

)
= −bl log(1−bm)+bm log(1−bl)

bm
but not if

R > D
(
bl
bm

∣∣∣∣∣∣ bl(1−bm)
bm(1−bl)

)
.

We will also consider various related problems: in the risky model, we allow that

the leakers lose reasonable doubt with some small probability ε, but we will see that

this does not help the leakers reveal more information. We also consider a model

where the number of leakers is fixed and known rather than binomially distributed.

Finally, we consider some adaptive models, where players can become leakers as part

of the protocol. All the main positive results in this chapter will rely on Shannon’s

34

Noisy-Channel Coding Theorem, so they will be existential rather than constructive.

The negative results will use a measure of suspicion which we will introduce in this

chapter.

The number of players is denoted n and the players are called plr1, . . . ,plrn.

Sometimes we will call plr1 Alice and plr2 Bob. We let Li be the random variable

that is 1 if player i knows the information and 0 otherwise. If there is only one

player we write L instead of L1. The joint distribution of (X,L1, . . . , Ln) is known

to everyone.

All messages are broadcast to all players and to two observers, Eve and Joe.

Both observers see the transcript, but Eve also know the secret X. We want to

reveal information about X to Joe, while at the same time make sure that for all i,

Eve does not get too sure that Li = 1. The random variable that is the transcript of

a protocol will be denoted T , and specific transcripts t. This is a tuple of messages,

so we can use the notation T k, Tk, t
k, tk as defined in the preliminaries. For example,

T k denotes the random variable that gives the tuple of the first k messages.

In this section we define the model for communication. Then in Section 3.1

we will define a measure of suspicion, and show how this can be used to measure

the amount of information, I(X;T), the leakers can reveal. Here the amount of

information revealed is measured in mutual information, which means that Joe might

only get probabilistic information. In Section 3.2 we show how we can ensure reliable

leakage, that is, ensure that with probability 1− ε Joe’s guess about what X is will

be correct.

Throughout the chapter we will use the collaborating model, that is, we assume

that non-leakers will follow any protocol we ask them to follow. In particular, the

adversary is passive. In Chapter 6 we will define a model, where we do not need the

non-leakers to collaborate, and we will see that any protocol in the collaborating

model can be modified to work in the model where non-leakers are just following a

known communication protocol with sufficient randomness. The model in Chapter

6 will be more useful in practice, however when showing the existence of protocols,

it is easier first to do this in the collaborating model.

In the collaborating model we can tell all the players including the non-leaking

players to follow some communication protocol, called a collaborating cryptogenog-

raphy protocol. The messages sent by leaking player may depend on the value of

35

X, but the messages of non-leaking players have to be independent of X given the

previous transcript. Formally, a collaborating cryptogenography protocol π specifies

for any possible value tk of the current transcript T k:

• Should the communication stop or continue, and if it should continue,

• Who is next to send a message, say plri, and

• A distribution p? and a set of distributions, {px}x∈X (the distributions p? and

{px}x∈X depend on π and tk). Now plri should choose a message using p?, if

Li = 0 and choose a message using px if Li = 1 and X = x.

Furthermore, for any protocol π, there should a number length(π) such that the

protocol will always terminate after at most length(π) messages. We assume that

both Joe and Eve know the protocol. They also know the prior distribution of

(X,L1, . . . , Ln), and we assume that they have unbounded computational power, in

particular they have enough computational power to compute (X,L1, . . . , Ln)|T=t

for any transcript t.

Another way of stating the above definition of collaborating cryptogenography

protocols is that the players follow a communication protocol1, and the leakers are

given x as input while the non-leakers are given a fixed input, say “you are not a

leaker”, which is not in X .

While we think of different players as different people, two or more different

players could be controlled by the same person. For example, they could be com-

municating in a chat room with perfect anonymity, except that a profile’s identity

will be revealed if the profile can be shown to be guilty in leaking with probability

greater than 95%. Here each player would correspond to a profile, but the same

person could have more profiles. However, we will use “player” and “person” as

synonyms.

1These were first defined by Yao [78]. Unlike in [78] we allow more than two players, allow the
protocol to specify who to send the next message, and allow each message to be more than one
bit. All this is standard in communication complexity, see for example Kushilevitz and Nisan [54].

36

3.1 Bounds on I(X ;T)

3.1.1 Suspicion

First we will look at the problem where only one player is communicating and she

may or may not be trying to leak information. We will later use these results when

we analyse the many-player problem.

In the one player case, Alice sends one message A. If she is not trying to leak

information, she will choose this message in A randomly using a distribution p?. If

she is trying to leak information, and X = x, she will use a distribution px. For a

random variable Y jointly distributed with L and a value y ∈ Y with Pr(Y = y) > 0

we let cY=y = Pr(L = 1|Y = y). We usually suppress the random variable, and

write cy instead. Here Y could be a tuple of random variables, and y a tuple of

values. If y = (y1, y2) is a tuple, we write cy1y2 instead of c(y1,y2).

We want to see how much information Alice can leak to Joe (by choosing the

p’s), without being too suspicious to Eve. The following measure of suspicion turns

out to be useful.

Definition 3.1. Let Y be a random variable jointly distributed with L. Then the

suspicion (of Alice) given Y = y is

susp(Y = y) =− log(1− cy)
=− log(Pr(L = 0|Y = y)).

We see that susp(Y = y) depends on y and the joint distribution of L and Y ,

but to keep notation simple, we suppress the dependence on L. The suspicion of

Alice measures how suspicious Alice is to someone who knows that Y = y and

knows nothing more. For example Y could be the tuple that consists of the secret

information X and the current transcript. We can think of the suspicion as the

surprisal of the event “Alice did not have the information”.

Next we define the suspicion given a random variable Y , without setting it equal

to something.

Definition 3.2. The expected suspicion (of Alice) given Y or just the suspicion (of

37

Alice) given Y is

susp(Y) =Ey susp(Y = y)

=
∑
y∈Y

Pr(Y = y) susp(Y = y). (3.1)

In each of these definitions, Y can consist of more than one random variable, e.g.

Y = (X,A). Finally, we can also combine these two definitions, giving

susp(X,A = a) =
∑
x∈X

Pr(X = x|A = a) susp((X,A) = (x, a)).

Where X and A can themselves be tuples of random variables.

From the definitions imply we also get

susp(X,A) =
∑

a∈A,x∈X

Pr(X = x,A = a) susp(X = x,A = a)

=
∑
a∈A

Pr(A = a)
∑
x∈X

Pr(X = x|A = a) susp(X = x,A = a)

=
∑
a∈A

Pr(A = a) susp(X,A = a),

which can be thought of as (3.1) given X.

Example 1. As an example, we will consider how suspicion behaves in a simple proto-

col with only one player. We assume the secret X and the random variable L which

indicates whether Alice is leaking are uniformly distributed on {0, 1} independently

from each other. Now

susp(X = 0) = − log(Pr(L = 0|X = 0)) = − log(0.5) = 1.

Similarly, susp(X = 1) = 1 so

susp(X) = Pr(X = 0) susp(X = 0) + Pr(X = 1) susp(X = 0) =
1

2
· 1 +

1

2
· 1 = 1.

That is, before any information has been revealed, we are 1 bit suspicious towards

Alice. Now suppose Alice makes a guess about what X is. If L = 1 she knows

38

the true value and she will say this value, but otherwise she will guess uniformly

at random from {0, 1}. The resulting protocol is given more formally in Figure 3.1.

We see that Pr(X = a|A = a) = 3
4
, Pr(X = 1 − a|A = a) = 1

4
and Pr(L = 0|X =

A = a) = 1
3
.

Input distribution: (X,L) uniformly distributed on {0, 1}2. Alice learns L and if
L = 1 she also learns X.
Protocol:

1. If L = 1 then A := X, if L = 0, then A← {0, 1}.

2. Alice sends A.

Figure 3.1: Protocol from Example 1.

Now we get

susp(X = 1− a,A = a) = − log(Pr(L = 0|X = 1− a,A = a)) = − log(1) = 0.

This fits well with our interpretation of susp as how suspicious Eve should be towards

Alice: if X is different from Alice’s guess, Eve knows that Alice did not have the

information, and hence, Eve should no longer be suspicious towards her. On the

other hand we have

susp(X = a,A = a) = log(Pr(L = 0|X = a,A = a)) = − log

(
1

3

)
≈ 1.585,

that is, if Eve knows X and see that Alice’s guess of X is correct, Eve should

get more suspicious towards Alice. Next we will compute Eve’s expected suspicion

before X is revealed.

susp(X,A = a) = Pr(X = a|A = a) susp(X = a,A = a)

+ Pr(X = 1− a|A = a) susp(X = 1− a|A = a)

=
3

4
log

(
1

3

)
+

1

4
· 0

≈1.189.

39

The interpretation is this: suppose Eve knows that Alice’s message is a and Eve

knows that she will soon learn X. How suspicious does Eve expect she will be to-

wards Alice once she learns X? Notice that this is different from susp(A = a) which

is how suspicious Eve currently is towards Alice: while an observer’s probability

that Alice is leaking is a martingale, the suspicion is not.

We can now compute the expected suspicion before anything is revealed.

susp(X,A) =
∑

a∈{0,1}

Pr(A = a) susp(X,A = a)

≈1

2
1.189 +

1

2
1.189

=1.189.

If Alice did not send any messages, Eve’s expected suspicion towards Alice would

be susp(X) = 1, so this protocol causes Alice to look, on average, 0.189 bits more

suspicious that if she did not send any messages. At the same time the amount of

information an observer gets about X from A in this protocol is given by

I(X;A) =H(X)−H(X|A)

=1−
(
−3

4
log

(
3

4

)
− 1

4
log

(
1

4

))
≈0.189.

As we will see in the Lemma below, this is not a coincidence.

The above example has some similarities to randomized response [71]: there is a

truth X and Alice message depends probabilistically on X. However, there is also

an important difference. In randomized response, Alice would spin a spinner that

shows 0 with probability 1
3

and 1 otherwise, and she would announce if the spinner

showed X or 1 −X. First of all this means that Alice never has to say “0” or “1”

but instead says “same” or ”different”. This could make a difference in a survey

where, instead of “1” we have “I have been unfaithful to my husband”. Whether

or not she has been unfaithful, she might be more comfortable saying “same” or

“different”, especially if the interview is recorded. Secondly, and more importantly,

in randomized response Alice would always be actively collaborating. In contrast,

40

when Alice in the above example sends a message which improves the observer’s

belief about X, it will sometimes be by chance (when L = 0) and sometimes because

she was deliberately sending information (when L = 1). This could potentially make

both a psychological and a legal difference.

When Alice sends a message A this might reveal some information about X, but

at the same time, she will also reveal some information about whether she is trying

to leak X. We would like to bound I(A;X) by the information A reveals about L.

This is not possible. If, for example, we set A = X whenever L = 1 and A = a 6∈ X
when L = 0, then I(A;X) = Pr(L = 1)H(A) which can be arbitrarily large, but

I(A;L) ≤ H(L) ≤ 1. Instead, we will generalize the example above, and show that

I(A;X) can be bounded by the expected increase in suspicion given X, and that

this bound is tight.

Lemma 3.1. If Alice sends a message A, we have

I(X;A) ≤ susp(X,A)− susp(X).

That is, the amount of information she sends about X is at most her expected in-

crease in suspicion given X. There is equality if and only if the distribution of A is

the same as A|L=0.

Proof. With no information revealed, Alice’s suspicion given X is

susp(X) = −
∑
x∈X

Pr(X = x) log(1− cx).

We want to compute Alice’s suspicion given X and her message A.

susp(X,A) =
∑
x,j

Pr(X = x,A = a) susp(X = x,A = a)

=−
∑
x,a

Pr(X = x,A = a) log(1− cxa)

=−
∑
x,a

Pr(X = x,A = a)

(
log(1− cx) + log

(
1− cxa
1− cx

))
.

41

Now it follows that the cost in suspicion given X of sending A is

susp(X,A)− susp(X) = −
∑
x,a

Pr(X = x,A = a) log

(
1− cxa
1− cx

)
. (3.2)

Next we want to see how much information A gives about X, that is I(A;X) =

H(A)−H(A|X). We claim that this is bounded by the cost in suspicion, or equiv-

alently, H(A) ≤ susp(X,A)− susp(X) +H(A|X). First we compute H(A|X) using

(1.1):

H(A|X) =
∑
x

Pr(X = x)H(A|X = x)

=−
∑
x

Pr(X = x)
∑
a

Pr(A = a|X = x) log(Pr(A = a|X = x))

=−
∑
x,a

Pr(X = x,A = a) log(Pr(A = a|X = x)). (3.3)

We have

1− cxa
1− cx

Pr(A = a|X = x)

=
Pr(L = 0|X = x,A = a)

Pr(L = 0|X = x)
Pr(A = a|X = x)

=
Pr(L = 0, X = x,A = a)

Pr(X = x,A = a)

Pr(X = x)

Pr(L = 0, X = x)

Pr(X = x,A = a)

Pr(X = x)

=
Pr(L = 0, X = x,A = a)

Pr(L = 0, X = x)

= Pr(A = a|X = x, L = 0)

= Pr(A = a|L = 0) (3.4)

Here, the last equation follows from the assumption that A does not depend on X

42

when L = 0. From this we conclude

susp(X,A)− susp(X) +H(A|X)

=−
∑
x,a

Pr(X = x,A = a) log

(
1− cxa
1− cx

Pr(A = a|X = x)

)
=−

∑
x,a

Pr(X = x,A = a) log (Pr(A = a|L = 0))

=−
∑
a

Pr(A = a) log (Pr(A = a|L = 0))

≥−
∑
a

Pr(A = a) log(Pr(A = a))

=H(A).

Here the first equality follows from (3.2) and (3.3), the second follows from (3.4)

and the inequality follows from inequality (1.4). There is equality if and only if

Pr(A = a) = Pr(A = a|L = 0) for all a.

We will now turn to the problem where many people are communicating. We

assume that they send messages one at a time, so we can break the protocol into

time periods where only one person is communicating, and see the entire protocol

as a sequence of one player protocols. To make the notation simpler, we will assume

that the protocol runs for a fixed number of messages, and the player to talk in

round k only depends on k, not on which previous messages was sent. Any protocol

π can be turned into such a protocol π′ by adding dummy messages: In round k of π′

we let plrk mod n talk. They follow protocol π in the sense that if it is not plrk mod n

turn to talk according to π she sends some fixed message 1, and if it is her turn, she

chooses her message as in π. The following corollary shows that a statement similar

to Lemma 3.1 holds for each single message in a protocol with many players.

Corollary 3.2. Let (L, T k−1, X) have some joint distribution, where T k−1 denotes

previous transcript. Let Tk be the next message sent by Alice. Then

I(X;Tk|T k−1) ≤ susp(X,T k)− susp(X,T k−1).

Proof. For a particular value tk−1 of T k−1 we use Lemma 3.1 with (X,Tk)|Tk−1=tk−1

43

as (X,A). This gives us

I(X;Tk|T k−1 = tk−1) ≤ susp(X,Tk, T
k−1 = tk−1)− susp(X,T k−1 = tk−1).

By multiplying each side by Pr(T k−1 = tk−1) and summing over all possible tk−1 we

get the desired inequality.

A protocol consists of a sequence of messages that each leaks some information

and increases the suspicion of the sender. We can add up the increases in suspicion,

and using the chain rule for mutual information we can also add up the amount

of revealed information. However, Bob’s message might not only affect his own

suspicion, it might also affect Alice’s suspicion. To show an upper bound on the

amount of information the players can leak, we need to show that one person’s

message will, in expectation, never make another person’s suspicion decrease. We

get this from the following proposition by setting Y = (X,T k−1) and B = Tk.

Proposition 3.3. For any joint distribution on (L, Y,B) we have susp(Y) ≤ susp(Y,B).

Proof. We have

susp(Y = y) =− log(Pr(L = 0|Y = y))

=− log

(∑
b∈B

Pr(B = b|Y = y) Pr(L = 0|Y = y,B = b)

)
susp(Y = y,B) =−

∑
b∈B

Pr(B = b|Y = y) log (Pr(L = 0|Y = y,B = b)) .

As p 7→ − log(p) is convex, Jensen’s inequality gives us

susp(Y = y,B) ≥ susp(Y = y).

Multiplying each side by Pr(Y = y) and summing over all y ∈ Y gives us the desired

inequality.

Let suspi denote the suspicion of plri.
2

2This is defined similar to the suspicion of Alice, except using Li instead of L.

44

Theorem 3.4. If T is the transcript of the entire protocol we have

I(X;T) ≤
n∑
i=1

(suspi(X,T)− suspi(X)) .

Proof. From the chain rule for mutual information, we know that

I(X;T) =

length(π)∑
k=1

I(X;Tk|T k−1).

Now Corollary 3.2 shows that I(X;Tk|T k−1) ≤ suspi(X,T
k)−suspi(X,T

k−1) if plri

send the k’th message and Proposition 3.3 shows that suspi′(X,T
k) ≥ suspi′(X,T

k−1)

for all other i′. By summing over all players, we get

I(X;Tk|T k−1) ≤
n∑
i=1

(
suspi(X,T

k)− suspi(X,T
k−1)

)
.

By summing over all rounds in the protocol, we get the theorem.

3.1.2 Keeping reasonable doubt

Until now we have bounded the amount of information the players can leak by the

expected increase in some measure, suspicion, that we defined for the purpose. But

there is no reason to think that someone who is leaking information cares about

the expectation of this measure. A more likely scenario, is that each person leaking

wants to ensure reasonable doubt, that is, they want to ensure that after the leakage,

an observer who knows X will assign probability at most bm to the event that she

was leaking information: Pr(Li = 1|X = x, T = t) ≤ bm. If this is the case for all x

45

and after all possible transcripts t, we see that

suspi(X,T) =
∑
x,t

Pr(X = x, T = t) suspi(X = x, T = t)

=
∑
x,t

Pr(X = x, T = t)(− log(Pr(Li = 0|X = x, T = t)))

≤
∑
x,t

Pr(X = x, T = t)(− log(1− bm))

=− log(1− bm).

If we assume that each player before the protocol had probability bl < bm of leaking

independently of X, that is Pr(Li = 1|X = x) = bl for all x and i, we have

suspi(X) = − log(1− bl). Thus

I(X;T) ≤
n∑
i=1

(suspi(X,T)− suspi(X)) = (− log(1− bm) + log(1− bl))n. (3.5)

This gives us an upper bound on how much information the leakers can reveal.

However, it is not possible to reach this bound: to reach it, we would need to have

Pr(Li = 1|X = x, T = t) = bm for all x, t, i. But the probability Pr(Li = 1|X =

x) = bl can also be computed as Et∼T Pr(Li = 1|X = x, T = t), so Pr(Li = 1|X =

x, T = t) cannot be constantly bm > bl. The following theorem improves the upper

bound from (3.5) by taking this into account.

Theorem 3.5. Let π be a collaborating cryptogenography protocol, and T be its

transcript. If for all players plri and all x ∈ X and all transcripts t we have

Pr(Li = 1|X = x) = bl, and Pr(Li = 1|T = t,X = x) ≤ bm then

I(X;T) ≤−bl log(1− bm) + bm log(1− bl)
bm

n

=nD

(
bl
bm

∣∣∣∣∣∣bl(1− bm)

bm(1− bl)

)
.

For an illustration of this theorem, see Figure 3.2.

46

p

− log(1− p)

0

1

2

3

4

5

bl = 0.5 bm = 0.95

Figure 3.2: This figure illustrates Theorem 3.5. The curve shows the function p 7→
− log(1 − p), which is used for computing the suspicion. The line from (0, 0) to
(bm,− log(1− bm)) shows the maximum expected posterior suspicion plri can have
if she started with Pr(Li = 1|X = x) = p and have Pr(Li|X = x, T = t) ≤ bm for all
transcripts t. The second coordinate of (bl,− log(1 − bl)) gives the prior suspicion
towards plri, so the dotted line gives the amount of information that player i can
leak.

Proof. If Pr(Li = 1|X = x, T = t) ≤ bm then

suspi(X = x, T = t) =− log(1− Pr(Li = 1|X = x, T = t))

≤− log(1− bm)

bm
Pr(Li = 1|X = x, T = t). (3.6)

This inequaility follows from the fact that we have equality when Pr(Li = 1|X =

x, T = t) is 0 or bm, and the left hand side is convex in Pr(Li = 1|X = x, T = t)

while the right hand side is linear.

47

Let π and T be as in the assumptions. Now we get

suspi(X,T) =
∑
x,t

Pr(X = x, T = t) suspi(X = x, T = t)

≤
∑
x,t

Pr(X = x, T = t)
− log(1− bm)

bm
Pr(Li = 1|X = x, T = t)

=
∑
x,t

− log(1− bm)

bm
Pr(Li = 1, X = x, T = t)

=
− log(1− bm)

bm
Pr(Li = 1)

=
−bl log(1− bm)

bm
.

Thus,

I(X;T) ≤
n∑
i=1

(suspi(X,T)− suspi(X))

≤
(−bl log(1− bm)

bm
− (− log(1− bl))

)
n

=
−bl log(1− bm) + bm log(1− bl)

bm
n

=nD

(
bl
bm

∣∣∣∣∣∣bl(1− bm)

bm(1− bl)

)
.

It is clear that the upper bound from Theorem 3.5 cannot be achieved for all

distributions of (X,L1, . . . , Ln). If for example H(X) < nD
(
bl
bm

∣∣∣∣∣∣ bl(1−bm)
bm(1−bl)

)
we must

also have I(X;T) ≤ H(X) < nD
(
bl
bm

∣∣∣∣∣∣ bl(1−bm)
bm(1−bl)

)
, that is, the players do not have

enough information to send to reach the upper bound. Even if H(X) is high, we may

not be able to reach the upper bound. If it is known that L1 = L2 = · · · = Ln the

suspicion of the players will not depend on the player, only on the messages sent.

So this problem will be equivalent to the case where only one person is sending

messages.

We will now give an example where the upper bound from Theorem 3.5 is achiev-

able. We will refer back to this example when we prove that reliable leakage is

48

possible.

Example 2. Assume that X,L1, . . . , Ln are all independent, and Pr(Li = 1) = bl

for all i. Furthermore, assume that 0 < bl < bm < 1 and that bl(1−bm)
bm(1−bl)

is a rational

number. Let d, a ∈ N be the smallest natural numbers such that a
d

= bl(1−bm)
bm(1−bl)

. We

see that bl(1−bm)
bm(1−bl)

∈ (0, 1) so 0 < a < d.

First we need a few implications of a
d

= bl(1−bm)
bm(1−bl)

. By multiplying both sides by
1−bl
a

we see that 1−bl
d

= bl(1−bm)
bma

= bl
bma
− bl

a
. By rearranging we get

bl
a

+
1− bl
d

=
bl
abm

. (3.7)

If we instead multiply a
d

= bl(1−bm)
bm(1−bl)

by 1−bl
(1−bm)a

on both sides we get 1−bl
d(1−bm)

= bl
abm

.

Together with equation (3.7) this implies

bl
a

+
1− bl
d

=
1− bl

d(1− bm)
. (3.8)

Finally, from a
d

= bl(1−bm)
bm(1−bl)

we also get

d− a
d

=1− a

d

=1− bl(1− bm)

bm(1− bl)

=
bm − bmbl − bl + bmbl

bm(1− bl)

=
bm − bl
bm(1− bl)

.

By multiplying through by 1− bl this gives us

(d− a)
1− bl
d

= 1− bl
bm
. (3.9)

We are now ready for the example. Assume that X is uniformly distributed

on {1, . . . , d}n. Each player plri now sends one message, independently of which

messages the other players send. If Li = 0, plri chooses a message in {1, . . . , d}

49

uniformly at random. If Li = 1 and Xi = xi, then plri chooses a message in

{xi + 1, xi + 2 . . . , xi + a} mod d

uniformly at random. Here we use k mod d to mean the number in {1, . . . d} that

is equal to k modulo d. We can also write this set as xi + [a] mod d. The resulting

protocol is defined more formally in Figure 3.3.

Parameters:

n : number of players

bl : probability of each player being leaker

a < d : two natural numbers

Input distribution: X,L1, . . . , Ln are independently distributed, X uniformly
distributed on [d]n and for each i: Pr(Li = 1) = bl. Each plri learns Li and if
Li = 1 she also learns X.
Protocol:

1. For i from 1 to n:

2. If Li = 1 then Ti ← Xi + [a] mod d, if Li = 0, then Ti ← [d]

3. Player i sends Ti

Figure 3.3: Protocol from Example 2.

We see that over random choice of X, the message, Ti, that plri sends, is uni-

formly distributed on {1, . . . , d}, so H(Ti) = log(d). We want to compute H(Ti|X).

Given X, each of the d−a elements not in xi+[a] mod d can only be sent if L = 0,

so they will be sent with probability 1−bl
d

. Each of the a elements in the set xi + [a]

50

mod d are sent with probability bl
a

+ 1−bl
d

. Thus,

H(Ti|X = x) =−
∑
ti∈Ti

Pr(Ti = ti|X = x) log(Pr(Ti = ti|X = x))

=− a
(
bl
a

+
1− bl
d

)
log

(
bl
a

+
1− bl
d

)
− (d− a)

1− bl
d

log

(
1− bl
d

)
=− bl

bm
log

(
1− bl

d(1− bm)

)
−
(

1− bl
bm

)
log

(
1− bl
d

)
.

The last equality follows from (3.7), (3.8) and (3.9). As this holds for all x, we get.

H(Ti|X) = − bl
bm

log

(
1− bl

d(1− bm)

)
−
(

1− bl
bm

)
log

(
1− bl
d

)
.

Now

I(Ti;X) =H(Ti)−H(Ti|X)

= log(d) +
bl
bm

log

(
1− bl

d(1− bm)

)
+

(
1− bl

bm

)
log

(
1− bl
d

)
= log(1− bl)−

bl
bm

log(1− bm)

=
−bl log(1− bm) + bm log(1− bl)

bm

=D

(
bl
bm

∣∣∣∣∣∣bl(1− bm)

bm(1− bl)

)
. (3.10)

The tuples (Xi, Ti, Li) where i ranges over {1, . . . n} are independent from each other,

so we have I(T ;X) = nD
(
bl
bm

∣∣∣∣∣∣ bl(1−bm)
bm(1−bl)

)
as wanted.

Finally, we need to show that the leakers have reasonable doubt, that is, Pr(Li =

1|T = t,X = x) ≤ bm. The probability is 0 if plri sends a message not in xi + [a]

51

mod d. Otherwise, we use independence and then Bayes’ Theorem to get

Pr(Li = 1|T = t,X = x) = Pr(Li = 1|Ti = ti, Xi = xi)

=
Pr(Ti = ti|Li = 1, Xi = xi) Pr(Li = 1|Xi = xi)

Pr(Ti = ti|Xi = xi)

=
1
a
bl

bl
a

+ 1−bl
d

=
bl
a
bl
abm

=bm. (3.11)

Here the penultimate equality follows from (3.7).

3.1.3 Why use reasonable doubt?

The requirement of reasonable doubt, which can be formally stated as

∀i, x, t : Pr(Li = 1|X = x, T = t) ≤ bm,

is easily confused with the requirement that an observer can only guess a leaker with

probability at most bm, that is

∀d : Pr(Ld(X,T) = 1) ≤ bm

where the for-all quantifier is over all decision functions : functions d that map a

tuple (x, t) of a secret and a transcript to a guess of who is a leaker. This last

requirement is equivalent to the probability of error, as defined by Chatzikokolakis,

Palamidessi and Panangaden [12]3, being at most 1− bm. However, we will see that

the probability-of-error requirement is weaker than the corresponding requirement

of reasonable doubt. To prove this, we will first give an alternative way of defining

reasonable doubt.

Definition 3.3. An incomplete decision function d′ is a function that for each tuple

(x, t) of secret and transcript will either return the number i of a player or a special

3Note, however, that [12] only gave this definition in a model with only one sender.

52

symbol ⊥, and such that there is at least one tuple (x, t) with Pr(X = x, T = t) > 0

such that d′(x, t) 6= ⊥.

We let D′ denote the set of all incomplete decision functions, and let D denote

the set of complete decision functions, that is d ∈ D′ that does not take the value

⊥.

We can use incomplete decision functions to give an alternative characterization

of reasonable doubt: we have reasonable doubt at the bm level if and only if an

adversary (modelled by an incomplete decision function) can guess a leaker with

probability at most bm given that the adversary makes a guess. This is formalised

by the following theorem.

Theorem 3.6. For any distribution of (L,X, T) we have

∀i, x, t : Pr(Li = 1|X = x, T = t) ≤ bm

if and only if

∀d′ ∈ D′ : Pr(Ld′(X,T) = 1|d′(X,T) 6= ⊥) ≤ bm.

The intuition is that the incomplete decision function d′ that maximizes its prob-

ability of guessing correctly given that it does not return ⊥ is the function that only

returns ⊥ for the input (x, t) where the observer is most confident about who is a

leaker. So both the characterizations give us the level of confidence the observer will

have in the worst case.

Proof. “⇒” Suppose L,X, T satisfy ∀i, x, t : Pr(Li = 1|X = x, T = t) ≤ bm. Then

we have

Pr(Ld′(X,T) = 1|d′(X,T) 6= ⊥)

=

∑
(x,t):d′(x,t) 6=⊥ Pr(X = x, T = t) Pr(Ld′(x,t) = 1|X = x, T = t)∑

(x,t):d′(x,t)6=⊥ Pr(X = x, T = t)

≤
∑

(x,t):d′(x,t) 6=⊥ Pr(X = x, T = t)bm∑
(x,t):d′(x,t)6=⊥ Pr(X = x, T = t)

= bm.

53

In the inequality we are using that when x and t are fixed, d′(x, t) is a constant.

“⇐”: We show this by contraposition: suppose for contradiction that there exist

i0, x0, t0 with Pr(Li0 = 1|X = x0, T = t0) > bm. Then we define the function

d′i0,x0,t0 ∈ D′ which on input (x0, t0) returns i0 and on all other inputs (x, t) returns

⊥. Now

Pr(Ld′i0,x0,t0 (X,T) = 1|d′i0,x0,t0(X,T) 6= ⊥) = Pr(Li0 = 1|X = x0, T = t0) > bm.

This alternative characterization makes it easy to compare reasonable doubt with

the probability of error.

Corollary 3.7. If L,X, T give reasonable doubt at the bm level, the probability of

error is at least 1− bm.

This shows that the requirement of reasonable doubt is stronger that the require-

ment of large probability of error. Below we will see that it is strictly stronger, but

first we will prove the corollary.

Proof. Assume that L, T,X gives reasonable doubt at the bm level, then by Theo-

rem 3.6 we have ∀d′ ∈ D′ : Pr(Ld′(X,T) = 1|d′(X,T) 6= ⊥) ≤ bm. As D ⊂ D′ we have

in particular ∀d ∈ D : Pr(Ld(X,T) = 1|d(X,T) 6= ⊥) = Pr(Ld(X,T) = 1) ≤ bm which

is equivalent to the probability of error being at least 1− bm.

To see that the opposite implication does not hold, suppose that n = 100, and

L is such that only one person, chosen uniformly at random, is a leaker. Suppose

further that with probability 10% the transcript T completely reveals the leaker,

and otherwise gives no information about the leaker. Now the probability of error is

(1−10%) ·
(
1− 1

100

)
= 0.891. However, the transcript sometimes completely reveals

the leaker, so Pr(Li = 1|X = x, T = t) is not bounded by any number bm < 1. This

shows that the requirement of reasonable doubt at the bm level is a strictly stronger

than the requirement of a probability of error of at least 1− bm.

Theorem 3.6 shows that reasonable doubt provides a guarantee to the users of

the anonymity system: we can interpret an incomplete decision function d′ as an

action taken against a player. If d′ returns ⊥ then no action is taken, if d′ returns

54

a player then that player might be punished or investigated further. Theorem 3.6

shows that if an adversary takes action against someone, based only on this person’s

participation in an anonymity system which provides reasonable doubt at the bm

level, the adversary will, with probability at least 1 − bm given that the adversary

takes action, take action against someone who is not a leaker. Such a guarantee is

particularly useful if the adversary is limited by legal rights, if the possible action

is expensive for the adversary or if the adversary for some other reason is reluctant

to take action against someone who could be innocent. In particular, let a rational

adversary be an adversary who gets utility rl > 0 for punishing a leaker and utility

ri < 0 for punishing an innocent and who chooses whether to punish in a way that

optimizes this utility.4 Such a rational adversary will use its punishment on a player

for some transcripts if and only if the player does not have reasonable doubt at the

bm level for bm = ri
rl−ri

.

Unfortunately, the requirement of reasonable doubt gives no guarantee that the

leaker is not going to stand out. For example, suppose it is known that there is

exactly one leaker and we want reasonable doubt at the 10% level. This could be

achieved if, given the communication, 10 people are equally likely to be the leaker.

However, it could also be that given the communication, one person is a leaker

will probability 10% and 90 other people are each the leaker with probability 1%.

Against a rational adversary this should not make any difference to the person who

is a leaker with probability 10%. But if the adversary has other motives, such as

not wanting to look weak or wanting to intimidate people, the person who appears

guilty with probability 10% might be in more danger in the second scenario that in

the first.

In the case where the number of leakers is not known, this effect can be even

more extreme. Consider the protocol from Example 2 with bl = 0.1, bm = 0.9

(giving a = 1 and d = 81) and n = 90. In expectation, n(bl + (1− bl)ad) = 90
9

= 10

players should send a message that is consistent with being a leaker, and each of

these would have Pr(Li = 1|X = x, T = t) = 0.9. So in expectation, one of these

would be innocent. However, suppose that a very unlikely event happens: only one

4The term “rational adversary” might be misleading, as we are also assuming that the utility
is on a certain form. In more complicated scenarios it might be perfectly rational for an adversary
to punish people just to intimidating them to not leak information.

55

player sends a message that is consistent with being a leaker. The computations in

Example 2 shows that for this player, i, we still have Pr(Li = 1|X = x, T = t) = 0.9,

but an irrational adversary might be more likely to punish one person, who is most

likely a leaker, than to punish 10 people, which most likely has at least one innocent

among them (even though each of them is most likely a leaker).

Notice, however, that if we allow for the possibility that the true value of bl might

be different from the 0.1 the protocol was designed for, then a transcript where only

one player sends a message consistent with being a leaker, is evidence that bl < 0.1.

In fact, even if bl = 0 we would expect 90 · 1
81

= 10
9

= 1.11 . . . people to send

messages consistent with being leakers. So a rational adversary, who is uncertain

about bl, should be less likely to punish people if only a small number of them might

be leakers. Conversely, if everyone sends messages consistent with being a leaker,

that is strong evidence that bl ≈ 1 and a rational adversary might punish everyone.

To summarize, if you want to prevent being punished by a rational adversary,

reasonable doubt is the right measure of your anonymity: the level of reasonable

doubt tells you exactly for which utility functions the rational adversary would, for

some transcripts, punish you. However, if the level of reasonable doubt is not suffi-

cient to prevent you from being punished in every scenario, the level of reasonable

doubt does not tell you how likely you get a transcript where you will be punished.

On the other hand, if you want to prevent the leaker from being punished by an ad-

versary who always punishes exactly one person, then the probability of error is the

relevant measure of anonymity. You can easily imagine other type of adversaries, for

example an adversary that will punish people if they are sufficiently more suspicious

than everyone else, but we will not attempt to construct measures of anonymity for

use when faced with such adversaries.

3.2 Reliable leakage

In Example 2, Joe would receive some information about X in the sense of informa-

tion theory: before he sees the transcript, any value of X would be as likely as any

other value, and when he knows the transcript, he has a much better idea about

what X is. However, his best guess about what X is, is still very unlikely to be

correct. In this section, we want to show that we can have reliable leakage. That

56

is, no matter what value X is taking, we want Joe to be able to guess the correct

value with high probability. We will see that this is possible, even when X has

entropy close to nD
(
bl
bm

∣∣∣∣∣∣ bl(1−bm)
bm(1−bl)

)
. Joe’s guess would have to be a function G of

the transcript t. Saying that Joe will guess X correctly with high probability when

X = x is the same as saying that Pr(G(T) = x|X = x) is close to one.

Definition 3.4. Let L = (L1, . . . , Ln) be a tuple of random variables, where the Li

takes values in {0, 1}.
A risky (n, h, L, bm, ε)-protocol is a collaborating cryptogenography protocol to-

gether with a function G from the set of possible transcripts to X = {1, . . . , 2dhe}
such that when X and L are distributed independently and X is uniformly dis-

tributed on X , then for any x ∈ X , there is probability at least 1− ε that a random

transcript t distributed as T |X=x satisfies

Reasonable doubt: ∀i : Pr(Li = 1|T = t,X = x) ≤ bm, and

Reliable leakage: G(t) = x

That is, no matter the value of X, with high probability Joe can guess the

value of X, and with high probability no player will be estimated to have leaked

the information with probability greater than bm by Eve. However, there might be

a small risk that someone will be estimated to have leaked the information with

probability greater than bm. This is the reason we call it a risky protocol. A safe

protocol is a protocol where this never happens.

Definition 3.5. A safe (n, h, L, bm, ε)-protocol is a risky (n, h, L, bm, ε)-protocol

where Pr(Li = 1|T = t,X = x) ≤ bm for all i, t, x with Pr(T = t,X = x) > 0.

First we will consider the case where L1, . . . , Ln are independent, and the Li’s all

have the same distribution. The following definitions of achievability and capacity

are based on the similar definitions from information theory, as given by Shannon

[67], but instead of measuring these in bits per time unit or per usage of a channel,

we measure them in bits per player.

Definition 3.6. Let Indepbl(n) be the random variable (L1, . . . , Ln) where L1, . . . , Ln

are independent, and each Li is distributed on {0, 1} and Pr(L1 = 1) = bl.

57

A rate R is safely/riskily (Indepbl , bm)-achievable if for all ε > 0 and all n0, there

exists a safe/risky (n, nR, Indepbl(n), bm, ε)-protocol with n ≥ n0.

The safe/risky (Indepbl , bm)-capacity is the supremum of all safely/riskily (Indepbl , bm)-

achievable rates.

It turns out that the safe and the risky (Indepbl , bm)-capacities are the same, but

at the moment we will only consider the safe capacity.

Proposition 3.8. No rate R > D
(
bl
bm

∣∣∣∣∣∣ bl(1−bm)
bm(1−bl)

)
is safely (Indepbl , bm)-achievable.

Proof. Assume for contradiction that R > D
(
bl
bm

∣∣∣∣∣∣ bl(1−bm)
bm(1−bl)

)
is safely (Indepbl , bm)-

achievable, and let π be a safe (n,Rn, Indepbl(n), bm, ε)-protocol. Let δ = R −
D
(
bl
bm

∣∣∣∣∣∣ bl(1−bm)
bm(1−bl)

)
> 0. We know from Theorem 3.5 that

I(X;T) ≤ nD

(
bl
bm

∣∣∣∣∣∣bl(1− bm)

bm(1− bl)

)
= (R− δ)n.

Now

H(X|T) = H(X)− I(X;T) ≥ Rn− (R− δ)n = δn.

By Fano’s inequality (1.3) we get that the probability of error for Joe’s guess is

Pe ≥
δn− 1

nR
.

Thus, for sufficiently large n0 and sufficiently small ε we cannot have Pe ≤ ε. When

Pr(G(T) 6= X) = Pe > ε there must exist an x ∈ X such that Pr(G(T) 6= x|X =

x) > ε, so R is not safely bm-achievable.

The idea in the proof of the following theorem is to consider each person to be

one usage of a channel. As the proof relies on Shannon’s Noisy-Channel Coding

Theorem it is not constructive.

Theorem 3.9. Any rate R < D
(
bl
bm

∣∣∣∣∣∣ bl(1−bm)
bm(1−bl)

)
is safely (Indepbl , bm)-achievable.

Proof. Let R < D
(
bl
bm

∣∣∣∣∣∣ bl(1−bm)
bm(1−bl)

)
and let b′m ≤ bm be a number such that bl(1−b′m)

b′m(1−bl)
is

rational and R < D
(
bl
b′m

∣∣∣∣∣∣ bl(1−b′m)
b′m(1−bl)

)
. We need to show that given ε > 0 and n0 there

exists a (n,Rn, Indepbl(n), bm, ε)-protocol with n ≥ n0.

58

Use bl and b′m to define a and d as in Example 2: a
d

= bl(1−b′m)
b′m(1−bl)

. We consider the

channel C that on input j with probability bl returns a random uniformly distributed

element in {j + 1, j + 2 . . . , j + a} mod d, and with probability 1 − bl it returns

a random and uniformly distributed element in {1, . . . , d}. Thus, C is the channel

given by Pr(C(j) = t) = 1−bl
d

+ bl
a

if t ∈ (j + [a] mod d) and Pr(C(j) = t) = 1−bl
d

for all other t ∈ [d].

We see that if leaker choose their message uniformly from some set on the form

(j + [a] mod d) and non-leaker choose their message uniformly form [d] then each

person sending a message corresponds exactly to using this channel once. The com-

putation (3.10) from Example 2 shows that when input of this channel is uniformly

distributed, the mutual information between input and output is D
(
bl
b′m

∣∣∣∣∣∣ bl(1−b′m)
b′m(1−bl)

)
.

Thus, the capacity of the channel is at least this value.5 We now use Shannon’s

Noisy-Channel Coding Theorem to get an error correcting code c : X → {1, . . . , d}n
for this channel, that achieves rate R, has n ≥ n0 and for each x fails with probability

less than ε. Formally that means that

∀x : Pr(G(Cn(c(X))) 6= X|X = x) ≤ ε (3.12)

where G : {1, . . . , d}n → X is a decoding function for c and Cn = (C1, . . . , Cn) is

repeated use of the channel C defined above: Cn(j1, . . . , jn) = (C(j1), . . . , C(jn))

and for fixed j = (j1, . . . , jn) all the coordinates of Cn(j) are independent.

When X = x, any player plri that is not leaking will send a message ti chosen

uniformly at random from [d] and any player plri with Li = 1 chooses a message ti

uniformly at random from (j + [a] mod d), where j = c(x)i is the i’th letter in the

codeword for x. For a more formal describtion of the protocol, see Figure 3.4.

Since each person corresponds to one use of the channel C we have ti = C(c(X)i)

and hence T = Cn(c(X)). By (3.12) this ensures that ∀x : Pr(G(T) 6= X|X = x) ≤
ε, so we have reliable leakage.

To finish the proof that there exists a (n,Rn, Indepbl(n), bm, ε)-protocol, we need

to check that the protocol also gives reasonable doubt. Given X the random variable

(Ti, Li), is independent from T1, L1, . . . , Ti−1, Li−1, Ti+1, Li+1, . . . , Tn, Ln. Using the

computation from (3.11) we now get that Pr(Li = 1|T = t,X = x) is either 0 or

5In fact, it is exactly this value because the channel is symmetric.

59

Parameters:

n : number of players

bl : probability of each player being leaker

a < d : two natural numbers

c : an error correcting code

Input distribution: X,L1, . . . , Ln are independently distributed, X uniformly
distributed on {0, 1}dRne and for each i: Pr(Li = 1) = bl. Each plri learns Li and
if Li = 1 she also learns X.
Protocol:

1. For i from 1 to n:

2. If Li = 1 then Ti ← c(x)i + [a] mod d, if Li = 0, then Ti ← [d]

3. Player i sends Ti

Figure 3.4: Protocol from the proof of Theorem 3.9.

b′m ≤ bm so we also achieve reasonable doubt.

Corollary 3.10. The safe (Indepbl , bm)-capacity is D
(
bl
bm

∣∣∣∣∣∣ bl(1−bm)
bm(1−bl)

)
.

Proof. Follows from Proposition 3.8 and Theorem 3.9.

Corollary 3.10 shows that if you want information about something that some

proportion bl of the population knows, but no one wants other people to think that

they know it with probability greater than bm, you can still get information about

the subject, and at a rate of D
(
bl
bm

∣∣∣∣∣∣ bl(1−bm)
bm(1−bl)

)
bits per person you ask. What if only

l people in the world have the information? They are allowed to blend into a group

of any size n, and observers will think that any person in the larger group is as

likely as anyone else to have the information. Only the number of people with the

information is known to everyone. Can they reveal an arbitrarily large amount of

information by blending into a sufficiently large group?

60

If they are part of a group of n → ∞ people, then each person in the larger

group would have the information with probability bl = l
n
. If we forget that exactly

l people know the information, and instead assume that all the Lis are independent

with Pr(Li = 1) = bl they would be able to leak

nD

(
bl
bm

∣∣∣∣∣∣bl(1− bm)

bm(1− bl)

)
=
−bl log(1− bm) + bm log(1− bl)

bm
n

=
− l
n

log(1− bm) + bm log(1− l
n
)

bm
n

→
(

log(1− bm)

bm
− log(e)

)
l

bits of information, where e is the base of the natural logarithm. We will see that

even in the case where the number of leakers is known and constant, we can still get

this rate. First we define the distribution of (L1, . . . , Ln) that we get in this case.

Definition 3.7. Let Fixed(l, n) be the random variable (L1, . . . , Ln) that is dis-

tributed such that the set of leakers {plri|Li = 1} is uniformly distributed over all

subsets of {plr1, . . . ,plrn} of size l.

A rate R is safely/riskily (Fixed, bm)-achievable if for all ε > 0 and all l0, there

exists a safe/risky (n, lR,Fixed(l, n), bm, ε)-protocol for some l ≥ l0 and some n.

The safe/risky (Fixed, bm)-capacity is the supremum of all safely/riskily (Fixed, bm)-

achievable rates.

Notice that in this definition, the rate is measured in bits per leaker rather than

bits per person communicating. That is because in this setup we assume that the

number of people with the information is the bounded resource, and that they can

find an arbitrarily large group of person to hide in.

Again, it turns out that the safe and the risky (Fixed, bm)-capacities are actually

the same, but for the proofs it will be convenient to have both definitions.

Proposition 3.11. No rate R > − log(1−bm)
bm

− log(e), where e is the base of the

natural logarithm is safely (Fixed, bm)-achievable.

Proof. This proof is very similar to the proof of Proposition 3.8.

Assume for contradiction that R > − log(1−bm)
bm

− log(e) is safely bm-achievable.

Consider a safe (n, lR,Fixed(l, n), bm, ε)-protocol π. We know from Theorem 3.5

61

that

I(X;T) ≤ −
l
n

log(1− bm) + bm log
(
1− l

n

)
bm

n ≤ l

(− log(1− bm)

bm
− log(e)

)
.

Here the second inequality follows from ln(1 + x) ≤ x or equivalently log(1 − x) ≤
−x

ln(2)
= −x log(e). Let δ := R−

(
− log(1−bm)

bm
− log(e)

)
. Now

H(X|T) = H(X)− I(X;T) ≥ l

(
R−

(− log(1− bm)

bm
− log(e)

))
= lδ.

By Fano’s inequality we get that the probability of error, Pe = Pr(G(t) 6= X) is

Pe ≥
lδ − 1

lR
.

Thus, if we choose l0 sufficiently large and ε sufficiently small we cannot have l ≥ l0

and Pe ≤ ε, so there must be some value x where the probability of error Pr(G(T) 6=
x|X = x) is greater than ε.

Theorem 3.12. Any rate R < − log(1−bm)
bm

− log(e) is riskily (Fixed, bm)-achievable.

Before we give a proof of this Theorem, notice that there are two reasons that the

proof of a lower bound in the Indepbl model given in Theorem 3.9 does not translate

directly to a lower bound for the Fixed model. First, in the protocol given in the

proof of Theorem 3.9, there is a very small risk that only the leakers send messages

consistent with being leakers. This is fine when the Li’s are independent: even if all

but one player are revealed as non-leakers, that does not change the probability of

the last player being a leaker. However, when the total number of leakers is known,

this would completely reveal who the leakers are. This is why Theorem 3.12 is about

risky achievability rather than safe achievability. The second problem is that the

different usages of the channel are no longer independent as the number of leakers is

constant. Intuitively, this should not be a problem, it should only make the channel

more reliable. However, to show that this works, we would have to go through the

proof of Shannon’s Noisy-Channel Coding Theorem, and show that it still works.

Instead, we will give a shorter but less natural proof, where we divide the players

into two groups and use Theorem 3.9 on each group. As we are using Theorem 3.9

62

the proof in not constructive.

Proof. Let R < − log(1−bm)
bm

− log(e), then we can find rational bl > 0 and rational

bm
′ < bm and a δ > 0 such that R + δ < D

(
bl
b′m

∣∣∣∣∣∣ bl(1−b′m)
b′m(1−bl)

)
. Let n0, ε > 0 be

given. By Theorem 3.9 for any ε′ > 0 and any n′0 there exists a safe (n, n(R +

δ), Indepbl(n), bm
′, ε′)-protocol where n > n′0. Take such a protocol, where ε′ > 0 is

sufficiently small and n′0 is sufficiently large. As bl, and hence the denominator of

bl, is fixed and n can be sufficiently large, we can increase n a little to ensure that

bln is an integer, while still keeping the rate at least R. Thus we can assume that

we have a (n, nR, Indepbl(n), bm
′, ε′)-protocol, where l := bln is an integer.

Now we will use this to make a risky (2n, 2dnRe,Fixed(2nbl), bm, ε)-protocol. For

such a protocol, X should be uniformly distributed on {1, . . . , 22dnRe}, but instead

we can also think of X as a tuple (X1, X2) where the Xi are independent and each

Xi is uniformly distributed on {1, . . . , 2dnRe}. Now we split the 2n players into two

groups of n, and let the first group use the protocol from the proof of Theorem 3.9

to leak X1, and the second group use the same protocol to leak X2. We let Joe’s

guess of the value of X1 be a function G1 depending only of the transcript of the

communication of the first group, and his guess of X2 be a function G2 depending

only on the transcript of the second group. These functions are the same as G in the

proof of Theorem 3.9. The resulting protocol is defined more formally in Figure 3.5.

The total number of leakers is 2nbl, but the number of leakers in each half varies.

Let SIndep denote random variable that gives the number of leakers among n people,

when each is leaking with probability bl = l
n
, independently of each other. So SIndep

is binomially distributed, SIndep ∼ B
(
n, l

n

)
. Let SFixed,1 denote the number of leakers

in the first group as chosen above. Now we have.

Lemma 3.13. For each k,

Pr(SFixed,1 = k)

Pr(SIndep = k)
≤ 2.

Proof. We have

Pr(SFixed,1 = k) =

(
2l
k

)(
2n−2l
n−k

)(
2n
n

)

63

Parameters:

n : half the number of players

bl : probability of each player being leaker

bm : threshold of reasonable doubt

R : rate

ε′ > 0 : a sufficiently small number

π′ : an (n, dnRe, Indepbl , bm, ε
′)-protocol

Input distribution: X,L1, . . . , Ln are independently distributed, X uniformly
distributed on {0, 1}2dRne and for each i: Pr(Li = 1) = bl. Each plri learns Li and
if Li = 1 she also learns X.
Protocol:

1. Parse X ∈ {0, 1}2dRne as (X1, X2) with Xi ∈ {0, 1}dRne

2. Let plr1, . . . ,plrn use π′ to reveal X1

3. Let plrn+1, . . . ,plr2n use π′ to reveal X2

Figure 3.5: Protocol from the proof of Theorem 3.12. The complications in the
proof is in choosing a sufficiently small ε′ and showing that the resulting protocol
has reasonable doubt and reliable leakage. The protocol is not constructive because
we only have an existence proof for πIndep.

and

Pr(SIndep = k) =

(
n

k

)(
l

n

)k
·
(
n− l
n

)n−k
.

A simple computation shows

Pr(SFixed,1 = k) Pr(SIndep = k + 1)

Pr(SIndep = k) Pr(SFixed,1 = k + 1)
=
n− 2l + k + 1

2l − k
l

n− l ,

which is strictly greater than 1 for k ≥ l and < 1 for k < l. Thus, for fixed n and l

64

the ratio
Pr(SFixed,1=k)

Pr(SIndep=k)
is maximized by k = l. Using Stirling’s formula,

1 ≤ n!√
2πn

(
n
e

)n ≤ e√
2π

we get

Pr(SFixed,1 = l)

Pr(SIndep = l)
=

(
2l
l

)(
2n−2l
n−l

)
nn(

2n
n

)(
n
l

)
ll(n− l)n−l

=
(2l)!(2n− 2l)!nn

l!l!(n− l)!(n− l)! ·
n!n!(n− l)!l!

(2n)!n!ll(n− l)n−l

=
(2l)!(2n− 2l)!nnn!

l!(n− l)!(2n)!ll(n− l)n−l

≤
(

e√
2π

)3

·
√

(2π)3(2l)(2n− 2l)(n)√
(2π)3(l)(2n)(n− l)

· e
l+2n+n−l

e2l+2n−2l+n

· (2l)2l(2n− 2l)2n−2ln2n

l2l(n− l)2(n−l)(2n)2n

=
√

2

(
e√
2π

)3
22l+2n−2ll2l(n− l)2n−2ln2n

22nl2l(n− l)2(n−l)n2n

≤
√

2

(
e√
2π

)3

<2.

Given that SIndep = k = SFixed,1, the distribution on (L1, . . . , Ln) and transcript

is the same in the protocol for Indepbl as it is for the first group in the above protocol.

As Joe’s guessing function is the same in the two cases, the probability of error given

SIndep = k = SFixed,1 is the same in the two protocols. Let Ek denote the probability

of error in the protocol for Indepbl given SIndep = k, and let EFixed,1 denote the

65

probability that Joe’s guess of X1 is wrong.

EFixed,1 =
n∑
k=1

Pr(SFixed,1 = k)Ek

≤
n∑
k=1

2 Pr(SIndep = k)Ek

≤2ε′.

By the same argument, the probability that Joe guess X2 wrong is at most 2ε′, so

the probability that he guess X = (X1, X2) is at most 4ε′. By choosing a sufficiently

low ε′ this is less than ε/2

To compute the posterior probability Pr(Li = 1|X = x, T = t) that plri was

leaking, we have to take the entire transcript from both groups into account. Given

T and X, let K denote the set of players who sent a message consistent with knowing

X, and let |K| denote the cardinality of K. Let S be the set of the 2l leaking players,

and let s be a set of 2l players. Now

Pr(S = s|X = x, T = t) =
Pr(T = t|S = s,X = x) Pr(S = s|X = x)

P (T = t|X = x)
.

This is 0 if s contains players who send a message not consistent with having the

information, and is constant for all other s. Thus, any two players who send a

message consistent with having the information, are equally likely to have known

X given T and X, so they will have Pr(Li = 1|T = t,X = x) = 2l
|K| . So to

ensure that Pr(Li = 1|T = t,X = x) ≤ bm with high probability (for each x and

random t) we only need to ensure that with high probability, |K| ≥ 2l
bm

. We see that

66

|K| = 2l + B
(

2n− 2l, bl(1−bm
′)

bm
′(1−bl)

)
, which has expectation

2l + (2n− 2l)
bl(1− bm′)
bm
′(1− bl)

=2nbl + 2n(1− bl)
bl(1− bm′)
bm
′(1− bl)

=2n

(
bl +

bl(1− b′m)

b′m

)
=2n

bl
b′m

=
2l

bm
′

=
2l

bm
+ 2l

bm − bm′
bmbm

′ .

The variance of the binomial distribution B(n, p) is np(1−p), so the variance of |K| is
(2n−2l)bl(1−bl). Hence, for sufficiently high n (and thus l) Chebyshev’s inequality,

shows that |K| ≥ 2l
bm

with probability at least 1− ε/2. Thus, for sufficiently large n′0

and sufficiently low ε′, the resulting protocol is a risky (2n, 2dnRe,Fixed(2nb), bm, ε)-

protocol.

3.2.1 General L-structures

We have shown that the safe (Fixed, bm)-capacity is at most − log(1−bm)
bm

− log(e)

which is at most the risky (Fixed, bm)-capacity. To finish the proof that they are

both − log(1−bm)
bm

− log(e), we only need to show that the safe capacity is not smaller

than the risky. Notice that the corresponding claim is not true if we are only

interested in the mutual information between X and transcript T . Here there exists

a collaborating cryptography protocol where with probability 1 − 10−100 we have,

Pr(Li = 1|T = t) < bl + 10−100, and yet I(X;T) ≥ 10100. To do this we need to take

X to have extremely high entropy, and with a probability 10−100 a leaking player

will send X in a message, and otherwise just send some fixed message. On the other

hand, if we require that Pr(Li = 1|T = t) < bl + 10−100 holds for all transcripts,

then I(X;T) has to be small compared to total number of players. The point of

this section is to show that you cannot do something similar for reliable leakage.

We will do so in a much more general setting than the rest of the thesis using an

abstraction we call L-structures. These L-structures will not be used in the rest of

67

the thesis. Readers who are willing to accept that safe and risky capacities are the

same can skip this section.

The concept of L-structures generalises Indepbl and Fixed. Remember that the

difference between Indepbl and Fixed capacity is not only in the distributions on

(L1, . . . Ln), but also in what we are trying to minimize the use of. In Indepbl we

want to have as few people communicating as possible, while in Fixed we only care

about the number of people who are leaking. Our general definition has to capture

this difference as well.

Definition 3.8. An L-structure (L, C) is a set L of joint distributions of (L1, . . . , Ln)

(where n does not need to be the same for each element), where each Li is distributed

on {0, 1}, together with a cost function C : L→ R≥0.

Indepbl is the L-structure (LIndepbl
, C#), where LIndepbl

is the set of distributions

on (L1, . . . , Ln) (over n ∈ N) where for all i, Pr(Li = 1) = bl and the Li are

independent, and C# is the function that sends a distribution on (L1, . . . , Ln) to n.

Fixed is the L-structure (LFixed, CFixed) of distributions on (L1, . . . , Ln) such that

for some number l the set {i|Li = 1} is uniformly distributed over all subsets of

{1, . . . , n} of size l, and CFixed sends such a distribution on (L1, . . . , Ln) to this

number l.

For an L-structure (L, C) a rate R is safely/riskily (L, C, bm)-achievable if for

all ε > 0 and all h0 ≥ 0 there exists a safe/riskily (n, h, L, bm, ε)-protocol with

h ≥ h0, h ≥ C(L)R and L ∈ L.

The safe/risky (L, C, bm)-capacity is the supremum of all safely/riskily (L, C, bm)-

achievable rates.

We see that Definition 3.8 agrees with Definition 3.6 and Definition 3.7,6 and is

much more general.

Proposition 3.14. Let (L, C) be an L-structure. The safe (L, C, bm)-capacity and

the risky (L, C, bm)-capacity are non-decreasing functions of bm.

6In Definition 3.6 and Definition 3.7 the lower bounds which prevent solutions with small number
of people and small entropy are given as ∀n0∃n : n ≥ n0 respectively ∀l0∃l : l ≥ l0 instead of
∀h0∃h : nR = h ≥ h0 respectively ∀h0∃h : lR = h ≥ h0 as in Definition 3.8. However, for fixed R,
these requirements are equivalent.

68

Proof. Let bm
′ > bm. It is clear that any safe/risky (n, h, L, bm, ε)-protocol is a

safe/risky (n, h, L, bm
′, ε)-protocol, so any safe/riskily (L, C, bm)-achievable rate is a

safe/riskily (L, C, bm
′)-achievable rate.

Proposition 3.15. Let (L, C) be an L-structure. The safe (L, C, bm)-capacity is at

most the risky (L, C, bm)-capacity.

Proof. Any safe (n, h, L, bm, ε)-protocol is a risky (n, h, L, bm, ε)-protocol, so any

safely (L, C, bm)-achievable rate is riskily (L, C, bm)-achievable.

The opposite inequality almost holds. Before we show that, we need a lemma. We

could easily get the lemma below from results in Chapter 6, but to avoid references

to later chapters, we state and prove the result in this chapter. The proof of the

lemma is constructive.

Lemma 3.16. For any risky (n, h, L, bm, ε)-protocol π, there is a risky (n, h, L, bm, ε)-

protocol π′ where each message is either 0 or 1, and given previous transcript and

given that the person sending the message is not leaking, there is at least probability

1/3 of the message being 0 and at least 1/3 of it being 1.

Proof. To restrict to {0, 1} we simply send one bit at a time, so now we only have

to ensure that the probability of a message sent by a non-leaker being 0 is always

in [1
3
, 2

3
]. If the next message is 0 with probability p < 1/3, given that the sender

is not leaking we modify the protocol (the case where p > 2/3 is similar). First,

the player plri sending the message decides if she would have sent 0 or 1 in the old

protocol π. Call this message a. If a = 0 she chooses a number r in the interval

(0, p) uniformly at random, if a = 1 she chooses a number r in (p, 1) uniformly at

random. She then sends the bits of r one bit at a time until

• She says 1, or

• Given transcript until now, there is probability at least 1
3

that a = 0

In the first case we know that a = 1, and we can go to the next round of π as if she

had just sent the message 1 in π. Each time plri says 0, it doubles the probability

that a = 0 given the transcript, so if we are in the second case (and was not before

69

Parameters:

n : number of players

h : number of bits being leaked

L : distribution of leakers

bm : threshold of reasonable doubt

ε : acceptable probability of error

π : a risky (n, h, L, bm, ε)-protocol

Input distribution: X and L are independently distributed, X uniformly dis-
tributed on {0, 1}h, distribution of L = (L1, . . . , Ln) is a parameter. Each plri
learns Li and if Li = 1 she also learns X.
Protocol:

1. T := λ

2. While T is not a complete transcript of π

3. Let i be the player to send the next bit in π when the transcript is T

4. If there is only one possible bit a that player i can send, set T = T ◦ a, else

5. Let p ∈ (0, 1) be the probability that the next bit would be 1 given Li = 0

6. Player i choose the next bit a to send according to π

7. If a = 0 player i chooses r ← (0, p) otherwise she chooses r ← (p, 1)

8. While no message has been added to T

9. If p ∈ [1/3, 2/3] then player i sends a, T := T ◦ a, otherwise

10. Player i sends first bit r1 of r

11. If r1 < p < 1/2 or r1 > p > 1/2 then T := T ◦ r1 otherwise

12. p := frac(2p), r := frac(2r) where frac(x) = x− bxc

Figure 3.6: Protocol from the proof of Lemma 3.16.

70

the last message), Pr(a = 0|T) < 2
3
. In this case she will simply reveal a in the next

message. For a more formal description of the protocol, see Figure 3.6.

Instead of choosing a real number uniformly from (0, p) or (p, 1), which would

require access to randomness with infinite entropy, plri can just in each step com-

pute the probabilities of sending 0 or 1 given that she had chosen such a number.

Thus, if for every probability p′ every player has access to a coin that ends head up

with probability p′, they only need a finite number of coin flips to follow the above

protocol.

The following lemma “almost” says that the safe (L, C, bm)-capacity is the same

as the risky (L, C, bm)-capacity. The proof is constructive, so if you can find good

risky protocols, you can also find good safe protocols.

Lemma 3.17. Let bm
′ > bm. The safe (L, C, bm

′)-capacity is at least the same as

the risky (L, C, bm)-capacity.

Proof. To show this, it is enough to show that if R is a riskily (L, C, bm)-achievable

rate, then R is safely (L, C, bm
′)-achievable. Let R be a riskily (L, C, bm)-achievable

rate, and let ε′ > 0 and h′0 be given. We want to show that there exists a safe

(n′, h′, L, bm
′, ε′)-protocol with h′ ≥ h′0, L ∈ L and h′ ≥ C(L)R.

As R is riskily (L, C, bm)-achievable, there exists a risky (n, h, L, bm, ε)-protocol

for any ε > 0 and some L ∈ L, h ≥ h′0, h ≥ C(L)R and n. Let π be such a protocol,

where ε is a small number to be specified later.

We want to modify π to make it a safe protocol π′. First, by Lemma 3.16 we

can assume that all messages send in π are in {0, 1} and given that the sender is

not leaking, it has probability at least 1/3 of being 0 and at least probability 1/3 of

being 1.

To ensure that for no transcript t and player plri we have Pr(Li = 1|X = x, T =

t) > bm
′, we modify the protocol, such that everyone starts to pretend ignorance if

the next message could result in Pr(Li = 1|X = x, T k+1 = tk+1) > bm
′. Formally,

we define a protocol π′ that starts of as π but if at some point the transcript is tk

and for some i and b ∈ {0, 1} we have Pr(Li = 1|T k+1 = tk ◦ b,X = x) > bm
′ all the

players pretends ignorance, that is for the rest of the protocol they send messages

as if they did not have the information and were following π. Notice that only the

players who knows the information x can decide if they should pretend ignorance,

71

but this is not a problem as the players who do not have the information, are already

sending messages as if they did not have the information. The protocol is also given

in Figure 3.7.

Parameters:

n : number of players

h : number of bits being leaked

L : distribution of leakers

b′m > bm : thresholds of reasonable doubt for the safe respecitively the risky protocol

ε : acceptable probability of error

π : a risky (n, h, L, bm, ε)-protocol where the players send one bit at a time and the
probability a non-leaker sending 1 is always in [1/3, 2/3]

Input distribution: X and L are independently distributed, X uniformly dis-
tributed on {0, 1}h, distribution of L = (L1, . . . , Ln) is a parameter. Each plri
learns Li and if Li = 1 she also learns X.
Protocol:

1. While the players have not reach the end of π and the players are not pretend-
ing ignorance:

2. Each leaker decides if for some i and some possible next messages tk+1 we
have Pr(Li = 1|X = x, T k+1 = tk+1) > bm

′. If yes they start to pretend
ignorance

3. If the leaker are not pretending ignorance, the next player in π sends a
message as if following π.

4. If the leakers are pretending ignorance, everyone follows π but as if they where
non-leakers.

Figure 3.7: Protocol from the proof of Lemma 3.17.

First we want to show that π′ is bm
′-safe. As long as they do not pretend

ignorance we know that Pr(Li = 1|T k = tk, X = x) ≤ bm
′ for the partial transcript

tk and all i. If at some point they start to pretend ignorance, we have Pr(Li = 1|T k =

72

tk, X = x) ≤ bm
′ before they start, and all messages will be chosen as if no one had

the information. Eve, who knows X, can compute Pr(Li = 1|T k+1 = tk◦b,X = x) >

bm
′ for each i and b, so she knows if everyone is pretending ignorance. Thus, Eve

does not learn anything about L from listening to the rest of the communication,

so we will still have Pr(Li = 1|T = t,X = x) ≤ bm
′ when π′ terminates.

Fix x ∈ X . We want to compute the probability that they pretend ignorance

given X = x. Let Epar,>b′m denote7 the event that for transcript T from the execution

of π, we can find some k and some i such that we have Pr(Li = 1|T k = tk, X = x) >

bm
′. That is, at some point in the execution of π, an observer would say that plri

was leaking with probability greater than bm
′. Let Etot,>bm be that event that for the

complete transcript there is some i such that Pr(Li = 1|T = t,X = x) > bm. For

each transcript t where Pr(Li = 1|T k = tk, X = x) > bm
′ for some k, i, we consider

that smallest k such that Pr(Li = 1|T k = tk, X = x) > bm
′ happens for some i. For

this fixed tk let T−[k] denote the random variable that is distributed as the rest of

the transcript given that the transcript starts with tk and X = x. Let Stk denote

the random variable

Stk = Pr(Li = 1|T = tk ◦ T−[k], X = x).

That is, Stk is a function of T−[k]. We see that Stk takes values in [0, 1] and EStk =

Pr(Li = 1|T k = tk, X = x) > b′m so by Markov’s inequality on 1− Stk we get

Pr(1− Stk ≥ 1− bm|X = x) ≤ E(1− Stk)
1− bm

<
1− bm′
1− bm

.

Thus, given that Epar,>bm′ happens, Etot,>bm will happen with probability at least

1 − 1−b′m
1−bm = bm

′−bm
1−bm > 0. So bm

′−bm
1−bm Pr(Epar,>bm′|X = x) ≤ Pr(Etot,>bm|X = x) ≤ ε,

where the last inequality follows from the assumption about π.

Let Eig be the event that in the evaluation of π′ the players pretends ignorance.

The players only pretends ignorance if they are one message away from making

Epar,>bm′ happen. We assumed that in π each possible message get sent with proba-

bility at least 1/3 if the sender is not leaking. As there is probability at least 1− bm′
that he is not leaking, each possible message gets sent with probability at least 1−bm′

3

7Here “par” is short for partial transcript.

73

so 1−bm′
3

Pr(Eig|X = x) ≤ Pr(Epar,>bm′|X = x). Thus,

Pr(Eig|X = x) ≤ 3

1− bm′
Pr(Epar,>bm′ |X = x) ≤ 3ε

(1− bm)

(bm
′ − bm)(1− bm′)

.

Let T ′ denote the random variable you get from running π′ and T the random

variable you get from running π, with a joint distribution of (X,L, T, T ′) such that

(X,L, T) = (X,L, T ′) unless the players pretends ignorance. We need to show that

there is a decoding function G′ from the set of complete transcripts to possible values

of X such that for each x, Pr(G′(T ′) = x|X = x) ≥ 1 − ε′. From the assumptions

about π we know that there is a function G from the set of possible transcripts

to the support of X such that for each x, Pr(G(T) = x|X = x) ≥ 1 − ε. We

know that in π′ and for fixed x, the players only pretends ignorance with probability

at most 3ε(1−bm)
(bm
′−bm)(1−bm′) , so by setting G′ = G we get Pr(G′(T ′) = x|X = x) ≥

1 − ε − 3ε(1−bm)
(bm
′−bm)(1−bm′) . For sufficiently small ε (depending only on ε′, bm and bm

′)

this is more than 1− ε′ and we are done.

If we add a continuity assumption, we get that the safe and the risky bm capacity

are the same.

Corollary 3.18. Let (L, C) be a L-structure. If the safe (L, C, bm)-capacity as a

function of bm is right-continuous at bm0, or if the risky (L, C, bm)-capacity as a

function of bm is left-continuous at bm0 then the safe (L, C, bm0)-capacity and the

risky (L, C, bm0)-capacity are the same.

Proof. Assume that the safe (L, C, bm)-capacity as a function of bm a right-continuous

at bm0 . Then Lemma 3.17 shows that the risky (L, C, bm)-capacity is at most the

safe (L, C, bm
′)-capacity for all bm

′ > bm. By continuity assumption, this gives us

that the risky (L, C, bm)-capacity is at most the safe (L, C, bm)-capacity. Proposition

3.15 shows the opposite inequality. The proof of the second part of the corollary is

similar.

Corollary 3.19. Let (L, C) be a L-structure. The safe (L, C, bm)-capacity and the

risky (L, C, bm)-capacity are the same for all but at most countably many values

bm ∈ (0, 1).

74

Proof. By Proposition 3.14, the safe (L, C, bm)-capacity is a monotone function, so

it is continuous in all but countably many points. Now Corollary 3.18 implies that

it is the same as the risky (L, C, bm)-capacity in all but countably many points.

As promised, we can now show that the safe and the risky (Indepbl , bm)-capacities

are the same.

Corollary 3.20. The safe (Indepbl , bm)-capacity and the risky (Indepbl , bm)-capacity

are the same for all bm ∈ (0, 1).

Proof. We know from Corollary 3.10 that the safe (Indepbl , bm)-capacity is a con-

tinuous function of bm. Now Corollary 3.18 implies that it is the same as the risky

(Indepbl , bm)-capacity.

Corollary 3.21. Let c ∈ (0, 1). The safe (Fixed, bm)-capacity and the risky (Fixed, bm)-

capacity are both − log(1−bm)
bm

− log(e).

Proof. We know from Proposition 3.11 that the safe (Fixed, bm)-capacity is at most
− log(1−bm)

bm
− log(e), we know from Theorem 3.12 that the risky (Fixed, bm

′)-capacity

is at least − log(1−bm)
bm

− log(e), and from Corollary 3.19 that they are the same except

on at most countably many values. Thus, they must both be − log(1−bm)
bm

− log(e) on

all but countably many values. We know from 3.14 that both are monotone, so they

must both be − log(1−bm)
bm

− log(e) without exceptions.

3.3 Adaptive cryptogenographic protocols

Until now we have assumed that each player is either leaker or not a leaker. In this

section we study some adaptive models where people start as non-leakers, but might

start to leak at some point. Once a person is a leaker, that person will always be a

leaker.

An adaptive cryptogenography protocol π is defined as follows: for each partial

transcript tk, each vector L·,k−1 = (L1,k−1, . . . , Ln,k−1) describing the set of leaker

when the k’th message was sent, and each secret x, π gives a probability distribution

over vectors L·,k ≥ L·,k−1 describing the set of leakers after the k’th message. We

assume that no one is leaking from the beginning, that is, L·,0 = (0, . . . , 0). Like a

collaborative cryptogenography protocol, π specifies for each partial transcript tk

75

• Should the communication stop or continue, and if it should continue,

• Who is next to send a message, say plri, and

• A distribution p? and a set of distributions, {px}x∈X (the distributions p? and

{px}x∈X depend on π and tk). Now plri should choose a message using p?, if

Li,k = 0 and choose a message using px if Li,k = 1 and X = x.

Here it is natural to put some restriction on how many leakers there can be, and

on what can influence whether a person becomes a leaker. We suggest two ways

of putting a limitation on the total number of leakers, and three different rules for

what can affect the probability that a person becomes a leaker, giving a total of six

different combinations. In this section we will find the capacities for two of them.

The two ways of restricting the total number of leakers are called “bl-threshold”

and “bl-dormant”. The bl-threshold restriction requires that the expected number

of leakers at the end of the protocol is at most bln. This is a slightly unnatural

requirement, but is the easiest to analyse. A more natural requirement is the bl-

dormant restriction, which say that at the beginning each player is chosen to be a

“dormant” leaker with probability bl, and only dormant leakers can become leakers.

We can think of dormant leakers as people with the personality or the capacity

to become leakers. Clearly, the bl-dormant model is more restrictive than the bl-

threshold model, but on the other hand, the leakers can do more in the bl-dormant

model than in Indepbl in the static model: If you take bl = bm, the (Indepbl , bm)-

capacity is 0, but in the bl-dormant model you can leak information, for example by

letting each dormant leaker become leaker with probability 1/2, and use a protocol

for Indep bm
2

.

The three models for how a player become a leaker are called “centrally organ-

ised”, “informed choice” and “uninformed choice”. In the centrally organised model

we assume that there is someone organising who become leakers. We assume this

person has all the relevant information, tk, L·,k−1 and x, and hence there is no re-

striction on the distribution of L·,k except L·,k ≥ L·,k−1, that is leakers cannot turn

into non-leakers. This model is probably unrealistic, but good for showing upper

bounds. In the informed choice we assume that even the non-leakers know x, and

they may use this when deciding whether to become a leaker, but each player makes

76

bl-threshold

bl-dormant Uninformed choice

Informed choice

Centrally organised

Exact result in Theorem 3.27

Figure 3.8: Diagram showing the different models for adaptive leakage. There are
two different ways to restrict the total number of leakers, three different models for
how a player can becomes a leaker, and for each of the resulting 6 models we can
consider both the safe and the risky capacity. In each model the top dot represents
the risky capacity and the bottom dot represents the safe capacity. The lines show
trivial inequalities between the capacities, where the capacity represented by a higher
point on the line is an upper bound for the capacity represented by the lower point.
In Theorem 3.27 we see that all the capacities represented by points in the ellipse
are the same.

the decision on whether to become a leaker on her own. That is, the distribution

of Li,k depends on Li,k−1, x and tk but given x and tk it is independent from all the

other Lj,k’s and Lj,k−1’s. Finally, there is the uninformed choice model where the

players only learn x when they decide to become leakers. Here Li,k only depends on

Li,k−1 and tk.

These give 6 different models that we call adaptive models. We use Mbl to denote

an adaptive model with parameter bl. While “bl-dormant informed choice” and “bl-

dormant uninformed choice” are probably the most realistic models, “bl-threshold

centrally organised” and “bl-threshold informed choice” seem to be the easiest to

analyse.

77

Definition 3.9. We let suspi,k denote the suspicion that Li,k = 1, e.g.

suspi,k(X,T
k) = −

∑
x,tk

Pr(X = x, T k = tk) log(Pr(Li,k = 0|X = x, T k, tk)).

We define Li = Li,length(π) and similarly suspi = suspi,length(π).

Definition 3.10. A risky (n, h,Mbl , bm, ε)-protocol is an adaptive cryptogenography

protocol satisfying the requirements of model Mbl together with a function G from

the set of possible transcripts to X = {1, . . . , 2dhe} such that for any x ∈ X , there is

probability at least 1− ε that a random transcript t distributed as T |X=x satisfies

Reasonable doubt: ∀i : Pr(Li = 1|T = t,X = x) ≤ c, and

Reliable leakage: G(t) = x

A safe (n, h,Mbl , bm, ε)-protocol is a risky (n, h,Mbl , bm, ε)-protocol where Pr(Li =

1|T = t,X = x) ≤ bm for all i, t, x with Pr(T = t,X = x) > 0.

A rate R is safely/riskily bm-achievable for Mbl if for all ε > 0 and all n0, there

exists a safe/risky (n, nR,Mbl , bm, ε)-protocol for some n ≥ n0.

The safe/risky bm-capacity for Mbl is the supremum of all safely/riskily bm-

achievable rates for Mbl .

Theorem 3.22. For bl ≤ bm and any model Mbl the safe bm-capacity for Mbl is at

most −bl log(1−bm)
bm

− bl log(e).

Proof. As “bl-threshold centrally organised” is the least restrictive model, we can

assume that Mbl is this model. Let π be an adaptive cryptogenography protocol for

Mbl . The function −bl log(1−bm)
bm

− bl log(e) is increasing in bl, so we can assume that

the expected number of leakers at the end of π is exactly bln, as the protocol would

otherwise be an Mb′l
-protocol for some b′l < bl.

As when we proved Theorem 3.4 we can assume that the next player to send a

message does not depend on the previous transcript tk−1, but only on the number

of messages sent. If plrj sends the k’th message Corollary 3.2 tells us that

I(X;Tk|T k−1) ≤ suspj,k−1(X,T k)− suspj,k−1(X,T k−1), (3.13)

78

and Proposition 3.3 tells us that for i 6= j

suspi,k−1(X,T k) ≥ suspi,k−1(X,T k−1). (3.14)

If we move right hand side of (3.14) to the other side, sum over all i 6= j and add

the result to (3.13) we get

I(X;Tk|T k−1) ≤
n∑
i=1

(
suspi,k−1(X,T k)− suspi,k−1(X,T k−1)

)
(3.15)

In this adaptive model we also need to consider how it affects the suspicion that

players can turn into leakers. By a small abuse of notation we let ci,k′,x,tk denote

Pr(Li,k′ = 1|X = x, T k = tk), and ci,k denote Pr(Li,k = 1). As d
dx

log(x) ≥ log(e) for

x ≤ 1 and Li,k ≥ Li,k−1 we have for all i and k,

suspi,k(X,T
k)− suspi,k−1(X,T k)

=−
∑
x,tk

Pr(X = x, T k = tk)
(
log(1− ci,k,x,tk)− log(1− ci,k−1,x,tk)

)
≥−

∑
x,tk

Pr(X = x, T k = tk) log(e)
(
(1− ci,k,x,tk)− (1− ci,k−1,x,tk)

)
=
∑
x,tk

Pr(X = x, T k = tk) log(e)
(
ci,k,x,tk − ci,k−1,x,tk

)
= (ci,k − ci,k−1) log(e). (3.16)

If we move right hand side of (3.16) to the other side, sum over all i and add the

result to (3.15) we get

I(X;Tk|T k−1) ≤
n∑
i=1

(
suspi,k(X,T

k)− suspi,k−1(X,T k−1)− log(e) (ci,k − ci,k−1)
)
.

79

Summing this over all rounds gives us

I(X;T) ≤
n∑
i=1

(
suspi(X,T)− suspi,0(X)− log(e) (Pr(Li = 1)− Pr(Li,0 = 1))

)
=

n∑
i=1

(suspi(X,T)− log(e) Pr(Li = 1)) .

We have Pr(Li = 1|X = x, T = t) ≤ bm so by the same argument as in Theorem

3.5 we have

suspi(X = x, T = t) ≤ − log(1− bm)

bm
Pr(Li = 1|X = x, T = t).

Now we make a computation very similar to the one in Theorem 3.5.∑
i

suspi(X,T) =
∑
i,x,t

Pr(X = x, T = t) suspi(X = x, T = t)

≤
∑
i,x,t

Pr(X = x, T = t)
− log(1− bm)

bm
Pr(Li = 1|X = x, T = t)

=
∑
i,x,t

− log(1− bm)

bm
Pr(Li = 1, X = x, T = t)

=
∑
i

− log(1− bm)

bm
Pr(Li = 1)

≤n−bl log(1− bm)

bm
.

Here the last inequality follows from the assumption that E
∑

i Li = nbl By applying

Fano’s inequality as in the proof of Proposition 3.8, it follows that the safe bm-

capacity for Mbl is at most −bl log(1−bm)
bm

− bl log(e).

In the next two propositions we show that this upper bound also holds for risky

protocols. It is proved in a constructive way, so if you can find good risky protocols

you can also find good safe protocols.

Proposition 3.23. Let bm
′ > bm. The safe bm

′-capacity for “bl-threshold centrally

organised” is at least the same as the risky bm-capacity for “bl-threshold centrally

organised”.

80

Proof. Let Mbl be the model “bl-threshold centrally organised”. We use that same

strategy as in the proof of Lemma 3.17. Assume that R is riskily bm-achievable

for Mbl . To show the statement, it is enough to show that R is then safely b′m-

achievable for Mbl . Let ε′ > 0 and n′0 be given. We need to show that there exists a

safe (n′, Rn′,Mbl , bm
′, ε′)-protocol, where n′ ≥ n′0. As R is riskily bm-achievable for

Mbl , there exists a risky (n, nR,Mbl , bm, ε) protocol for any ε > 0 and where n ≥ n′0.

Let π be such a protocol for a small ε to be specified later. We will modify π to get

a safe protocol π′. By Lemma 3.16 we can assume that all messages sent in π are

in {0, 1} and given that the sender is not leaking, it has probability at least 1/3 of

being 0 and at least probability 1/3 of being 1.

As in the proof of Lemma 3.17, modify the π by forcing the players to pretend

ignorance in some situations. To pretend ignorance means that all the players send

messages as if they were non-leakers. If we want all the players to pretend ignorance

from a certain point, it is important that all the leakers can decide whether they

should pretend ignorance, but the non-leaker does not have to know, as they are

already sending messages as if they were non-leaker. If Eve is able to decide if all

the players pretend ignorance, it implies that once the players pretend ignorance,

she does not get any further information.

We require the players to pretend ignorance from round k + 1 and onwards, if

the current transcript is tk and Pr(Li,k = 1|T k = tk, X = x) ≤ bm
′ but Pr(Li,k =

1|T k+1 = tk ◦ tk+1, X = x) > bm
′ for some player i and some tk+1 ∈ {0, 1}. The

leakers can all compute Pr(Li,k = 1|T k+1 = tk ◦ tk+1, X = x), so the leakers know if

they should start to pretend ignorance. Eve can also compute Pr(Li,k = 1|T k+1 =

tk ◦ tk+1, X = x), so once the players pretend ignorance she does not learn any

further information. We also modify π such that when the players starts to pretend

ignorance, no one turn into leakers. We can do this, because the model is centrally

organised, so the probability of becoming a leaker can depend on X. Furthermore,

we modify π such that if the partial transcript tk satisfy Pr(Li,k−1 = 1|T k = tk, X =

x) ≤ bm
′ but Pr(Li,k = 1|T k = tk, X = x) > bm

′ for some i, then no one becomes

leakers at round k or any later rounds, and everyone starts to pretend ignorance.

By induction on k, these modifications ensure that Pr(Li = 1|T = t,X = x) ≤ bm
′.

The protocol is also defined in Figure 3.9.

Next we need to define the function G′ that takes transcripts of π′ to guesses

81

Parameters:

n : number of players

h : number of bits being leaked

L : distribution of leakers

b′m > bm : thresholds of reasonable doubt for the safe respectively the risky protocol

ε : acceptable probability of error

π : a risky (n, h,MbL , bm, ε)-protocol where the players send one bit at a time and
the probability a non-leaker sending 1 is always in [1/3, 2/3]

Input distribution: X uniformly distributed on {0, 1}h, Li,0 = 0 for all i. If
Li,k = 1 then plri learns X after message k.
Protocol:

1. While the players have not reach the end of π and the leakers are not pretending
ignorance:

2. Each leaker decides if for some i and some possible next messages tk+1 we
have Pr(Li,k = 1|X = x, T k+1 = tk+1) > bm

′. If yes they start to pretend
ignorance

3. If the leaker are not pretending ignorance, the next player in π sends a
message as if following π.

4. If the leakers are pretending ignorance, everyone follows π but as if they where
non-leakers and no more players become leakers.

Figure 3.9: Protocol from the proof of Proposition 3.23.

of the value X. This is simply defined to be the same as the function G for π. To

show that π′ is a (n′, Rn′,Mbl , bm
′, ε′)-protocol, we need to show that for each x the

probability Pr(G′(T) 6= x|X = x) is at most ε′. We define Epar,>bm′ to be the event

that for transcript T from the execution of π, we can find some k and some i such that

we have Pr(Li,k−1 = 1|T k = tk, X = x) > bm
′ or Pr(Li,k = 1|T k = tk, X = x) > bm

′,

Etot,>bm to be that event that for the total transcript there is some i such that

Pr(Li = 1|T = t,X = x) > bm, and Eig to be the event that the players starts to

82

pretend ignorance. The only situation where the players starts to pretend ignorance

are when there is a possible message tk+1 that would give Pr(Li,k−1 = 1|T k = tk, X =

x) > bm
′ (as in the proof of Lemma 3.17) or if we would otherwise have increase

some player i’s probability of being a leaker Pr(Li,k−1 = 1|T k = tk, X = x) to a

probability greater than bm
′. In the first case there is still probability at least 1−bm′

3

that Epar,>bm′ would have happened if the players did not pretend ignorance, and in

the second case there is probability 1 that Epar,>bm′ would have happened. So we

still have

Pr(Eig|X = x) ≤ 3

1− bm′
Pr(Epar,>bm′ |X = x).

All other computations and arguments are exactly as in the proof of Lemma 3.17.

This gives us

Pr(Eig|X = x) ≤ 3ε
(1− bm)

(bm
′ − bm)(1− bm′)

.

Now we get

Pr(G′(T) 6= x|X = x) ≤Pr(G(T) 6= x|X = x) + Pr(G′(T ′) 6= G(T)|X = x)

≤ε+ Pr(Eig|X = x)

≤ε+ 3ε
(1− bm)

(bm
′ − bm)(1− bm′)

.

For sufficiently small ε, depending on ε′, bm and bm
′, this is less than ε′.

Proposition 3.24. For any bl ≤ bm and any model Mbl the risky bm-capacity for

Mbl is at most −bl log(1−bm)
bm

− bl log(e).

Proof. As “bl-threshold centrally organised” is the most general model, we can as-

sume that Mbl is this model. By continuity of bm 7→ −bl log(1−bm)
bm

− bl log(e) the result

follows from Theorem 3.22 and Proposition 3.23.

Proposition 3.25. For any bl ≥ bm and any adaptive model Mbl the risky bm-

capacity is at most −bm log(1−bm)
bm

− bm log(e) = log(1− bm)− bm log(e).

Proof. Let π be a risky (n, h,Mbl , bm, ε)-protocol. Then we must have Pr(Li = 1) ≤
bm, so it is also a risky (n, h, “bl − threshold centrally organised”, bm, ε)-protocol.

The Proposition now follows from Proposition 3.24.

83

We now show that the upper bounds are tight in two of the models. The proof

relies on Theorem 3.9, so it is not constructive.

Proposition 3.26. Let bl < bm. If Mbl is “bl-threshold centrally organised” or “bl-

threshold informed choice”, the safe bm-capacity for Mbl is at least −bl log(1−bm)
bm

−
bl log(e).

Proof. As “bl-threshold informed choice” is the most restrictive of the two models,

we can assume that Mbl is this model.

Let bl and bm be fixed, let n and ε > 0 be given and choose some large integer

m. We will define a protocol π for the model Mbl that works in m stages. At the

beginning everyone are available and after each stage some players be unavailable,

meaning that they will not send any more messages. Before each stage starts,

everyone, even an observer who does not know X will be able to compute who should

be available and who should be unavailable in that stage. Define n′ = b bm−bl
2bm

nc,
bl
′ = 2blbm

(bm−bl)m
and h =

⌊(
D
(
b′l
bm

∣∣∣∣∣∣ b′l(1−bm)

(bm(1−b′l))

)
−m−2

)
n′
⌋

and let X be uniformly

distributed over {1, . . . , 2h}m.

If there is less than n′ players available at the beginning of stage j, the protocol

halts. Otherwise, each of the first n′ players who are available, choose whether to

become leaker independently with probability bl
′. Assuming that n and hence n′ is

sufficiently big (given bl, bm, ε and m), we know from the proof of Theorem 3.9 that

there exists a safe (n′, h, Indepbl′(n
′), bm, ε/(2m))-protocol π. We let the n′ players

follow this protocol to leak Xj. According to Definition 3.4 there is a function

G of the communication, that with high probability guesses the value the leakers

tried to leak. Let X̂j be G of the communication of the j’th stage. If xj 6= X̂j

we let all the leakers pretend ignorance for the rest of the entire protocol, and the

non-leakers stay non-leakers. At the end of the j’th stage some players will have

Pr(Li,(j) = 1|T (j) = t(j), Xj = X̂j) > 0, where (j) denotes the round where stage j

finishes. We let these players be unavailable for all the following stages, and all other

available players stay available. In particular we see that all players who are leaking

in a given stage, will be unavailable in all the following stages, unless Xj 6= X̂j, in

which case they will pretend ignorance.

Eve can compute X̂j, so she can determine if the players are pretending ignorance.

Hence, once they pretend ignorance, Eve will not get any further information, so we

84

Parameters:

n : number of players

bl : probability of each player being leaker

bm : threshold of reasonable doubt

ε : acceptable probability of error

m : number of stages

π : a safe (n′, h, Indepbl′(n
′), bm, ε/(2m))-protocol π, where n′ = b bm−bl

2bm
nc, bl′ =

2blbm
(bm−bl)m

and h =
⌊(
D
(
b′l
bm

∣∣∣∣∣∣ b′l(1−bm)

(bm(1−b′l))

)
−m−2

)
n′
⌋

Input distribution: X uniformly distributed on {0, 1}hm, Li,0 = 0 for all i. If
Li,k = 1 then plri learns X after message k.
Protocol:

1. Parse X as (X1, . . . , Xm) with ∀j : Xj ∈ {0, 1}h

2. Set all n players to available

3. For j from 1 to m

4. If less than n′ players are available, terminate the protocol

5. If the leakers are not pretending ignorance, each of the first n′ available
players become a leaker with probability b′l independently of each other

6. The first n′ available players follow π to leak Xj. Let X̂j denote the output

7. If X̂j 6= Xj all leakers start to pretend ignorance

8. Every player i with Pr(Li,(j) = 1|T (j) = t(j), Xj = X̂j) > 0 becomes unavail-
able

Figure 3.10: Protocol from the proof of Proposition 3.26.

only need to prove that until they pretend ignorance, they have reasonable doubt.

Let j be the last stage in which player i send a message where he did not pretend

ignorance. As he did not pretend ignorance, we must have Xj−1 = X̂j−1, and he

must have been available in stage j, otherwise he would not have sent a message in

85

that stage. That means that Pr(Li,(j−1) = 1|T (j−1) = t(j−1), Xj−1 = xj−1) = 0 so Eve

would know that he did not leak in earlier rounds. As he had probability bl
′ of be-

coming a leaker at stage j and the players used a safe (n′, h, Indepbl′(n
′), bm, ε/(2m))-

protocol in round j, we must have Pr(Li,(j) = 1|T (j) = t(j), X = x) ≤ bm, and no

further message will change this probability. Thus, the protocol ensures reasonable

doubt.

Next we want to compute the rate for the protocol we have defined. In the limit,

when n→∞ much faster than m→∞ the rate is

lim
m→∞

lim
n→∞

hm

n

= lim
m→∞

lim
n→∞

⌊(
D
(
bl
′

bm

∣∣∣∣∣∣ bl′(1−bm)
(bm(1−bl′))

)
−m−2

)
n′
⌋
m

n

= lim
m→∞

lim
n→∞

⌊(
−bl′ log(1−bm)+bm log(1−bl′)

bm
−m−2

)
n′
⌋
m

n

≥ lim
m→∞

lim
n→∞

−bl′ log(1−bm)+bm log(1−bl′)
bm

n′m− (m−2n′ + 1)m

n

≥ lim
m→∞

lim
n→∞

− 2blbm
(bm−bl)m

log(1−bm)+bm log
(

1− 2blbm
(bm−bl)m

)
bm

(
bm−bl
2bm

n− 1
)
m−

(
m−2 bm−bl

2bm
n+ 1

)
m

n

= lim
m→∞

− 2blbm
(bm−bl)m

log(1− bm) + bm log
(

1− 2blbm
(bm−bl)m

)
bm

(
bm − bl

2bm

)
m−

(
m−2 bm − bl

2bm

)
m

= lim
m→∞

−bl log(1− bm) +m bm−bl
2

log
(

1− 2blbm
(bm−bl)m

)
bm

−
(
m−2 bm − bl

2bm

)
m

=
−bl log(1− bm)− blbm log(e)

bm
,

as we wanted.

Finally, we want to compute the probability of error. We divide the errors into

two types. A type one error is an error where X̂j 6= Xj for some j. A type two error

is the case where the protocol halts because there are less than n′ available players

left.

By construction, the probability of getting a type one error in stage j is at most
ε

2m
. From the proof of Theorem 3.9, we see that if the players never pretend igno-

86

rance the number of players who would become unavailable in stage j is binomially

distributed with parameters n′ and bl
′ + (1 − bl

′)a
d

where a and d are parameters

from that proof. For any δ > 0 we can choose a and d such that a
d
≤ bl

′(1−bm)
bm(1−bl′)

+ δ.

Then

bl
′ + (1− bl′)

a

d
≤b′l + (1− b′l)

(
b′l(1− bm)

bm(1− b′l)
+ δ

)
≤b′l +

b′l(1− bm)

bm
+ δ

=
bl
′

bm
+ δ.

Thus, the total number of players who would become unavailable if there were

enough players and they never pretended ignorance would be binomially distributed

with parameters mn′ and p ≤ bl
′

bm
+ δ = 2bl

(bm−bl)m
+ δ and thus have expectation

mn′p ≤m
⌊
bm − bl

2bm
n

⌋(
2bl

(bm − bl)m
+ δ

)
≤mbm − bl

2bm
n

(
2bl

(bm − bl)m
+ δ

)
≤ bl
bm
n+ δnm

By choosing δ to be sufficiently small depending on m, and n sufficiently big Cheby-

shev’s inequality shows that with probability greater than 1 − ε
2

the total number

of player who become unavailable is at most bm+bl
2bm

n ≤ n−b bm−bl
2bm

nc and hence there

will be n′ available players left for the last stage. Thus, the probability of a type

two error would be less than ε
2

so the total probability of error is less than ε.

Theorem 3.27. If Mbl is “bl-threshold centrally organised” or “bl-threshold in-

formed choice” both the safe and the risky bm-capacity for Mbl is −min(bl,bm) log(1−bm)
bm

−
min(bl, bm) log(e).

Proof. For bl < bm is follows from Proposition 3.24, Proposition 3.26 and the fact

that the risky capacity must be at least the same as the safe. For bl ≥ bm is follows

from the case bl < bm, Proposition 3.25 and the fact that the bm-capacity must be

non-decreasing in bm.

87

For an illustration of this theorem, see Figure 3.11.

p

− log(1− p)

0

1

2

3

4

5

bl = 0.5 bm = 0.95

Figure 3.11: This figure illustrates the advantage of the adaptive models “bl-
threshold centrally organised” and “bl-threshold informed choice” compared to the
non-adaptive model. Most of the figure is as Figure 3.2. The new line is the tangent
to p 7→ − log(1 − p) at p = 0. For bl ≤ bm the safe/risky bm-capacity for Mbl is
given as the length of the dotted line. In this case, the advantage in using these two
adaptive models over the static one, is given by the difference between the lower
line and the curve. When bl > bm in the static model, there is not even reasonable
doubt from the beginning, and the capacity is −∞. In these two adaptive models,
the capacity is the same as for bl = bm.

Notice that while our upper bounds for the six models are the same and are the

same for the safe and risky case, the bm-capacities might be different between the

models, and the safe bm-capacity might even be different from the risky bm-capacity

for some models. Similarly, even though our upper bound for all the models does

not depend on bl as long as bl ≥ bm, we conjecture that in the bl-dormant models

the bm-capacity for Mbm is less than the bm-capacity for M1.

88

Chapter 4

Resilient Cryptogenography

In the previous chapter we considered a model for cryptogenography where all the

communicating parties were collaborating in revealing some information: some play-

ers were sending messages that were correlated with a secret, and some players were

sending messages that were not, but everyone were following the same protocol. In

this chapter we will see what happens when some players, censors, try to obstruct

a protocol by sending misleading messages.

We will see that if the probability, bc, that each player is a censor is at least bm−bl,
then the censors can completely prevent the leakers from sending any information.

When bl + bc < bm, the censors can have two effects on the leakers ability to leak

information. First, if bc ≥ bl the censors can “spread false stories”, that is, they

pretend that they are leakers and that X is some value x′. Similarly, if there are

more censors than leakers, they can split into b bc
bl
c groups that each pretend that

they are the true leakers, and that X = xi. Hence, the best the leakers can hope

for is that after the communication an observer can write down a list of 1 + b bc
bl
c

elements that contains the true value x. To capture this, we need to redefine reliable

leakage, to allow the observer output a list of fixed length of guesses about x and

only require that x is on the list with probability 1 − ε. Corollary 4.17 shows that

the leakers can achieve this for list of length 1+b bc
bl
c but no shorter. Secondly, as we

will see in Corollary 4.23, the censors can lower the number of bits that the leaker

can reveal to D
(
bl
bm
|| bl(1−bm)
bm(1−bc−bl)

)
per player. The main theorem of this chapter is

Theorem 4.26, which shows that asymptotically as number of people tend to infinity,

89

the leakers can get the best of both: they can reveal D
(
bl
bm
|| bl(1−bm)
bm(1−bc−bl)

)
bits per

person, and still get down to a list of size 1 + b bc
bl
c.

We will also consider the case where both the fraction of leakers and the fraction

of censors are close to 0. In this case we will see that even if there are many more

censors than leakers, say bc = 10−3 and bl = 10−6, the censors have almost no effect

on the rate. All the positive results in this chapter are existential, so we do not

construct good leaker protocols. However, the negative results are constructive: we

give algorithms that given a leaker protocol construct good censor protocols.

In a censor/leaker game each player can have one of three different alignments.

She can be leaker (denoted by 1), censor (−1) or neutral (0). We let Li be the

random variable that gives the alignment of player i and let L = (L1, . . . , Ln). A

leaker protocol π is a communication protocol that for each possible value tk of

previous transcript specifies

1. Does the protocol terminate here, and if not:

2. who should send the next message, say player i, and

3. if Li = 0 what distribution with support Utk , should player i use to send the

next message, and

4. for each x ∈ X , if Li = 1, what distribution over Utk should player Li use to

send her next message.

Notice that requirements 3 and 4 together imply that the protocol is non-revealing,

that is, any message that can be sent by someone, when the partial transcript is

tk, can be sent by a neutral, when the transcript is tk. In this definition we are

assuming that the neutral people are willing to follow any leaker protocol π that

we might specify. This is of course not realistic, but if the neutral players send out

some randomness, for example by the exact time they post something online, we can

model this as an innocent communication protocol ι. In Chapter 6 we will see that

for any ι that contains sufficiently much randomness and any protocol π as defined

above, we can build a protocol ιπ that implements π but where the neutral people

simply follow ι (Theorem 6.3). Hence, to not be a neutral player in ιπ you would

have to change your behavior.

90

We assume that the censors follow a secret censor protocol σ, which is chosen

after they learn the protocol π. The censor protocol specifies for each possible partial

transcript tk, secret value x and set of censors, which probability distribution over

Utk a censor should use to choose her next message, if she is next to send a message.

If the distribution never depends on who the other censors are, we say that the

protocol is autonomous. We assume that the censors only send messages when π

says that they are the next person to send a message, and we assume that they

can only send messages from Utk , that is, messages that could be sent according

to π. This assumption will make the formal setup simpler, and it does not change

the power of the censors: if a censor did send a message at a time when they are

not supposed to send a message, or if they sent a message that a neutral player

or a leaker would never send, everyone would know that this person was a censor.

Everyone could then ignore the messages sent by that person. If a player does not

send a message, when it is his turn, everyone would also know that he is a censor,

and we could simply pretend that he sent the lexicographically first message in Utk .

The only advantage a censor could have in not respecting when to send messages

or not choosing his messages from Utk is to communicate with other censors or an

observer. However, all the censors have the same information available when sending

messages, and Eve also has the same information, so this would not be useful for

the censors.1 We assume that π is known to everyone, but that only the censors

know σ, that is, G will not depend on σ.

We have a parameter b = (bl, bc, bm) that determines the distribution of the

alignments L, and how suspicious they are willing to look to Eve: We assume that

the players’ alignments are chosen independently at random, that each player is a

leaker with probability bl, a censor with probability bc and that no leaker wants to

look like they are a leaker with probability greater than bm.2

Can the leakers still reveal some information? If bl = bc, the censors can simply

pretend to be leakers and pretend that the secret is some x′ rather than the true

1The censors could use communication to get some shared randomness, however this will not
give them any advantage: See the proof of Theorem 4.14 and the remarks after the proof.

2If the leakers follow a protocol that ensures that they never look like they are a leaker with
probability above bm, then no one will ever look like they are a leaker with probability above bm:
Suppose for contradiction that Alice looks like she is a leaker with probability above bm, after
running such a protocol. Then by assumption Alice cannot be a leaker, and hence her probability
of being a leaker is 0.

91

value x. Thus, no matter what protocol π we use, it will always be possible for

the censors to create some doubt about what the secret is. However, if the set of

possible secrets X is huge, reducing the set of possible secret to just two values,

or even some constant number, L, of values, might be useful. Thus, we have two

different parameters in how effectively we can leak information: How small a set can

an observer confidently say that X belongs to, and the number 2dhe of elements in

the prior set of possible secrets X . We also allow for some probability of at most ε,

that x is not on the list of L elements.

Definition 4.1. Let h ∈ R+, bl, bm, bc ∈ [0, 1), ε ∈ (0, 1), n,L ∈ N with bl
1−bc < bm be

given. Let b = (bl, bc, bm). We say that player i’s alignment is given by b and write

Li ∼ b if Li is a random variable that is 1 with probability bl, is−1 with probability bc

and is 0 otherwise. We say that the alignments are given by b and write L ∼ b if Li ∼
b for all i and all the Li are independent. Let L− = (min(L1, 0), . . . ,min(Ln, 0)),

that is, L− specifies the set of censors. A (n, h,L, ε, b)-protocol π is a protocol for n

players such that when L ∼ b, and when the secret is distributed uniformly on [2dhe]

independently from L then no matter what protocol σ the censors use, we have:

Reasonable doubt: For all players i, secrets x, transcript t and set of censors l−,

such that t occurs with positive probability for X = x and L− = l− when the

censors follow σ, we have Pr(Li = 1|X = x, L− = l−, T = t) ≤ bm.

Reliable leakage: There is a function G sending transcripts T to subsets of X of

size at most L, such that for any strategy for the censors and any x ∈ X we

have Pr(x ∈ G(T)|X = x) ≥ 1− ε.

For b = (bl, bc, bm) a b-leaker protocol is a leaker protocol, π, such that for any

censor protocol, σ, the requirement of reasonable doubt is satisfied.

The inequality bl
1−bc < bm together with bm < 1 implies that bl + bc < 1, so the

described distribution on Li is possible, and it also implies Pr(Li = 1|L− = l−) < bm,

so there is reasonable doubt about each player, before they start communicating.

In the following we will always assume that bl, bm, bc ∈ [0, 1) and that they satisfy
bl

1−bc < bm. Because we are assuming the Lis to be independent, there is no reason

to consider risky protocols.

92

In the “reasonable doubt” requirement, the probability Pr(Li = 1|X = x, L− =

l−, T = t) refers to the joint distribution of (X,L, T). This distribution depends on

b, π and σ. However, we will see that the probability Pr(Li = 1|X = x, L− = l−, T =

t) does not depend on σ. Notice that the probability is given L−, that is, we assume

that Eve knows who the censors are. If we did not have this assumption and allowed

Pr(Li = 1|X = x, L− = l−, T = t) > bm, the censors could just reveal themselves

after the execution of the protocol. Then Eve would know L− and there would no

longer be reasonable doubt about player i. The assumption that Eve knows L− also

implies that the reasonable doubt requirement is always satisfied for the censors.

Definition 4.2. For b = (bl, bc, bm) we define

r(b) =
bm(1− bl − bc)
bl(1− bm)

.

We also define b′ = (b′l, b
′
c, b
′
m), where b′l = max

(
bl − bc

r(b)−1
, 0
)

, b′c = 0 and b′m =

max
(
bm

(
1− bc

bl(r(b)−1)

)
, 0
)

.

The following theorem will be useful for proving upper bounds on the amount of

information the leakers can reveal. Intuitively, it says that the censors can choose a

strategy that “neutralizes” some of the leakers, so for an observer who knows π but

does not know that some of the players are censors, it will look as if there are fewer

leakers and that the leakers are only willing to look less suspicious than they really

are. When the alignments and requirement of reasonable doubt are given by b the

censors can make it look like they are given by b′ as defined above.

Theorem 4.1. Let b = (bl, bc, bm) and b′ be as given by Definition 4.2. If π is a

b-leaker protocol it is also a b′-leaker protocol, and there is a censor protocol σ such

that the distribution of (X,T) is the same when L ∼ b as when L ∼ b′.

The rest of this section will build up to the proof of this theorem.

Proposition 4.2. Let b = (bl, bc, bm). If b′l > 0, then r(b) = r(b′).

Proof. Assume b′l > 0 and define r = r(b). Then we must have 0 < b′l = bl −
bc
r−1

= bl

(
1− bc

bl(r−1)

)
so 1 − bc

bl(r−1)
> 0 and hence bm

(
1− bc

bl(r−1)

)
> 0 so b′m =

bm

(
1− bc

bl(r−1)

)
.

93

We want to show that r(b) = r(b′). That is

bm(1− bl − bc)
bl(1− bm)

=
bm
(
1− bl + bc

r−1

)
bl

(
1− bm

(
1− bc

bl(r−1)

)) .
By assumption bm ≥ bl ≥ b′l > 0, so we can divide through by bm

bl
, giving us

1− bl − bc
1− bm

=
1− bl + bc

r−1

1− bm
(

1− bc
bl(r−1)

) .
Then we multiply by the denominators

(1− bm)

(
1− bl +

bc
r − 1

)
= (1− bl − bc)

(
1− bm

(
1− bc

bl(r − 1)

))
,

expand

1− bl +
bc

r − 1
− bm + bmbl −

bcbm
r − 1

=1− bl − bc − bm + bmbl + bmbc +
bcbm

bl(r − 1)
− bmbc
r − 1

− bmb
2
c

bl(r − 1)
,

and simplify
bc

r − 1
= −bc + bmbc +

bcbm
bl(r − 1)

− bmb
2
c

bl(r − 1)
.

If bc = 0 it is clearly true. Otherwise, we can divide through by bc and rearrange to

get
bl − bm + bcbm
bl(r − 1)

= −1 + bm.

We assume bm < 1 so we can divide through by −1−bm
r−1

to get

bm − bl − bcbm
bl(1− bm)

= r − 1.

All the operations we used can be inverted, so this equation is equivalent to r(b) =

94

r(b′). We see that indeed

r − 1 =
bm(1− bl − bc)
bl(1− bm)

− 1 =
bm − bl − bcbm
bl(1− bm)

.

Thus, r(b) = r(b′).

Just after Definition 4.1 we decided to always assume bl
1−bc < bm. The following

shows that this assumption is equivalent to r(b) > 1.

Proposition 4.3. For bl ∈ (0, 1), bc, bm ∈ [0, 1) we have bl
1−bc < bm ⇔ r(b) > 1.

Proof. Notice that

r(b) =
bm(1− bl − bc)
bl(1− bm)

=
bm(1− bc)

bl

1− bl − bc
(1− bc)(1− bm)

=
bm(1− bc)

bl

1− bl − bc
1− bl − bc − (1− bc)

(
bm − bl

1−bc

) .
For bl, bc, bm ∈ [0, 1) the assumption bl

1−bc < bm is equivalent to bm− bl
1−bc > 0 and to

bm(1−bc)
bl

> 1, so bl
1−bc < bm implies that each of the two factors in the last line, and

hence r(b), is greater than 1. Conversely, if r(b) > 1 and bl ∈ (0, 1), bc, bm ∈ [0, 1)

then at least one of the two factors must be greater than 1 and hence bl
1−bc < bm.

The following concept turns out to be useful when analyzing whether a protocol

satisfies the requirement of reasonable doubt. Specifically, we will see that a leaker

protocol π is a b-protocol if and only if ri,t ≤ r(b) for all i, t.

Definition 4.3. For a leaker protocol π, censor protocol σ, a player i and a tran-

script t the likelihood ratio ri,t is given by

ri,t =
Pr(T = t|X = x, Li = 1)

Pr(T = t|X = x, Li = 0)
.

The likelihood ratio for player i is ri = maxt ri,t, the likelihood ratio for protocols π

and σ is maxi,t ri,t, and the likelihood ratio for π is the maximum of likelihood ratios

for π and σ over all leaker protocols σ.

95

The likelihood ratio corresponds to what Evfimievski, Gehrke and Srikant call

amplification [25]. It also plays the same role as eε in differential privacy. However,

unlike for differential privacy, the guarantee we give in this thesis is one-sided: we

assume that players do not want to be revealed as leakers but also that they do not

mind being revealed as non-leakers.

We will now see that only player is message can affect ri,t: it does not matter

who the censors are or what protocol they follow.

Proposition 4.4. Let π be a leaker protocol, σ a censor protocol, t a transcript and

let K(i, t) be the set of rounds where player i sent a message in t. Let l− be an

n-tuple taking values in {0,−1}, with (l−)i = 0. The likelihood ratio for player i

and t is

ri,t =
∏

k∈K(i,t)

Pr(Tk = tk|X = x, Li = 1, T k−1 = tk−1)

Pr(Tk = tk|X = x, Li = 0, T k−1 = tk−1)

=
∏

k∈K(i,t)

Pr(Tk = tk|X = x, Li = 1, L− = l−, T
k−1 = tk−1)

Pr(Tk = tk|X = x, Li = 0, L− = l−, T k−1 = tk−1)

=
Pr(T = t|X = x, Li = 1, L− = l−)

Pr(T = t|X = x, Li = 0, L− = l−)
.

In particular the likelihood ratio ri,t of π and σ does not depend on σ.

In the proof of this and later proposition, we will sometime shorten the notation

for probabilities, by omitting the random variables and just write the value. For

example we write Pr(li|x, l−, tk) instead of

Pr(Li = li|X = x, L− = l−, T
k = tk).

We will only do this when the random variable is the capital version of the letter

used to represent the values it takes, so the notation is well-defined.

In order to prove Proposition 4.4 we need the following proposition, which will

also be useful later. Recall that a censor protocol is said to be autonomous if a

censor’s message never depends on who the other censors are.

Proposition 4.5. Let the alignments L1, . . . , Ln and the secret X be independent

random variables. For fixed π, σ and integer k, the alignments L1, . . . , Ln are inde-

96

pendent given X,L− and T k. If σ is an autonomous censor protocol, then L1, . . . , Ln

are independent given X and T k.

Proof. First we show that L1, . . . , Ln are independent given X,L− and T k. Let π

and σ be fixed. We prove the statement by induction on k. For k = 0 it is true by

assumption.

For the induction step, assume that the statement holds for k. That is, for all

n-tuples l of alignments, and all x and t such that Pr(X = x, L− = l−, T
k = tk) > 0

we have

Pr(L = l|X = x, L− = l−, T
k = tk) =

∏
i

Pr(Li = li|X = x, L− = l−, T
k = tk).

By multiplying by Pr(X = x, L− = l−, T
k = tk) (or dividing to go in the other

direction) and using that L− is a function of L, we see that this is equivalent to

saying that for all x, l and t we have

Pr(x, l, tk) = Pr(x, l−, t
k)
∏
i

Pr(li|x, l−, tk). (4.1)

We want to show that if this is true, then the same statement holds for k + 1.

Assume that after transcript tk, the next person to send a message is player j.

We have

Pr(X = x, L = l, T k+1 = tk+1)

= Pr(Tk+1 = tk+1|X = x, L = l, T k = tk) Pr(X = x, L = l, T k = tk)

= Pr(Tk+1 = tk+1|x, lj, l−, tk) Pr(X = x, L = l, T k = tk). (4.2)

Here the second equality follows from the fact that a message only depends on the

secret X, the alignment Lj of the sender, the previous transcript T k and (if j is a

censor) on L−.

If li = −1 then this information follows from l−, so Pr(Tk+1 = tk+1|X = x, Li =

li, L− = l−, T
k = tk) = Pr(Tk+1 = tk+1|X = x, L− = l−, T

k = tk). If li 6= −1, and

97

player j 6= i sends the k + 1’th message we also have

Pr(Tk+1 = tk+1|X = x, Li = li, L− = l−, T
k = tk)

=
∑

a∈{−1,0,1}

Pr(Tk+1 = tk+1|x, Lj = a, l−, t
k) Pr(Lj = a|x, li, l−, tk)

=
∑

a∈{−1,0,1}

Pr(Tk+1 = tk+1|x, Lj = a, l−, t
k) Pr(Lj = a|x, l−, tk)

= Pr(Tk+1 = tk+1|X = x, L− = l−, T
k = tk). (4.3)

In the first equality we are using the assumption that a message only depends on

the secret X, alignment of the sender, previous transcript, and possibly L− (if the

sender is censor). In the second equality we use the induction hypothesis which says

that the Li’s are independent given X,L− and T k. Now for i 6= j we get

Pr(Li = li|X = x, L− = l−, T
k+1 = tk+1)

=
Pr(X = x, Li = li, L− = l−, T

k+1 = tk+1)

Pr(X = x, L− = l−, T k+1 = tk+1)

=
Pr(Tk+1 = tk+1|x, li, l−, tk) Pr(X = x, Li = li, L− = l−, T

k = tk)

Pr(Tk+1 = tk+1|x, l−, tk) Pr(X = x, L− = l−, T k = tk)

=
Pr(X = x, Li = li, L− = l−, T

k = tk)

Pr(X = x, L− = l−, T k = tk)

= Pr(Li = li|X = x, L− = l−, T
k = tk), (4.4)

Here we use (4.3) in the third equality.

We now look at the right hand side of (4.1) for k + 1.

Pr(x, l−, t
k+1)

∏
i

Pr(li|x, l−, tk+1)

= Pr(x, lj, l−, t
k+1)

∏
i 6=j

Pr(li|x, l−, tk+1)

= Pr(tk+1|x, lj, l−, tk) Pr(x, lj, l−, t
k) ·
∏
i 6=j

Pr(li|x, l−, tk)

= Pr(tk+1|x, lj, l−, tk) Pr(x, l−, t
k) ·
∏
i

Pr(li|x, l−, tk). (4.5)

98

In the second equality we use (4.4) to get from Pr(li|x, l−, tk+1) to Pr(li|x, l−, tk),
and in the last equality we use Pr(x, lj, l−, t

k) = Pr(x, l−, t
k) Pr(lj|x, l−, tk).

Now equations (4.2) and (4.5) show that if we multiply both sides of (4.1) by

Pr(tk+1|x, lj, l−, tk) we get (4.1) with k+ 1 instead of k. Hence, the result follows by

induction.

To prove that if σ is autonomous then L1, . . . Ln are independent given X and

T k simply remove all occurrences of L− = l− in the above proof and note that then

(4.3) also holds in the case li = −1.

We are now ready to prove Proposition 4.4.

Proposition 4.4 (repeated). Let π be a leaker protocol, σ a censor protocol, t a

transcript and let K(i, t) be the set of rounds where player i sent a message in t.

Let l− be an n-tuple taking values in {0,−1}, with (l−)i = 0. The likelihood ratio

for player i and t is

ri,t =
∏

k∈K(i,t)

Pr(Tk = tk|X = x, Li = 1, T k−1 = tk−1)

Pr(Tk = tk|X = x, Li = 0, T k−1 = tk−1)

=
∏

k∈K(i,t)

Pr(Tk = tk|X = x, Li = 1, L− = l−, T
k−1 = tk−1)

Pr(Tk = tk|X = x, Li = 0, L− = l−, T k−1 = tk−1)

=
Pr(T = t|X = x, Li = 1, L− = l−)

Pr(T = t|X = x, Li = 0, L− = l−)
.

In particular the likelihood ratio ri,t of π and σ does not depend on σ.

Proof. By repeated use of the definition of conditional probability we have

Pr(T = t|x, Li = ai, l−) =
∏
k

Pr(Tk = tk|x, Li = ai, l−, t
k−1). (4.6)

99

If player j 6= i sends the k’th message, we have

Pr(Tk = tk|X = x, Li = 1, L− = l−, T
k−1 = tk−1)

=
∑

a∈{−1,0,1}

Pr(Tk = tk|x, Lj = a, l−, t
k−1) Pr(Lj = a|x, Li = 1, l−, t

k−1)

=
∑

a∈{−1,0,1}

Pr(Tk = tk|x, Lj = a, l−, t
k−1) Pr(Lj = a|x, Li = 0, l−, t

k−1)

= Pr(Tk = tk|X = x, Li = 0, L− = l−, T
k−1 = tk−1). (4.7)

In the first and the last inequality we are using the assumption that a message only

depends on the secret X, alignment of the sender, previous transcript and possibly

L− (if the sender is censor). In the second equality we use Proposition 4.5.

By combining (4.6) and (4.7) we get

Pr(T = t|X = x, Li = 1, L− = l−)

Pr(T = t|X = x, Li = 0, L− = l−)

=
∏
k

Pr(Tk = tk|X = x, Li = 1, L− = l−, T
k−1 = tk−1)

Pr(Tk = tk|X = x, Li = 0, L− = l−, T k−1 = tk−1)

=
∏

k∈K(i,t)

Pr(Tk = tk|X = x, Li = 1, L− = l−, T
k−1 = tk−1)

Pr(Tk = tk|X = x, Li = 0, L− = l−, T k−1 = tk−1)

=
∏

k∈K(i,t)

Pr(Tk = tk|X = x, Li = 1, T k−1 = tk−1)

Pr(Tk = tk|X = x, Li = 0, T k−1 = tk−1)
. (4.8)

First equality follows from (4.6) and the second from (4.7). In the last equation we

used the fact that when a message is sent by a non-censor, it only depends on X,

100

alignment of the sender and on previous transcript. Now

ri,t =
Pr(T = t|X = x, Li = 1)

Pr(T = t|X = x, Li = 0)

=

∑
l−

Pr(T = t|X = x, Li = 1, L− = l−) Pr(L− = l−|X = x, Li = 1)∑
l−

Pr(T = t|X = x, Li = 0, L− = l−) Pr(L− = l−|X = x, Li = 0)

=

∑
l−

Pr(T = t|X = x, Li = 1, L− = l−) Pr(L− = l−|X = x, Li = 1)∑
l−

Pr(T = t|X = x, Li = 0, L− = l−) Pr(L− = l−|X = x, Li = 1)

=
∏

k∈K(i,t)

Pr(Tk = tk|X = x, Li = 1, T k−1 = tk−1)

Pr(Tk = tk|X = x, Li = 0, T k−1 = tk−1)

Here the sums are over all possible l−. The third equality follows from the fact that

the Li’s are independent given X. To see the fourth equality, notice that the third

right hand side is of the form
∑
l−
al−pl−∑

l−
bl−pl−

where, by equation (4.8), we have
al−
bl−

= c

which does not depend on l−. Thus,
∑
l−
al−pl−∑

l−
bl−pl−

=
∑
l−
cbl−pl−∑

l−
bl−pl−

= c. Now the theorem

follows from equation (4.8).

Proposition 4.6. The likelihood ratio for π and σ does not depend on σ.

Proof. The likelihood ratio for π and σ is maxi,t ri,t, where i ranges over all the

players and t over all transcripts that are possible when leakers and neutrals follow

π and censors follow σ. By Proposition 4.4 ri,t does not depend on σ and by

assumption, all messages sent in σ can also be sent by non-leakers who follow π,

and it is always possible that all players are non-leakers. Thus, the set of transcripts

t that can occur when following π and σ is the same as the set of transcripts that

can occur when following π and some other censor protocol σ′. This shows that

maxi,t ri,t does not depend on σ.

We are now ready to prove the previously mentioned characterization of b-leaker

protocols.

Proposition 4.7. Let b = (bl, bc, bm) with bl > 0. A protocol π is a b-leaker protocol

if and only if its likelihood ratio r satisfies

r ≤ r(b).

101

Proof. When li = −1 we have Pr(Li = 1|X = x, L− = l−, T = t) = 0 ≤ bm.

Otherwise,

Pr(Li = 1|X = x, L− = l−, T = t)

=
Pr(T = t|X = x, Li = 1, L− = l−) Pr(Li = 1|X = x, L− = l−)

Pr(T = t|X = x, L− = l−)

=
Pr(T = t|X = x, Li = 1, L− = l−) bl

1−bc

Pr(T = t|x, Li = 1, l−) bl
1−bc + Pr(T = t|x, Li = 0, l−)1−bc−bl

1−bc

=
ri,tbl

ri,tbl + 1− bc − bl
.

Here the first equality is Bayes’ formula given X and L−. In the last equality

we multiply through by 1−bc
Pr(T=t|x,Li=0,l−)

, and use Proposition 4.4. We see that the

resulting formula is increasing in ri,t and for ri,t = bm(1−bl−bc)
bl(1−bm)

we get bm. Thus,

ri,t ≤ bm(1−bl−bc)
bl(1−bm)

is equivalent to Pr(Li = 1|X = x, L− = l−, T = t) ≤ bm.

Intuitively the following lemma says that the probability that player i is a censor

can be used to “neutralize” some of the probability that he could be a leaker: if

player i is a leaker, his distribution would differ from the neutral distribution, and

if he is a censor it would differ. But when the observer does not know what he is,

the resulting distribution would be as if there was only probability b′l (as defined in

Definition 4.2) that he was leaking, and that he was otherwise neutral. This will be

used to prove Theorem 4.1, which is similar, but about all players rather than just

a single player. Both proofs are constructive.

Lemma 4.8. Let b = (bl, bc, bm) and let π be a b-leaker protocol. Let i be a player

and let L have a distribution where all the Lj are independent and Li ∼ b. If σ is an

autonomous censor protocol then there is an autonomous censor protocol σ′, which

is identical to σ for all players except i, such that

Pr(T = t|x) = b′l Pr(T = t|x, Li = 1) + (1− b′l) Pr(T = t|x, Li = 0) (4.9)

for all transcripts t. Furthermore, σ′ does not depend on the distribution of L−i,

and for two different censor protocols σ0 and σ1 the resulting protocols σ′0 and σ′1

give the same distributions for player i.

102

Proof. First we argue that the case bl(r(b)− 1) < bc follows from the case bl(r(b)−
1) = bc. To see this, notice that when bl(r(b)− 1) < bc we have b′m = b′l = 0. As r is

continuous in bc and r(bl, 0, bm) ≥ 1 (because bl ≤ bm), we can find a value βc with

0 ≤ βc < bc such that bl(r(bl, βc, bm) − 1) = βc. Now let β = (bl, βc, bm) and define

β′ by the same formula as b′. We see that β′l = β′m = 0. Let π, σ and i satisfy the

assumptions in the lemma. As π is a b-leaker protocol and βc < bc it must also be a

β-leaker protocol. Assuming the lemma is true in the case bl(r(b)− 1) = bc we will

use the lemma for β to get an autonomous censor protocol σ′ such that when Li ∼ β

and the players follow π and σ′ we get Pr(T k = tk|x) = Pr(T k = tk|x, Li = 0). Now

we define a protocol σ′′ that achieves the same when Li ∼ b: When player i is censor

he will with probability βc
bc

follow σ′ as if he is censor and otherwise he will follow π

as if he is neutral. As σ′ is autonomous, the distribution of (X,T) when Li ∼ β and

the players follow π and σ′ is the same as the distribution of (X,T) when Li ∼ b and

the players follow π and σ′′. It is clear that if σ′ does not depend on the distribution

of L−i and on what the other censors do in σ, then the same holds for σ′′. This show

that the case bl(r(b)− 1) < bc follows from the case bl(r(b)− 1) = bc

Thus, in the following we will assume that bl(r(b) − 1) ≥ bc and hence b′l =

bl − bc
r(b)−1

≥ 0. We can now rewrite the left hand side of (4.9).

Pr(T = t|X = x)

=bl Pr(T = t|X = x, Li = 1)

+ (1− bl − bc) Pr(T = t|X = x, Li = 0)

+ bc Pr(T = t|X = x, Li = −1)

=b′l Pr(T = t|X = x, Li = 1)

+ (1− bl − bc) Pr(T = t|X = x, Li = 0)

+ bc
Pr(T = t|X = x, Li = 1) + (r(b)− 1) Pr(T = t|X = x, Li = −1)

r(b)− 1
. (4.10)

Thus, equation (4.9) is equivalent to the right hand side of (4.9) being equal to the

right hand side of (4.10). By subtracting the first two terms of right hand side of

(4.10) from both of these, then use the fact that (1− b′l)− (1− bl− bc) = bcr(b)
r(b)−1

, and

103

multiply by r(b)−1
bc

we get,

r(b) Pr(T = t|X = x, Li = 0)

= Pr(T = t|x, Li = 1) + (r(b)− 1) Pr(T = t|x, Li = −1). (4.11)

Thus, (4.9) is equivalent to (4.11), so instead of showing that we can obtain (4.9)

we will show that we can obtain (4.11).

For each secret value x and each partial transcript tk, where player i is next to

send a message, we want to define a probability distribution that player i should use

to send his next message if he is a censor. We want to ensure that for each partial

transcript tk and each i we have

r(b) Pr(T k = tk|X = x, Li = 0)

= Pr(T k = tk|X = x, Li = 1) + (r(b)− 1) Pr(T k = tk|X = x, Li = −1). (4.12)

We will show this by induction on k for fixed t. The equation clearly holds for

k = 0. Furthermore, if it holds for k − 1 and the k’th message is sent by player

j 6= i we know from Proposition 4.5 that Li and Lj are independent given X and

T k−1 and hence equation (4.12) also holds for k. Finally, assume that the equality

(4.12) holds for k − 1 and that player i is next to send a message. By substituting

Pr(T k = tk|X = x, Li = −1) = Pr(Tk = tk|X = x, Li = −1, T k−1 = tk−1) Pr(T k−1 =

tk−1|X = x, Li = −1) into equation (4.12) and isolating Pr(Tk = tk|X = x, Li =

−1, T k−1 = tk−1), we see that equation (4.12) is equivalent to

Pr(Tk = tk|X = x, Li = −1, T k−1 = tk−1)

=
r(b) Pr(T k = tk|X = x, Li = 0)− Pr(T k = tk|X = x, Li = 1)

(r(b)− 1) Pr(T k−1 = tk−1|X = x, Li = −1)
. (4.13)

We know from Proposition 4.7 that r(b) is greater than or equal to the likelihood

ratio of π, so it follows that the right hand side is non-negative. If we keep tk−1

104

Parameters:

b = (bl, bc, bm) : probability of being leaker respectively censor and threshold of
reasonable doubt

π : a b-leaker protocol

σ : a censor protocol

Input distribution: X,L1, . . . , Ln are independently distributed and for each j:
Pr(Lj = 1) = bl and Pr(Lj = −1) = bc. Each plrj learns Lj and if |Lj| = 1 she also
learns X and if Lj = −1 she also learns L− = (min(L1, 0), . . . ,min(Ln, 0)). She will
follow π if Lj 6= −1 and otherwise she will follow the censor protocol given here.
Protocol:

1. All censors plrj for j 6= i follow σ.

2. If the transcript is tk−1 and plri is a censor who, accordion to π, should send
a message, she chooses message tk according to the distribution

Pr(Tk = tk|X = x, Li = −1, T k−1 = tk−1)

=
r(b) Pr(T k = tk|X = x, Li = 0)− Pr(T k = tk|X = x, Li = 1)

(r(b)− 1) Pr(T k−1 = tk−1|X = x, Li = −1)
.

Figure 4.1: Censor protocol from proof of Lemma 4.8.

fixed and sum the right hand side over all tk we get

r(b) Pr(T k−1 = tk−1|X = x, Li = 0)− Pr(T k−1 = tk−1|X = x, Li = 1)

(r(b)− 1) Pr(T k−1 = tk−1|X = x, Li = −1)

=
(r(b)− 1) Pr(T k−1 = tk−1|X = x, Li = −1)

(r(b)− 1) Pr(T k−1 = tk−1|X = x, Li = −1)

= 1.

Here the first equality follows from equation (4.12) for k − 1. Thus, for fixed tk−1,

equation (4.13) defines a probability distribution over the possible tk, and if player

i follows this distribution when he is a censor, we get (4.12) and hence (4.9). The

protocol is also defined in Figure 4.1.

105

Finally, we are ready to prove the main theorem of this section.

Theorem 4.1 (repeated). Let b = (bl, bc, bm) and b′ be as given by Definition 4.2.

If π is a b-leaker protocol it is also a b′-leaker protocol, and there is a censor protocol

σ such that the distribution of (X,T) is the same when L ∼ b as when L ∼ b′.

Proof of Theorem 4.1. If b′l = 0 then clearly any leaker protocol satisfy the reason-

able doubt requirement when L ∼ b′, and hence is a b′-leaker protocol. If b′l > 0 we

know from Proposition 4.2 that r(b) = r(b′) so by Proposition 4.7 we know that if

π is a b-leaker protocol, then π is also a b′-leaker protocol.

For the second part of the theorem, let σ0 be the autonomous censor protocol

where any censor always sends the lexicographically first possible message, and let

σi be the censor protocol we get when using Lemma 4.8 to change player i’s part of

σi−1. Because this construction only affects the probability distributions for player

i we see that in σn player i chooses his messages using the same distributions as in

σi. Furthermore, as the player i part of the protocol you get out of Lemma 4.8 does

not depend on the protocol σ you put in, we see that if we put σn into the Lemma,

the resulting protocol for player i must agree with the output we get when input is

σi−1. Hence, when we give Lemma 4.8 input σn and any i we get the protocol σn

out. Thus, when L ∼ b and the players follow π and σn we must have

Pr(T k = tk|x) = b′l Pr(T k = tk|x, Li = 1) + (1− b′l) Pr(T k = tk|x, Li = 0) (4.14)

for all i.

Let σ denote the resulting protocol σn. It is also define explicitly in Figure 4.2.

We show by induction on k that when the players follow π and σ then (X,T k) have

the same distribution when L ∼ b as when L ∼ b′. In the following we write Prb to

denote probabilities when L ∼ b and Prb′ to denote probabilities when L ∼ b′. That

is, we want to show Prb(X = x, T k = tk) = Prb′(X = x, T k = tk).

This is clearly true for k = 0. It is now enough to show that

Pr
b

(Tk = tk|x, tk−1) = Pr
b′

(Tk = tk|x, tk−1).

Let player i be the next player to send a message when the transcript is tk−1. Then

106

Parameters:

b = (bl, bc, bm) : probability of being leaker respectively censor and threshold of
reasonable doubt

π : a b-leaker protocol

Input distribution: X,L1, . . . , Ln are independently distributed and for each i:
Pr(Li = 1) = bl and Pr(Li = −1) = bc. Each plri learns Li and if |Li| = 1 she also
learns X and if Li = −1 she also learns L− = (min(L1, 0), . . . ,min(Ln, 0)). She will
follow π if Li 6= −1 and otherwise she will follow the censor protocol given here.
Protocol:

1. If the transcript is tk−1 and plri is a censor who, according to π should send
a message, she chooses message tk according to the distribution

Pr(Tk = tk|X = x, Li = −1, T k−1 = tk−1)

=
r(b) Pr(T k = tk|X = x, Li = 0)− Pr(T k = tk|X = x, Li = 1)

(r(b)− 1) Pr(T k−1 = tk−1|X = x, Li = −1)
.

Figure 4.2: Censor protocol from proof of Theorem 4.1.

we have

Pr
b

(Tk = tk|X = x, T k−1 = tk−1)

=
Prb(T

k = tk|X = x)

Prb(T k−1 = tk−1|X = x)

=
b′l Prb(t

k|x, Li = 1) + (1− b′l) Prb(t
k|x, Li = 0)

b′l Prb(tk−1|x, Li = 1) + (1− b′l) Prb(tk−1|x, Li = 0)

=
Pr(T k = tk|X = x, Li ∼ b′, L−i ∼ b)

Pr(T k−1 = tk−1|X = x, Li ∼ b′, L−i ∼ b)

= Pr(T k = tk|X = x, Li ∼ b′, L−i ∼ b, T k−1 = tk−1)

= Pr
b′

(T k = tk|X = x, T k−1 = tk−1).

Here the second equality comes from (4.14) and the last equality follows from the

fact that the distribution player i uses to send tk does not depend on the alignment

of the other players.

107

4.1 Generalized list decoding

In order to study the censor/leaker game, we first need to generalize a result about

list decoding. In list decoding we usually consider a channel where input set and

output set are the same, say [m], and input i often gives output i, and when the

output is something else, it is considered to be a channel error. We then want to

find a code c ⊂ [m]n and a decoding function G that sends received strings y to

subsets of c of size at most L, such that if x ∈ [m]n and y can be the output of

the channel on input x with less than (1− q)n errors of the channel then x ∈ G(y).

A generalization of list decoding is list recoverability, which we can think of in the

following way. We have a channel with m possible inputs and
(
m
k

)
possible outputs,

one for each subset of size k of [m]. When the channel does not make an error, it will

on input i return an output corresponding to a set that contains i. Furthermore,

we still allow the channel to have up to (1− q)n errors. For an introduction to list

decoding and list recoverability, see Guruswami [38].

One disadvantage of list recoverable codes, is that they only exist for L ≥ k.

To see this, let x1, . . . , xk be k different codewords, and consider the output where

the i’th set contains x1
i , . . . , x

k
i . For this output, each of the k inputs x1, . . . , xk are

possible inputs, so we must have L ≥ k. This is a problem for us, because will need

L � k.

We want to generalize list decoding in a similar way to list recovery, but instead

of allowing the channel to output any of the
(
m
k

)
subsets of size k of [m], we put

some restriction on which subsets the channel can output, even when it has an error.

More precisely, we have a family S ⊂
(

[m]
k

)
consisting of m subsets of [m]. Each

S ∈ S has size k and each i ∈ [m] is contained in k such sets S. On input i the

channel can either output an S with i ∈ S ∈ S, or it can have an error and output an

S with x 6∈ S ∈ S. We call such a channel a k-regular pre-Bayesian channel, where

“pre-Bayesian” refers to the fact that it does not have a probability distribution on

its output given the input, only a set of non-error outputs. Again, we allow the

channel to make errors in up to (1− q)n usages of the channel. Restricting outputs

to S helps us, because when x1, . . . , xk are k different randomly chosen codewords,

then there will typically not be any S ∈ S which contains x1
i , . . . x

k
i .

We do not need any further assumption about the channel and all the proofs

108

in this section would work for any k-regular pre-Bayesian channel. However, in the

following we will work with the pre-Bayesian channel given by

S = {{i, i+ 1, . . . i+ k − 1} mod m : i ∈ [n]}.

The following defines a channel (including probabilities) that is related to this pre-

Bayesian channel.3

Definition 4.4. For m, k ∈ N, q ∈ (0, 1) with q > k
m

, we let Cm,k,q be the channel

with input set and output set [m], where on input i there is probability q that the

output is chosen uniformly from the set {i, i+1, . . . i+k−1} mod m, and otherwise

it is chosen uniformly from the other m− k possible values.

The assumption that q > k
m

implies that on input i each of the values in {i, i+

1, . . . , i + k − 1} mod m are more likely outputs than the other possible outputs.

Similarly, for any k-regular pre-Bayesian channel, we could define a channel where

with probability q is does not have an error, and chose uniformly among the k allowed

outputs, and with probability 1 − q it choses among the other m − k outputs. We

call the resulting channel a k-regular channel.

The following definition is from Cover and Thomas [18].

Definition 4.5. For a channel C the transmission matrix is the matrix where rows

correspond to inputs and columns to outputs and the entry (i, j) gives the probability

of getting output j on input i.

A channel is symmetric if all the rows of its transmission matrix are permutations

of each other, and all the columns are permutations of each other.

We see that the channel Cm,k,q is symmetric. More generally, all regular channels

are symmetric4 In the following, any theorem stated for Cm,k,q holds in the more

3Another k-regular pre-Bayesian channel, which might be more relevant for coding theory, is
the channel that sends bits in blocks each consisting of n′ bits and is said to have an error each
time more than r bits in a block change. Formally, this channel has input alphabet {0, 1}n′

and

S = {B(x, r) : x ∈ {0, 1}n′}

where B(x, r) denote the set of strings in {0, 1}n′
that differ from x in at most r positions. This

channel is k-regular for k =
∑r
a=0

(
n′

a

)
.

4Notice that the definition of symmetric is weaker than what you might expect. In particular,

109

general setting of k-regular channels. The next proposition is taken from Cover and

Thomas [18, Theorem 8.2.1].

Proposition 4.9. For a symmetric channel, the capacity is achieved by a uniform

distribution on the input.

In the following D(·||·) denotes the Kullback-Leibler divergence.

Proposition 4.10. The capacity of Cm,k,q is D(q|| k
m

).

Proof. As Cm,k,q is symmetric, its capacity attained for uniformly distributed input.

Let X denote the uniform input and Y the corresponding output. Then the capacity

is given by

I(X;Y) =H(Y)−H(Y |X)

= log(m) + q log
(q
k

)
+ (1− q) log

(
1− q
m− k

)
=q log

(mq
k

)
+ (1− q) log

(
m(1− q)
m− k

)
=D

(
q
∣∣∣∣∣∣ k
m

)
.

We want to show the existence of a code c ⊂ [m]n for the channel Cm,k,q, such

that for each possible output y, the set of possible inputs x ∈ c for which y is a likely

output has size at most L. To make this precise, we use the following definition.

Definition 4.6. For m, k, n ∈ N, r ∈ N0 with m > k, n ≥ r and y ∈ [m]n we define

B̃m,k(y, r) = {x ∈ [m]n : |{i : yi ∈ {xi, xi + 1, . . . xi + k − 1} mod m}| ≥ n− r}.

That is, if we assume that in at least n − r of the usages of the channel, the

output was among the most likely outputs given the input, then B̃m,k(y, r) denotes

the set of possible inputs, when the output is y. In the case where k = 1, B̃m,k(y, r)

is a ball in the Hamming metric of [m]n, hence the notation B̃. Now the goal is to

show the existence a code c such that c ∩ B̃m,k(y, n(1 − q)) is small for all outputs

y. First we will get an estimate of the size of |B̃m,k(0
n, n(1− q))|.

a symmetric channel can have inputs i1 and i2 such that no “isomorphism” acting on both inputs
and outputs sends i1 to i2.

110

Proposition 4.11. For q > k
m

,

lim
n→∞

log |B̃m,k(0
n, n(1− q))|

n
(
log(m)−D

(
q|| k

m

)) = 1.

Notice that |B̃m,k(y, n(1− q))| does not depend on y as long as y ∈ [m]n.

Proof. Let B̃′m,k(y, r) be the set of strings where exactly r positions are from the

unlikely set:

B̃′m,k(y, r) = {x ∈ [m]n : |{i : yi ∈ {xi, xi + 1, . . . xi + k − 1} mod m}| = n− r}.

Clearly

B̃m,k(0
n, n(1− q)) =

bn(1−q)c⋃
r=0

B̃′m,k(0
n, r),

so

∣∣∣B̃m,k(0
n, n(1− q))

∣∣∣ =

bn(1−q)c∑
r=0

∣∣∣B̃′m,k(0n, r)∣∣∣ . (4.15)

To specify an element x ∈ B̃′m,k(0n, r) you need to specify the r positions i where

xi is not the likely set, for each of these r you need to specify which of the n − k
possible values xi takes, and for each of the n − r other positions i, you need to

specify which of the k possible values xi takes. This gives us

|B̃′m,k(0n, r)| =
(
n

r

)
(m− k)rkn−r.

111

Using Stirling’s formula, log(n!) = n log(n)− n log(e) +O(log(n)) we get

log|B̃′m,k(0n, r)|
= log(n!)− log(r!)− log((n− r)!) + r log(m− k) + (n− r) log(k)

=n log(n)− r log(r)− (n− r) log(n− r)− log(e)(n− r − (n− r))
+O(log(n)) + r log(m− k) + (n− r) log(k)

=− r log
(r
n

)
− (n− r) log

(
n− r
n

)
+O(log(n)) + r log

(
m− k
m

)
+ (n− r) log

(
k

m

)
+ n log(m)

=n

(
log(m) +

r

n
log

(
(m− k)n

mr

)
+
n− r
n

log

(
kn

m(n− r)

))
+O(log(n))

=n

(
log(m)−D

(
n− r
n

∣∣∣∣∣∣ k
m

))
+O(log(n)).

If we set r = bn(1 − q)c we see that n−r
n

= n−bn(1−q)c
n

= dnqe
n
≤ q + 1

n
. As D

(
·|| k

m

)
has bounded derivative around q, we get that nD

(
n−r
n

∣∣∣∣∣∣ km) = nD
(
q
∣∣∣∣∣∣ km) + O(1).

This shows that limn→∞
log |B̃′m,k(0n,bn(1−q)c)|
n(log(m)−D(q|| km))

= 1 and as B̃′m,k(0
n, bn(1 − q)c) ⊂

B̃m,k(0
n, n(1− q)) we have

lim inf
n→∞

log |B̃m,k(0
n, n(1− q))|

n
(
log(m)−D

(
q|| k

m

)) ≥ 1.

To show the upper bound we observe that

B̃′m,k(0
n, r)

B̃′m,k(0
n, r − 1)

=

(
n
r

)
(m− k)rkn−r(

n
r−1

)
(m− k)r−1kn−r+1

=
(n− r + 1)(m− k)

rk
.

For r with n−r ≥ qn we have n−r
n
≥ q > k

m
, so m−k

k
> 1

q
−1 ≥ r

n−r >
r

n−r+1
, showing

that the above ratio is > 1. Thus, the biggest contribution to B̃m,k(0
n, n(1− q)) in

112

equation (4.15) comes from B̃′m,k(0
n, bn(1− q)c). Hence,

lim sup
n→∞

log |B̃m,k(0
n, n(1− q))|

n
(
log(m)−D

(
q|| k

m

)) ≤ lim sup
n→∞

log |B̃′m,k(0n, bn(1− q)c)|+ log(n)

n
(
log(m)−D

(
q|| k

m

))
=1.

Until now, we have thought of a code c as a subset of some [m]n. However, in

the proof of the following theorem we need to take a random code, and it will be

more useful to define a code to be a list c1, . . . , c2dRne of codewords. We will allow

elements in the list to be identical, so the codewords do not form a set but a multi-

set. However, this distinction between lists and sets is not important for us, and we

will sometimes think of codes as lists, sometimes as functions i 7→ ci and sometimes

as (multi-)sets.

Theorem 4.12. If D(q|| k
m

) − R > log(m)
L+1

, then for sufficiently large n there exists

a code c ⊂ [m]n of size 2dRne such that for all possible outputs y ∈ [m]k we have

|c ∩ B̃m,k(y, n(1− q))| ≤ L.

Proof. We prove this using the probabilistic method, in particular the proof is not

constructive. Let C be the random variable where each instance c of C is a list

of 2dnRe elements from [m]n, and each of these elements is chosen uniformly and

independently. We use Ci to denote the i’th element in C. The probability that for

some specific y ∈ [m]n the L + 1 elements Ci0 , . . .CiL all lie in B̃m,k(y, n(1 − q)) is(
|B̃m,k(y,n(1−q))|

mn

)L+1

. There are mn choices of y and less that 2dnRe(L+1) choices of

i0, . . . il. By the union bound, the probability Pe that there exists y, i0, . . . , iL with

Ci0 , . . .CiL ∈ B̃m,k(y, n(1− q)) is less than(
|B̃m,k(y, n(1− q))|

mn

)L+1

mn2dnRe(L+1).

113

By taking logarithm and using Proposition 4.11 we get

log(Pe) ≤(L+ 1)
(

log(|B̃m,k(y, n(1− q))|) + dnRe
)
− nL log(m)

≤(1 + o(1))(L+ 1)n

(
log(m)−D

(
q
∣∣∣∣∣∣ k
m

)
+R

)
− nL log(m)

≤(1 + o(1))n

(
log(m)− (L+ 1)

(
D

(
q
∣∣∣∣∣∣ k
m

)
−R

))
.

By assumption, log(m)− (L+ 1)(D(q|| k
m

)−R) < 0, so this tends to −∞. Thus, Pe

tends to 0. That is, with high probability C does not have any B̃m,k(y, n(1−q)) with

more than L elements. In particular, we can choose a c such that no c∩B̃m,k(y, n(1−
q)) has more than L elements.

Here c might contain the same codeword more than once, but as no B̃m,k(y, n(1−
q)) contains more that L elements from c, it contains each element at most L times.

If we do not want to allow a code to contain the same element more than once, we

simply get a code for a slightly higher rate R′ > R to get a code c′ and then let c

be the set of all codewords that occur in c′ (now without multiplicity).

The above theorem says that even if the channel’s errors are chosen by an ad-

versary who will know our code, there is a code c that ensures that we can decode

to get a list of L elements containing x. But even if the code is designed to work

against an adversary who knows the code, it is useful to know what happens when

there is no such adversary. To get the most general result, we will assume that there

is an adversary who completely controls the channel, but does not know our code.

Here the adversary is not meant to model an actual intelligent adversary - such

an adversary is modelled by the censors - but instead to model the worst possible

thing that could happen if our model is wrong - if non-leakers do not follow π, if

the fraction of leakers is not bl or if there is some pattern in who becomes leakers -

but no one is actively trying to make the leakage fail. For this purpose, it is natural

to assume that the adversary does not know the code, even if we are not trying to

keep the code a secret.

We would like to ensure that if we input x ∈ [m]n to some channel controlled by

an adversary who does not know our code c and we get output y ∈ [m]n, then there

is only small probability that there exists x′ 6= x with x′ ∈ c∩B̃m,k(y, n(1−q)). That

114

is, we do not require that the output list will contain the input x, but we want to

ensure that there is only small probability that it contains anything else. Of course

for any fixed code c the adversary could choose to always output some fixed y ∈ c,

so we need to use a randomly generated code. The only information the adversary

learns about c is one input value x = cj. We still want any code we use to satisfy

|c ∩ B̃m,k(y, n(1− q))| ≤ L as in Theorem 4.12.

Theorem 4.13. Let q, k,m,R be as in Theorem 4.12 and let ε ∈ (0, 1) be given.

Then for sufficiently large n there exists a random variable C which as values takes

codes c satisfying the requirements of Theorem 4.12 such that for each j ∈
[
2dRne

]
if Y is a random variable independent from all Ci given Cj then

Pr(∃i 6= j : Ci ∈ B̃m,k(Y, n(1− q))) ≤ ε

where the probability is over C and Y .

Proof. First we choose a random variable C′ where each C′i is chosen randomly and

independently as in the proof of Theorem 4.12. Let E = 1 if ∀y : |C′∩ B̃m,k(y, n(1−
q))| ≤ L and E = 0 otherwise. The proof of Theorem 4.12 shows that for sufficiently

large n, we have Pr(E = 1) ≥ 1− ε.
As each C′i with i 6= j is chosen uniformly from [m]n and independent of Y we

get

Pr(C′i ∈ B̃m,k(Y, n(1− q))) =
|B̃m,k(y, n(1− q))|

mn
,

for each i 6= j and hence

Pr(∃i 6= j : C′i ∈ B̃m,k(Y, n(1− q))) ≤ |B̃m,k(y, n(1− q))| · (2nR − 1)

mn
.

115

Using Proposition 4.11 we get

log(Pr(∃i 6= j : C′i ∈ B̃m,k(Y, n(1− q))))
≤ log(|B̃m,k(Y, n(1− q))|) + n(R− log(m))

= n(1 + o(n))

(
log(m)−D

(
q
∣∣∣∣∣∣ k
m

)
+R− log(m)

)
= n(1 + o(n))

(
R−D

(
q
∣∣∣∣∣∣ k
m

))
.

By assumption R < D(q
∣∣∣∣ k
m

), so this expression tends to −∞ and hence for suffi-

ciently large n the probability is at most ε(1 − ε). We now let C = C′|E=1. This

ensures

Pr(∃i 6= j : Ci ∈ B̃m,k(Y, n(1− q))) ≤ ε(1− ε)
1− ε ≤ ε.

4.2 Minimal list size

For specific values of b = (bl, bc, bm) we want to measure how much information a

censor/leaker protocol can reveal. However, just defining this is more complicated

than defining the capacity of a channel, because we have two parameters: the rate

R and the list size L. As we will see in Theorem 4.26, for fixed b the closure of the

set of combinations (L, R) with R > 0 that can be achieved is a product set, and

hence can be described by two numbers: the maximal rate and the minimal list size.

However, in order to prove Theorem 4.26 we first need a definition that does not

assume anything about the set of achievable (L, R). Recall from Definition 4.1 that

a (n, h,L, ε, b)-protocol is a b-protocol where the number of people is n, the secret

is chosen from [2dhe] and given transcript an observer is able to compute a list of

length L that for a random transcript contains the secret with probability at least

1− ε.

Definition 4.7. The rate of an (n, h,L, ε, b)-protocol π is h
n
, and L is its list size.

For L ∈ N and R > 0 we say that (L, R) is b-achievable if for all ε > 0 and all

n0 there exists n > n0 and an (n, nR,L, ε, b)-protocol.

The (L, b)-capacity is the supremum over all rates R such that (L, R) is b-

achievable.

116

The b-capacity is the supremum over all rates R such that (LR, R) is b-achievable

for some LR.

The b-minimal list size is the smallest L such that for all h, ε > 0 there is an

(n, h,L, ε, b)-protocol for some n.

In this section we will focus on minimal list size and ignore the rate. First we

give a lower bound and later a matching upper bound on the minimal list size.

Theorem 4.14. The b-minimal list size is at least
⌊
bc
bl

⌋
+ 1.

Proof. Let b be given, and assume that we have an (n, h,L, ε, b)-protocol π where

L =
⌊
bc
bl

⌋
, h > log(L + 1) and ε > 0. We now define a censor protocol σ′ where

the censors have access to shared randomness, which is unknown to G and the

leakers. This shared randomness is not allowed according to our definition of a

censor protocol, but a protocol with shared randomness can be considered to be a

probability distribution over protocols without randomness. Now if the censors can

ensure Pr(X ∈ G(T)) ≤ 1− ε using a random protocol, there must exists a protocol

σ without shared randomness that ensures Pr(X ∈ G(T)) ≤ 1 − ε. Thus, we can

allow the censors to have shared randomness.

Each censor chooses a number from {0, 1, . . . ,L} independently at random. Any

number i > 0 is chosen with probability bl
bc

, and otherwise 0 is chosen. This way,

the probability that a person is censor and choose a particular i > 0, is the same

as the probability that he is leaker. Now the shared randomness is used to choose

x1, . . . , xL ∈ X , uniformly under the condition that they are all different and dif-

ferent from the true value x of X. Then any censor who chose i > 0 will follow

protocol π as if he was leaker and the true value of X is xi. The censors who chose 0

behaves as if they were neutral. Given that the L+1 values x, x1, . . . , xL form the set

X ′ = {x, x1, . . . , xL} the transcript T is independent of which of the L+ 1 elements

in X ′ that is the true value x. Furthermore, given that {x, x1, . . . , xL} = X ′, each of

the L+ 1 values in X ′ are equally likely to be the true value x. As G(T) contains at

most L elements, and x, x1, . . . xL are L+1 different elements, Pr(X ∈ G(T)) ≤ L
L+1

.

Thus, ε ≥ 1
L+1

, so the b-minimal list size is >
⌊
bc
bl

⌋
.

Notice that the above impossibility result holds much more generally. All we

need is that the censors can pretend to be leakers. In particular, as long as each

117

leaker do not know who the other leakers are, each censor do not need to know who

the other censors are, they only need to know x1, . . . xL. Similarly, the censors will

not need any more computational power than the leakers.

In the above proof, the censor protocol σ without shared randomness, will have to

depend on G. In other words, if the recipient knows the censors’ strategy, including

x1, . . . , xl, the recipient might still be able to find x. The easiest way to avoid this,

is to modify the model to allow the censor to use shared randomness. This would

arguably make the model more natural.

Alternatively, we can use a different way of getting a protocol σ without shared

randomness from a protocol σ′ with shared randomness: in σ the censors pretend

to follow σ′. Each time a censor is about to send a message he computes the

distribution of the shared randomness given previous messages, samples from this

distribution and send his next message accordingly. This way, following σ gives

the same distribution as following σ′. The method works in our model, but not

as generally as the above proof. This method uses the assumptions that messages

are sent one by one and that the censors know who each other are. Furthermore,

in general the censors would not be able to follow this strategy if they have only

polynomial computational power.

Theorem 4.15. If bl + bc ≥ bm the b-minimal list size is ∞.

Proof. When bl + bc ≥ bm we have r(b) = bm(1−bl−bc)
bl(1−bm)

≤ bm
bl

. Thus,

b′l = max

(
bl −

bc
r(b)− 1

, 0

)
≤max

(
bl −

bc
bm
bl
− 1

, 0

)

= max

(
bl −

bc
bm−bl
bl

, 0

)

≤max

(
bl −

bc
bc
bl

, 0

)
=0.

Here the first inequality follows from r(b) ≤ bm
bl

and the second from bl + bc ≥ bm.

118

By Theorem 4.1 for any b-leaker protocol π there is a censor protocol σ, such

that the distribution of (X,T) is the same when L ∼ b and L ∼ (0, 0, b′m). But for

L ∼ (0, 0, b′m) everyone are sending messages independent of X, so X and T are

independent. Thus, it is possible for the censors to follow a strategy that makes

X and T independent, so any (n, h,L, ε, b)-protocol with h ≥ log(L) + 1 must have

ε ≥ 1
2
.

The following theorem shows an upper bound on the b-minimal list size. The

proof is by contradiction: if you can get down to a list size of L >
⌊
bc
bl

⌋
+ 1 you can

get down to a list size of L − 1. This part of the proof is constructive, and could

be combined with induction to get an extremely inefficient constructive proof of the

theorem. It is possible to construct more efficient protocols that achieve a minimal

list size, but in the proof we prioritized simplicity of the proof over efficiency of the

resulting protocol.

Theorem 4.16. If bl + bc < bm the b-minimal list size is at most
⌊
bc
bl

⌋
+ 1.

Proof. Let b be given. Fix a value h, and let L be the smallest value such that for

any ε > 0 there is an n′ and an (n′, h,L, ε, b)-protocol (there exists a number L that

satisfy this, namely 2dhe, so there must be a smallest integer satisfying it). Assume

for contradiction that L >
⌊
bc
bl

⌋
+ 1. As L is an integer, this implies L > bc

bl
+ 1 and

hence (L − 1)bl > bc.

Let ε > 0 be given. We want to show that there exists an (n, h,L−1, ε, b)-protocol

for some value n. By assumption there exists an (n′, h,L, ε/2, b)-protocol π′. Now

π starts by letting the first n′ players simulate π′, so we get a set G′(T ′) of size L.

Then we let each of the n−n′ remaining players send a message from G′(T ′). Each of

the neutral players chose their message uniformly and independently. If x 6∈ G′(T ′)
the leakers also chose their message uniformly, otherwise, if L ≤ bm(1−bc−bl)

bl(1−bm)
, all the

leakers send the message x. If L > bm(1−bc−bl)
bl(1−bm)

, each leaker sends the message x with

probability bm(1−bc−bl)
Lbl(1−bm)

, and otherwise he chooses a message G′(T ′) \ {x} uniformly

at random. For a more formal definition of this protocol see Figure 4.3.

Let Ej denote the events “player j is either leaker or neutral and player j sent

the message x”. If L ≤ bm(1−bc−bl)
bl(1−bm)

then given x ∈ G′(T ′) the event Ej happens with

119

Parameters:

n : number of players

b = (bl, bc, bm) : probability of being leaker respectively censor and threshold of
reasonable doubt

h : number of bits to leak

L >
⌊
bc
bl

⌋
+ 1 : list size known to be achievable for this value of h

ε : acceptable probability of error

n′ : number of players in previous protocol

π′ : an (n′, h,L, ε/2, b)-protocol

Input distribution: X,L1, . . . , Ln are independently distributed, X is uniformly
distributed on {0, 1}h and for each i: Pr(Li = 1) = bl and Pr(Li = −1) = bc.
Each plri learns Li and if |Li| = 1 she also learns X and if Li = −1 she also
learns L− = (min(L1, 0), . . . ,min(Ln, 0)). She will follow the protocol given here if
Li 6= −1 and otherwise she might follow any censor protocol σ.
Protocol:

1. Let plr1, . . . ,plrn′ follow π′ to reveal X. Let G′(T ′) denote the output: an
list of length L that will typically contain x.

2. For each i from n′ + 1 to n

3. If plri is a non-leaker or x /∈ G′(T ′) choose Ti uniformly from G′(T ′),
otherwise

4. Choose Ti to be x with probability min
(

1, bm(1−bc−bl)
Lbl(1−bm)

)
and otherwise

choose uniformly from G′(T ′) \ {x}

5. plri sends Ti

Figure 4.3: Protocol from proof of Theorem 4.16.

probability

bl +
1− bl − bc
L =

1 + (L − 1)bl − bc
L >

1

L .

120

Here the inequality follows from (L − 1)bl > bc. If L > bm(1−bc−bl)
bl(1−bm)

then Ej happens

with probability

bl
bm(1− bc − bl)
Lbl(1− bm)

+
1− bl − bc
L =

1

L

(
1 +

bm(1− bc − bl)
1− bm

− bl − bc
)

>
1

L

(
1 +

bm(1− bm)

1− bm
− bl − bc

)
=

1

L (1 + bm − bl − bc)

>
1

L .

Here each of the two inequalities follows from bm > bl + bc. We see that the Ej’s

are independent. Hence, for sufficiently large value of n, the probability that more

than n−n′
L of the n − n′ events Ej happens is at least 1 − ε/2. In particular, the

probability that more than n−n′
L of the n− n′ messages is i is at least 1− ε/2. Now

we take G(T) to be the set of all messages sent more than n−n′
L times in the last

n−n′ messages. Clearly, this set contains at most L−1 elements. Furthermore, the

only ways we can have x 6∈ G(T) are if x 6∈ G′(T ′) or if x ∈ G′(T ′) but x 6∈ G(T).

For each x ∈ X each of these happens with probability at most ε
2
, so by the union

bound the error probability is at most ε. If L ≤ bm(1−bc−bl)
bl(1−bm)

the likelihood ratio for

each of the n−n′ players is 1
L−1 = L ≤ bm(1−bc−bl)

bl(1−bm)
= r(b), and if L > bm(1−bc−bl)

bl(1−bm)
their

likelihood ratio is
bm(1−bc−bl)
Lbl(1−bm)

L = bm(1−bc−bl)
bl(1−bm)

= r(b). As the n′ first players only sent

the messages from a b-leaker protocol, by Proposition 4.4 and Proposition 4.7 they

most have likelihood ratio at most r(b). Thus, all players in π have likelihood ratio

at most r(b), so Proposition 4.7 shows that π preserves reasonable doubt. Thus, π

is an (n, h,L, ε, b)-protocol.

Corollary 4.17. If bl + bc < bm the b-minimal list size is
⌊
bc
bl

⌋
+ 1.

Proof. Follows immediately from the above theorems.

4.3 Capacity

In the previous section we focused on optimizing one parameter, the list size, without

thinking about how many people were needed. In this section we do the opposite:

121

we ask how many bits can we leak per person, when the list size is only required to

be bounded. In the next section we will show that asymptotically we can get the

optimal value of both parameters at the same time.

Theorem 4.18. Let b be given. If bm ≤ bc+bl no (L, R) with R > 0 is b-achievable.

Proof. This follows from Theorem 4.15.

In order to show an upper bound on the capacity for b, we will need a general-

ization of Fano’s inequality.

Lemma 4.19 (Generalisation of Fano’s inequality). Let X be a random variable

taking values in X and let Y be a random variable that takes subsets of X of size at

most L as values. The probability Pe = Pr(X 6∈ Y) satisfies

Pe ≥
H(X|Y)− 1− log(L)

log(|X |) .

Proof. Let X, Y and Pe be as above. We have a joint distribution of (X, Y), and

we use this to define a joint distribution of (X, Y, (Z1, Z2)): If X ∈ Y we set Z1 = 1

otherwise Z1 = 0. If X ∈ Y we let Z2 be a number such that X is the Z2’th smallest

element in Y (according to some fixed order on X) otherwise we let Z2 be the number

such that X is the Z2th smallest element in X . We have H(Z2|Z1 = 1) ≤ log(L),

H(Z2|Z1 = 0) ≤ log(|X |) and hence

H(Z2|Z1) = Pr(Z1 = 1)H(Z2|Z1 = 1) + Pr(Z1 = 0)H(Z2|Z1 = 0)

≤ log(L) + Pe log(|X |).

Furthermore, H(Z1) ≤ 1 and X can be written as a function of Y and (Z1, Z2) so

we have

H(X|Y) ≤ H(Z1, Z2) = H(Z1) +H(Z2|Z1) ≤ 1 + log(L) + Pe log(|X |).

Rewriting this inequality gives us the lemma.

We now show an upper bound on how much information the leakers can reveal.

Such a bound correspond to a good censor protocol. We use the protocol from

Theorem 4.1, so the proof is constructive.

122

0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.1

0.2

bl

B
it

s
p

er
le

ak
er

,
b m

=
0.

3

0 0.2 0.4 0.6 0.8 1

0

1

2

3

bl

B
it

s
p

er
le

ak
er

,
b m

=
0.

95
Figure 4.4: These two plots show the number of bits that the leakers can leak per
expected leaker when there are no censors, that is, the (bl, 0, bm)-capacity divided
by bl. The left plot is for bm = 0.3 and the right is for bm = 0.95

Proposition 4.20. Let b be given. If bm > bc + bl and π is a b-leaker protocol for n

players, there is a censor protocol σ, such that when L ∼ b and leakers and neutrals

are following π and censors are following σ, we have

I(X;T) ≤ nD

(
bl
bm

∣∣∣∣∣∣∣∣ bl(1− bm)

bm(1− bl − bc)

)
Proof. Let b with bm > bc + bl be given, and let b′ be as in Defintion 4.2. Then by

Theorem 4.1 π is also a b′-protocol, and there is a censor protocol σ such that the

distribution of (X,T) when following π and σ on L ∼ b is the same as following

π on distribution L ∼ b′ (here no censor protocol is needed as b′c = 0). A simple

computation shows that if bm = bl + bc then bl = bc
r(b)−1

. As r is increasing in bm this

implies that for bm > bl + bc we have b′l = max
(
bl − bc

r(b)−1
, 0
)
> 0, and similarly

b′m > 0. Now

I(X;T) ≤nD
(
b′l
b′m

∣∣∣∣∣∣∣∣b′l(1− b′m)

b′m(1− b′l)

)
=nD

(
bl
bm

∣∣∣∣∣∣∣∣ bl(1− bm)

bm(1− bl − bc)

)
.

The inequality follows from Theorem 3.5. To get the equality we use the definition of

b′ to simplify the first input to D(·||·) and r(b) = r(b′) which follows from Proposition

4.2 to simplify the second input.

123

Now we can prove an upper bound on the capacity. This proof is similar to that

of Proposition 3.8 and Proposition 3.11.

Theorem 4.21. Let b be given. If bm > bc + bl then the b-capacity is at most

D
(
bl
bm

∣∣∣∣∣∣ bl(1−bm)
bm(1−bc−bl)

)
.

Proof. Let bm > bc+ bl be given and assume for contradiction that some (L, R) with

R > D
(
bl
bm

∣∣∣∣∣∣ bl(1−bm)
bm(1−bc−bl)

)
is b-achievable. Then for arbitrarily large n and arbitrarily

small ε we can find an (n, nR,L, ε, b)-protocol π. Define

δ = R−D
(
bl
bm

∣∣∣∣∣∣∣∣ bl(1− bm)

bm(1− bc − bl)

)
> 0.

By Proposition 4.20 there is a censor protocol that ensures

I(X;T) ≤ nD

(
bl
bm

∣∣∣∣∣∣∣∣ bl(1− bm)

bm(1− bl − bc)

)
.

By the definition of a (n, nR,L, ε, b)-protocol, even if the censors follow this protocol

we should have Pr(X ∈ G(T)) ≥ 1 − ε. Using the data processing inequality (1.2)

for mutual information we get

H(X|G(T)) = H(X)− I(X;G(T))

≥ H(X)− I(X;T)

≥ n

(
R−D

(
bl
bm

∣∣∣∣∣∣∣∣ bl(1− bm)

bm(1− bc − bl)

))
= nδ.

Now Lemma 4.19 gives us

ε ≥H(X|G(T))− 1− log(L)

log(|X |)

≥nδ − 1− log(L)

nR
.

For fixed (L, R) and suffciently large n this is bounded away from 0. Hence, such

(L, R) is not b-achievable.

124

Next we want to find matching lower bounds on the capacity, that is, show that

there exists good leaker protocols. The proofs will not be constructive.

Definition 4.8. For a code c ⊂ [m]n let πc be the protocol where each player sends

one message: player i sends her message in round i. If player i is neutral, she sends a

message from [m] chosen uniformly at random. If player i is a leaker and X = x, she

chooses a message from Ai = {ci(x), ci(x)+1, . . . , ci(x)+k−1} mod m uniformly at

random, where ci(x) denotes the i’th element in the codeword for x. The protocol

is also defined in Figure 4.5.

Parameters:

n : number of players

m > k : natural numbers

c : an error correcting code

Input distribution: X,L1, . . . , Ln are independently distributed, X is uniformly
distributed on {0, 1}h are for each i: Pr(Li = 1) = bl and Pr(Li = −1) = bc.
Each plri learns Li and if |Li| = 1 she also learns X, and if Li = −1 she also
learns L− = (min(L1, 0), . . . ,min(Ln, 0)). She will follow the protocol given here if
Li 6= −1 and otherwise she might follow any censor protocol σ.
Protocol:

1. For i from 1 to n:

2. If Li = 1 then Ti ← c(x)i + [k]− 1 mod m, if Li = 0, then Ti ← [m]

3. Player i sends Ti

Figure 4.5: Protocol πc defined in Definition 4.8

Theorem 4.22. Let b satisfy bm > bc + bl. Then for any R < D
(
bl
bm

∣∣∣∣∣∣ bl(1−bm)
bm(1−bc−bl)

)
,

there is an L such that (L, R) is achievable.

Proof. Let b and R satisfy the assumptions in the statement of the theorem. As

D(·||·) is continuous, we can choose integers k < m, such that bl(1−bm)
bm(1−bc−bl)

≤ k
m
< bl

bm

and R < D
(
bl
bm

∣∣∣∣ k
m

)
. For the same reason, we can then choose q such that k

m
< q <

125

bl
bm

and R < D
(
q
∣∣∣∣ k
m

)
. Let L be an integer such that D

(
q
∣∣∣∣ k
m

)
− R > log(m)

L+1
. From

Theorem 4.12 we know that for sufficiently large n there is a code c ⊂ [m]n with

d2nRe elements and such that for all y ∈ [m]n we have |c ∩ B̃m,k(y, n(1 − q))| ≤ L.

We now let the players use πc.

Let Ti be the message sent by player i, and Ei be the event “player i is either

leaker or neutral and player i sent a message from Ai”. We have

Pr(Ei) =bl · Pr(Ti ∈ Ai|Li = 1) + (1− bc − bl) · Pr(Ti ∈ Ai|Li = 0)

=bl + (1− bc − bl)
k

m

≥bl + (1− bc − bl)
bl(1− bm)

bm(1− bc − bl)

≥ bl
bm

>q.

We now define G(T) = c−1(c ∩ B̃m,k(T, n(1 − q))), that is, G(T) gives the set of

messages whose codeword belongs to c ∩ B̃m,k(T, n(1− q)). By assumption about c

this set will have size at most L for all possible transcripts T .

As the Ei’s are independent given X and each happens with probability bl
bm
> q,

the probability that at least nq of them happen is at least 1 − ε for sufficiently

large n. In particular, the probability that we have Ti ∈ Ai for at least nq values

of i is at least 1 − ε, no matter what the censors do. This means that Pr(C(x) ∈
B̃m,k(T, n(1− q))|X = x) ≥ 1− ε, so Pr(X ∈ G(T)|X = x) ≥ 1− ε.

Finally, we need to check that there is reasonable doubt. Each leaker chooses

her message uniformly from a set of size k and each neutral from superset of size m.

This gives a likelihood ratio of m
k
≤ bm(1−bl−bc)

bl(1−bm)
= r(b) so by Proposition 4.7 we have

reasonable doubt.

Corollary 4.23. If bl + bc < bm the b-capacity is D
(
bl
bm
|| bl(1−bm)
bm(1−bc−bl)

)
.

Proof. Follows immediately from the above theorems.

In Figure 4.6 we see a plot of the (bl, bc, bm)-capacities divided by bl for some

values of bc and bm (we divide by bl to get capacity measured in bit per expected

leaker instead of bits per player). For bm = 0.95 and small values of bl a large

126

0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.1

0.2

bl

B
it

s
p

er
le

ak
er

,
b m

=
0.

3

0 0.2 0.4 0.6 0.8 1

0

1

2

3

bl

B
it

s
p

er
le

ak
er

,
b m

=
0.

95
Figure 4.6: These two figures show the effect the censors have on the rate. The left
figure is for bm = 0.3 and the right for bm = 0.95. The black (top) lines are the
same as in Figure 4.4 and show the number of bits the leakers can leak per expected
leaker when there are no censors. The brown (second from above) lines shown the
same for bc = 0.05, the red (second from below) for bc = 0.15 and blue (bottom) for
bc = 0.5.

number of censors does not have much effect on the capacity. Even for bc = 0.5 the

censors lowers the rate with less than 32%. For bm = 0.3 and bc = 0.15 the censors

have a larger effect on the capacity. In Section 4.5 we will consider the case where

bl is small in more detail.

Theorem 4.14 tells us that in order to make cryptogenography resilient to cen-

sors, we will have to accept that an observer cannot with high probability identify

x, but only find a list with bounded length containing x. However, the following

theorem shows that if we apply our randomly generated censor-resilient leaker pro-

tocol designed for some distribution b with censors to a situation where there are

no censors, the list will most likely not contain any false secrets. This holds even

if the fraction of leakers is not close to bl. For example, if there are no censors and

no leakers the list will most likely be empty. The theorem also holds, even if the

neutral players and the leakers are not following π! Our only assumption about

the communication is that it does not depend on the codewords of any false inputs

x′ 6= x.

Theorem 4.24. Fix b = (bl, bc, bm) with bm > bl + bc and R < D
(
bl
bm

∣∣∣∣∣∣ bl(1−bm)
bm(1−bc−bl)

)
and ε > 0. For sufficiently large n there exists a random variable C that takes

codes c as values such that πc is always an (n, nR,L, ε, b)-protocol and furthermore

127

if x ∈ {0, 1}dnRe and π′ is any communication protocol where each of the n players

only get the codeword C(x) for x as input then

Pr(∃x′ 6= x : x′ ∈ GC(T ′)) < ε,

where T ′ is the transcript of π′ on input C(x), and GC is the decoding function

corresponding to πC. The probability is over C and randomness in π′.

Proof. Choose q, k,m as in the proof of Theorem 4.22 and let C be the random vari-

able obtained in Theorem 4.13. As each particular code c satisfies the requirements

of Theorem 4.12, it follows from the proof of Theorem 4.22 that if n is sufficiently

large πc is always an (n, nR,L, ε, b)-protocol.

To show the second part, we can consider T ′ to be the output Y of a channel

that takes C(x) as input. Now the statement follows from Theorem 4.13.

This could be generalized from just one value x to any set of values. This tells

us that even without any assumptions on bl and bc or on the distribution on the

messages send by neutral players, if a value x′ is on the list, we can conclude that a

group of people knew cx
′

and actively tried to put x′ on the list (or a very unlikely

event happened). Of course we have no way of knowing if these people were truthful

(in which case we would call them leakers) or not (in which case we would call them

censors).

4.4 Getting the best of both

Now that we have determined how small a list size we can have, and how high a

rate we can achieve, we will see that asymptotically we can get the best of both

parameters at the same time. The proof that you can get the best of both is

constructive: given a family of protocols with small list size and a family of protocols

with large rate, we give a construction that combines the two families to a family

that has both a small list size and a large rate. However, as we do not have a

construction that gives the optimal rate, the proof of the theorem below is not

constructive.

128

Theorem 4.25. Let b = (bl, bm, bc) with bl+bc < bm be given, and let L0 =
⌊
bc
bl

⌋
+1.

Then the (L0, b)-capacity is D
(
bl
bm
|| bl(1−bm)
bm(1−bl−bc)

)
.

Proof. The upper bound follows directly from Theorem 4.21. To show the lower

bound, let R < D
(
bl
bm
|| bl(1−bm)
bm(1−bl−bc)

)
and let ε > 0 and n0 be given. We only need to

find an (n, nR,L, ε, b)-protocol with n ≥ n0.

Let R < R′ < D
(
bl
bm
|| bl(1−bm)
bm(1−bl−bc)

)
. By Theorem 4.22 there is an L′ such that

(R′,L′) is b-achievable, and by Theorem 4.16 the b-minimal list size is at most L0.

This implies that for some n′′ there is an (n′′, log(L′),L, ε/2, b)-protocol π′′. Let

n′0 = max
(
Rn′′

R′−R , n0

)
. As (R′,L′) is b-achievable we can find an (n′, n′R′,L′, ε/2, b)-

protocol π′ for some n′ ≥ n′0. Define n = n′+n′′. We will now give an (n, nR,L0, ε, b)-

protocol π.

π starts by running π′ on the first n′ players, giving a set G′(T ′) of size L′ such

that for each x, we have Pr(x ∈ G′(T ′)|X = x) ≥ 1 − ε/2. Next π uses the last n′′

players to simulate π′′ as if X could only take values in G′(T ′). If x 6∈ G′(T ′) the

leakers will just behave as if they were non-leakers. The protocol is defined more

formally in Figure 4.7.

As both π′ and π′′ are b-leaker protocols, they have likelihood ratio at most r(b).

In π each player only participates in one of the two subprotocols, so the likelihood

ratio of π is also at most r(b), so π is a b-leaker protocol. It only fails if either π′ or

π′′ fails, so it fails with probability at most ε. Thus, it is an (n, n′R′,L, ε, b)-protocol.

Its rate is

n′R′

n
=

n′R′

n′ + n′′
≥

Rn′′

R′−RR
′

Rn′′

R′−R + n′′
=

Rn′′R′

Rn′′ +R′n′′ −Rn′′ = R.

Here the inequality comes from the fact that n′R′

n′+n′′
is increasing in n′ and n′ ≥ n′0 ≥

Rn′′

R′−R .

Putting the above results together, we get our main theorem which (except for

the null-set where R = C) determines which (L, R) are b-achievable.

Theorem 4.26. Let b = (bl, bm, bc) with bl + bc < bm be given, and let L0 = b bc
bl
c+ 1

and C = D
(
bl
bm
|| bl(1−bm)
bm(1−bl−bc)

)
. If 0 < R 6= C then (L, R) is b-achievable if and only

if both L ≥ L0 and R < C.

129

Parameters:

b : probability of being leaker respectively censor and threshold of reasonable doubt

R′ : a rate between R, and D
(
bl
bm
|| bl(1−bm)
bm(1−bl−bc)

)
L′ : a list length such that (R′,L′) is b-achievable

ε : acceptable probability of error

π′, n′ : an (n′, n′R′,L′, ε/2, b)-protocol for some n′

π′′, n′′ : an (n′′, log(L′),L, ε/2, b)-protocol for some n′′

n = n′ + n′′ : total number of players needed

Input distribution: X,L1, . . . , Ln are independently distributed, X is uniformly
distributed on {0, 1}h and for each i: Pr(Li = 1) = bl and Pr(Li = −1) = bc.
Each plri learns Li and if |Li| = 1 she also learns X, and if Li = −1 she also
learns L− = (min(L1, 0), . . . ,min(Ln, 0)). She will follow the protocol given here if
Li 6= −1 and otherwise she might follow any censor protocol σ.
Protocol:

1. Let plr1, . . . ,plrn′ follow protocol π′ to reveal X, and let G′(T ′) denote the
resulting list

2. Let player plrn′ + 1, . . . ,plrn follow π′′. If X ∈ G′(T ′), the secret to reveal
is X’s lexicographical position in G′(T ′). If X /∈ G′(T ′), the leakers pretend
ignorance (behave as neutrals), so we do not need to specify the secret to be
leaked.

Figure 4.7: Protocol from proof of Theorem 4.25.

Proof. The “if” part follows from Theorem 4.25 and the fact that increasing L and

decreasing R only makes it easier for the leakers. The “only if” part follows from

Corollary 4.17 and 4.23.

This means that asymptotically, we can get the best rate and the best list size

at the same time. However, this only holds asymptotically (and the speed of con-

vergence is not uniform in (bl, bm, bc)): If bc = bl(2− 10−100), we can get down to a

set of 3 possible secrets with a reasonable n, but to get down to a set of 2 possible

130

secrets, n would have to be big enough that the −10−100 has an effect.

4.5 Few leakers and censors

In the previous sections we have considered a situation where the probability of

being a leaker and the probability of being a censor are both constant, while the

total number of players tends to infinity. In this section we want to see what happens

when the total number of players goes to infinity faster than the expected number

of leakers. We keep both bm and bc fixed with bc < bm, and allow bl to be arbitrarily

small.

Here we will see that while the list size tends to infinity, the rate measured in

bits per expected leaker is bounded away from 0. In other words, as long as bc <

bm a small minority can reveal information without revealing themselves, and the

number of bits they can reveal, will for small bl be approximately proportional to the

expected number of leakers, and the resulting list size will be inversely proportional

to the expected number of leakers.

Definition 4.9. Let bc and bm be given. For L ∈ N and R > 0 we say that

(L, R) is (bc, bm)-achievable if for all ε > 0 and all n0 there exist bl, n and an

(n,Rnbl,L, ε, (bl, bc, bm))-protocol with nbl > n0.

We say R is (bc, bm)-achievable if (L, R) is (bc, bm)-achievable for some L.

The (bc, bm)-capacity is the supremum over all ratesR that are (bc, bm)-achievable.

Here the rate is measured in bits per expected leaker rather than bits per person.

We do not require that bl is small, but this must be the case for any protocol that

achieves a rate close to the capacity.

In order to determine the (bc, bm)-capacity, we need the following proposition.

Proposition 4.27. For fixed bc < bm we have

lim
bl→0+

1

bl
D

(
bl
bm

∣∣∣∣∣∣∣∣ bl(1− bm)

bm(1− bl − bc)

)
=

log(1−bc
1−bm)

bm
+

bc − bm
bm(1− bc)

log(e).

131

Furthermore, for any bl, bc, bm with bl + bc < bm we have

1

bl
D

(
bl
bm

∣∣∣∣∣∣∣∣ bl(1− bm)

bm(1− bl − bc)

)
≤

log(1−bc
1−bm)

bm
+

bc − bm
bm(1− bc)

log(e). (4.16)

Proof. From the definition of D(·||·) we get

1

bl
D

(
bl
bm

∣∣∣∣∣∣∣∣ bl(1− bm)

bm(1− bl − bc)

)
=

1

bl

(
bl
bm

log

(
1− bl − bc

1− bm

)
+

(
1− bl

bm

)
log

(
1− bl

bm

1− bl(1−bm)
bm(1−bl−bc)

))

=
log
(

1−bl−bc
1−bm

)
bm

+

(
1

bl
− 1

bm

)(
log

(
1− bl

bm

)
− log

(
1− bl(1− bm)

bm(1− bl − bc)

))
bl→0−−−→

log
(

1−bc
1−bm

)
bm

+

(−1

bm
+

1− bm
bm(1− bc)

)
log(e)

=
log
(

1−bc
1−bm

)
bm

+
bc − bm
bm(1− bc)

log(e).

This proves the first part of the proposition. To prove the second part, we differen-

tiate the left hand side of (4.16) (divided by log(e) to simplify the computations):

∂

∂bl

(
1

bl log(e)
D

(
bl
bm

∣∣∣∣∣∣∣∣ bl(1− bm)

bm(1− bl − bc)

))

=−
(1− bc)bl(bm − bc − bl) + (1− bc − bl)((1− bc)bm − bl) ln

(
(1−bc−bl)(bm−bl)

(1−bc)bm−bl

)
b2
l (1− bc − bl)((1− bc)bm − bl)

.

(4.17)

To show the desired inequality, it is enough to show that this is non-positive for

bc + bl ≤ bm < 1. First we show this for the case bc > 0 and bm = bc + bl < 1. In

132

this case denominator is positive, bm − bc − bl = 0, and

(1− bc)bm − bl =(1− bc − bl + bl)bm − bl
=(1− bm)bm + blbm − bl
=(1− bm)(bm − bl)
=(1− bc − bl)(bm − bl),

hence ln
(

(1−bc−bl)(bm−bl)
(1−bc)bm−bl

)
= 0 so the entire numerator is 0, which is non-positive.

To generalize to bm > bc + bl we differentiate (4.17) with respect to bm:

∂2

∂bl∂bm

(
1

bl log(e)
D

(
bl
bm
|| bl(1− bm)

bm(1− bl − bc)

))
=

−b2
c

(bm − bl)((1− bc)bm − bl)2
.

This is clearly non-positive, hence both sides of equality (4.17) are non-positive in

the case bm > bc+bl and bc > 0. This shows inequality (4.16) in the case bc+bl ≤ bm

and bc > 0. To get the case bc = 0, observe that both sides of (4.16) are continuous

in bc.

Theorem 4.28. Let bc < bm be given. Then no rate above

log
(

1−bc
1−bm

)
bm

− (bm − bc) log(e)

bm(1− bc)

is (bc, bm)-achievable.

Proof. Assume for contradiction that there is a L and a rate R >
log(1−bc

1−bm)
bm

−
(bm−bc) log(e)
bm(1−bc) such that (L, R) is (bc, bm)-achievable, and let

δ = R−

 log
(

1−bc
1−bm

)
bm

− (bm − bc) log(e)

bm(1− bc)

 .

Let π be a (n,Rnbl,L, ε, (bl, bc, bm))-protocol. If bm ≤ bc+bl, it follows from Theorem

4.1 that the censors can ensure I(X;T) = 0 and otherwise we know from Proposition

133

4.20 there is a censor protocol that ensures

I(X;T) ≤nD
(
bl
bm

∣∣∣∣∣∣ bl(1− bm)

bm(1− bl − bc)

)
≤nbl

(
log(1−bc

1−bm)

bm
+

bc − bm
bm(1− bc)

log(e)

)
=nbl(R− δ).

Here the second inequality follows from second part of Proposition 4.27.

Now as G(T) returns sets of size at most L and contains x with probability 1−ε,
Lemma 4.19 implies

ε ≥H(X|G(T))− 1− log(L)

Rnbl

=
H(X)− I(X;G(T))− 1− log(L))

Rnbl

≥H(X)− I(X;T)− 1− log(L))

Rnbl

≥nblR− nbl(R− δ)− 1− log(L))

Rnbl

≥δnbl − 1− log(L)

Rnbl
.

Here the first equality follows from rules for mutual information, and the second

inequality from the data processing inequality. Thus, for fixed L and R >
log(1−bc

1−bm)
bm

−
(bm−bc) log(e)
bm(1−bc) and for sufficiently large nbl, we have a lower bound on ε. Thus, (L, R)

is not (bc, bm)-achievable.

We are now ready for the main theorem of this section. Notice that the proof of

the lower bound uses Theorem 4.26, so it is not constructive.

Theorem 4.29. Let (bc, bm) be given with bc < bm. Then the (bc, bm)-capacity is

log
(

1−bc
1−bm

)
bm

− (bm − bc) log(e)

bm(1− bc)
.

Proof. The upper bound follows from Theorem 4.28.

134

0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.1

0.2

bc

B
it

s
p

er
le

ak
er

,
b m

=
0.

3

0 0.2 0.4 0.6 0.8 1

0

1

2

3

bc

B
it

s
p

er
le

ak
er

,
b m

=
0.

95
Figure 4.8: The plot on the left shows the (bc, 0.3)-capacity and the plot on the right
shows the (bc, 0.95)-capacity as a function of bc.

To show the lower bound, let R <
log(1−bc

1−bm)
bm

− (bm−bc) log(e)
bm(1−bc) . Then by Proposition

4.27 there exists a bl > 0 such that R < 1
bl
D
(
bl
bm
|| bl(1−bm)
bm(1−bl−bc)

)
. Choose such a bl and

let L = b bc
bl
c+ 1. We will show that (L, R) is b-achievable. To do that, let ε > 0 and

n0 be given. We need to show that there exists an (n,Rnbl,L, ε, (bl, bc, bm))-protocol

π with n ≥ n0. This follows from Theorem 4.26 and Rbl < D
(
bl
bm
|| bl(1−bm)
bm(1−bl−bc)

)
.

The (bc, bm)-capacity is plotted for bm = 0.95 and bm = 0.3 in Figure 4.8. We

see that especially for bm = 0.95 a large fraction of the people must be censors in

order to get a substantial reduction in the rate. From Theorem 4.29 we see that

the (bc, bm)-capacity is continuous in bc ∈ [0, 1). This implies that in the case where

both bc and bl are small the censors only have a vanishingly small effect on the rate

at which the leakers leak information, even if bc is much larger than bl. For example,

if bl = 10−6 and bc = 10−3, the censors will only have a small effect on the rate,

although there will typically be a thousand times more censors than leakers.

135

Chapter 5

Cryptogenography Games

The general theme of this thesis is to figure out which trade-offs between sending

information and keeping anonymity are possible. In Chapter 3 we first found a

measure of suspicion which exactly captures the anonymity you lose when sending

information. This measure has the disadvantage of being artificial: it is unlikely

that anyone is going to care about their expected suspicion. We also considered a

more natural way of measuring the trade-off: how much information can you reveal

if you want to ensure that an observer will assign probability at most bm to the event

that you are revealing information. In this chapter, we will consider a different way

of measuring such trade-offs: if you play a game where you have to correctly send

information and ensure that an adversary does not guess a leaker in her first guess,

what is the maximal probability of winning?

This chapter has two parts. The first part is based on the first publication about

cryptogenography [9] and is using a different method than the rest of the thesis.

In this part there is only one leaker, and the secret is only one bit. The resulting

problem is very similar to problems in the area of information complexity, and we

will use a method which was independently discovered in this area. For two players,

including one leaker, we show that the leaker’s probability of winning is at least
1
3

= 0.33 . . . and at most 3
8

= 0.375. These bounds have later been improved to

0.3384 and 0.3672 [5]. For a large number of players we show that the leaker’s

probability of winning is at least 0.5644 and at most 3
4

= 0.75. Both the lower

bounds are proved by constructing protocols.

136

In the second part of the chapter we consider the same problem when there are

many leakers and many bits to leak. For this problem the measure of suspicion once

again turns out to be useful. Here the main results are Theorem 5.26, which says

that the players have probability at least p of winning if there is
(
− log(p)

1−p − log(e)
)

bits per leaker, and Theorem 5.33, which says that if there is r log(e) bits per leaker,

their probability of winning is at most log(r+1)
r log(e)

. See Figure 5.12 for an illustration

of these bounds. The lower bound is proved by a non-constructive argument that

shows the existence of a good protocol.

5.1 Model

The (n-player) cryptogenography game is formally defined as follows. There are

n players, denoted plr1, . . . ,plrn. Inputs consist of (X,L) ∼ µ, where µ is the

uniform distribution over {0, 1} × [n]. We refer to X as the secret and say that

plrL is the leaker, or that plrL knows the secret. Both X and L are given to

plrL; other players receive no input. Players communicate using a protocol π, after

which an observer can compute a guess G : {0, 1}∗ → {0, 1} for the secret. We will

sometimes refer to this observer as Joe. Let Eve : {0, 1}∗ → [n] be the function

that maximizes Pr[Eve(T) = L | G(T) = X] for each possible value of the protocol

transcript. Notice that Eve depends on G. This function represents the best possible

guess of an adversary (whom we call Eve), who sees all communication between the

players and wants to determine the identity of the leaker. Note that G(T) and

Eve(T) are functions of the messages sent in π. We define the success of a protocol

as

succ(π) := Pr[G(T) = X and Eve(T) 6= L] .

The communication cost of π, denoted CC(π), is the maximum number of bits

sent during π, taken over all possible inputs (x, l) and all choices of randomness.

We will focus on understanding the maximum possible succ(π) of a protocol, not on

the communication cost.

The following lemma shows that one can assume without loss of generality that

players learn the secret with certainty.

Lemma 5.1. For all protocols π there exists a cryptogenography protocol π′ with

137

transcript T ′ such that succ(π′) = succ(π), CC(π′) = CC(π) + n, and such that

Pr[G(T ′) = X] = 1.

Proof. The players first execute π. Then each player send one bit, which is used

to indicate whether they know G(T) to be wrong. If a player do not know X or if

G(T) = X the player will send the message 0. If a player knows X and G(T) 6= X

the player will send 1. The protocol is formally defined in Figure 5.1

Parameters:

n : number of players

π : a cryptogenography protocol

Input distribution: (X,L) uniformly distributed on {0, 1}× [n]. Each plri learns
if L = i and if it is, she also learns X.
Protocol:

1. Let all the players follow π and let G(T) denote the output

2. For i for 1 to n

3. If L = i and X /∈ G(T) then plri sends 1 otherwise plri sends 0

Figure 5.1: Protocol from proof of Lemma 5.1.

Let T ′ be the transcript of the resulting protocol π′ and define G′(T ′) to equal

G(T) if all players communicate a 0 in the extra round of communication; otherwise,

set G′(T ′) = 1 − G(T). It is easy to see that G′(T ′) = X with certainty: either

π correctly computes X already, or the leaker announces that G(T) 6= X. It is

also trivial to verify that CC(π′) = CC(π) + n. Thus, it remains to show that

138

succ(π′) = succ(π). This can be seen through the following chain of equalities.

succ(π′) = Pr[G′(T ′) = X ∧ Eve′(T ′) 6= L]

= Pr[Eve′(T ′) 6= L]

= Pr[Eve′(T ′) 6= L | G(T) = X] · Pr[G(T) = X]

+ Pr[Eve′(T ′) 6= L | G(T) 6= X] · Pr[G(T) 6= X]

= Pr[Eve′(T ′) 6= L | G(T) = X] · Pr[G(T) = X]

= Pr[Eve(T) 6= L | G(T) = X] · Pr[G(T) = X]

= succ(π),

where the second equality holds because players always learn X in π′, the third

equality holds by conditioning on G(T), the fourth equality holds because if G(T) 6=
X then the leaker is going to reveal herself in π′, and the penultimate equality holds

because, conditioned on π correctly computing X, the eavesdropper in π′ learns

nothing new about L.

5.2 Cryptogenography game protocols

In this section, we present a series of protocols that demonstrate what is possible

for the players to achieve.

5.2.1 Two player cryptogenography game

When n = 2, we refer to players as Alice and Bob instead of plr1 and plr2.

Theorem 5.2. There is a two-player cryptogenography protocol π with succ(π) =

1/3 and CC(π) = 2.

Proof. This protocol proceeds in two rounds. In the first round of communication,

Alice decides whether to “pass” or “speak”. If she passes, then Bob speaks in the

second round; otherwise she speaks. In the second round of communication, whoever

speaks will (i) send the secret if she knows it and (ii) send a random bit otherwise.

G now outputs the second bit of communication as the guess for the secret.

139

All that remains is to complete the protocol is to specify how Alice chooses to

pass or speak in the first round. If Alice knows the secret, she passes with probability

2/3 and speaks with probability 1/3; otherwise, she passes with probability 1/3 and

speaks with probability 2/3. The protocol is also defined in Figure 5.2.

Input distribution: (X,L) uniformly distributed on {0, 1}× [2]. Each plri learns
if L = i and if it is, she also learns X.
Protocol:

1. If L = 1, Alice sends “speak” with probability 1
3

and if L 6= 1 she sends “speak”
with probability 2

3
. If she does not send “speak” she sends “pass”.

2. The Alice sent “speak” she will send the next message, if she sent “pass” Bob
will send the next message: If the sender knows X he or she sends X otherwise
he or she chooses a message uniformly at random from {0, 1}.

Figure 5.2: Protocol from proof of Theorem 5.2.

Note that Alice is more likely to speak in round 2 when she does not know

the secret. This is perhaps counterintuitive—the players output the second bit

of communication, so intuitively Alice should speak more often when she actually

knows the bit. Is there an a priori reason why Alice shouldn’t just announce the

secret if she knows it and pass otherwise? Unfortunately in this case, Eve will learn

with certainty who knows the bit. Alice’s probabilities of passing are chosen to give

Eve no information about the leaker conditioned on players successfully outputting

the secret.

Claim 5.3. Pr[G(T) = X] = 2/3.

Proof. The leaker speaks in the second round with probability 1/3. In this case,

players output correctly with certainty. Otherwise, players output a random bit

and are correct with probability 1/2. Overall, they output the correct bit with

probability 1/3 + (2/3) · (1/2) = 2/3.

Claim 5.4. Pr[Eve(T) = L | G(T) = X] = 1/2.

Proof. Without loss of generality, assume Alice speaks in the second round and that

she sends the message 0. Call the resulting transcript t. From Eve’s point of view,

140

there are three cases:

(i) Alice is the leaker and therefore outputs the correct bit in round 2. A priori,

Alice is the leaker with probability 1
2
; given that she is the leaker she will speak

with probability 1
3
; given this, there is probability 1

2
that the secret is 0. Thus, the

a priori probability of this case is 1
2

1
3

1
2

= 1
12

.

(ii) Alice is not the leaker but outputs the correct bit anyway. The priori prob-

ability that Alice is not the leaker is 1
2
; given that she is not the leaker, there is

probability 2
3

that she speaks; given that, there is probability 1
2

that X = 0 and

independently probability 1
2

that she says 0. This gives an a priori probability of
1
2

2
3

1
2

1
2

= 1
12

for this case happening.

(iii) Alice is not the leaker and outputs incorrectly in round 2. Again, the a

priori probability that Alice is not the leaker but speaks is 1
2

2
3

= 1
3
. Given this, there

is probability 1
2

1
2

that she says 0 and X = 1. This gives probability 1
12

of this case

happening.

Thus, conditioned on the transcript being t, each of these cases has probability
1
3
. However, in the third case, the players have already failed. Thus, conditioned

on players correctly outputting the secret, Alice and Bob are equally likely to be the

leaker, and Eve can only guess at random.

In this protocol, players output the secret with probability 2/3 and given this,

Eve guesses the leaker with probability 1/2. Thus, the overall success probability is

1/3.

This lower bound on the winning probability in the two-player game was im-

proved by Doerr and Künnemann from the 1
3

proved here to 0.3384, by using com-

puter search to find a better protocol [5]. The protocol which achieves this winning

probability involves 18248 different game states.

5.2.2 Cryptogenography game protocols with many players

Next, we present a series of protocols for the general case.

The Majority-Votes Protocol. In this protocol πMAJ, there is a single round of

communication, with each player sending a single bit. plri sends X if she knows

141

the secret; otherwise, plri sends a random bit. This protocol is also defined in

Figure 5.3. Let ti denote the bit communicated by plri, and define GMAJ(t) :=

MAJ(t1, . . . , tn). When n is odd, the distribution of MAJ(t1, . . . , tn) is biased slightly

towards X. This enables players to achieve success probability somewhat larger than

1/2.

Parameter:

n : number of players

Input distribution: (X,L) uniformly distributed on {0, 1}× [n]. Each plri learns
if L = i and if it is, she also learns X.
Protocol:

1. For i from 1 to n

2. If L = i then plri outputs X, otherwise plri chooses a message uniformly
from {0, 1}

Figure 5.3: Majority-Votes Protocol, πMAJ

Lemma 5.5. If n is odd, then πMAJ succeeds with probability 1/2 + Θ(1/
√
n).

Proof. The communication t1, . . . , tn consists of n − 1 random bits, along with the

secret X. It will be helpful to be more explicit about the success probability. Let zi

be an indicator variable for the event ti = X. Note that since the ti’s are uniform

and independent for i 6= L, so are the zi’s. In πMAJ, players output MAJ(t1, . . . , tn);

therefore, GMAJ(t) = X if and only if
∑

i 6=L zi ≥ n−1
2

. Thus, we have

Pr[GMAJ(T) = X] = Pr

[∑
i 6=L

zi ≥
n− 1

2

]
=

1

2
+ 2−n

(
n− 1

(n− 1)/2

)
=

1

2
+ Θ

(
1√
n

)
.

It is easy to see that the best choice for Eve is to guess a random player i whose bit

agrees with the majority. There are at least n/2 such bits; therefore, Pr[Eve(T) =

L | GMAJ(T) = X] = 1/2 + Θ(1/
√
n)−O(1/n) = 1/2 + Θ(1/

√
n).

142

We can achieve a more precise analysis by conditioning on
∑

i zi. We have

succ(πMAJ) =
n−1∑

k=(n−1)/2

Pr

[∑
i

zi = k

]
Pr
[
Eve(T) 6= L |

∑
zi = k

]

=
n−1∑

k=(n−1)/2

2−(n−1) ·
(
n− 1

k

)
·
(

1− 1

k + 1

)
.

A straightforward calculation shows that the success probability of πMAJ is max-

imized at succ(πMAJ) ≈ 0.5406 when n = 23. However, for large n, the success

probability decreases and approaches 1/2. Our next protocol handles both cases by

emulating a protocol for a smaller number of players.

A Continuous Protocol for large n. Let n > n′ be given, and fix an n′-player

protocol π′. We will now construct a protocol π for n players that achieves the same

success probability as π′. The idea is to let n− n′ people drop out of the game, but

if the protocol specifies these n− n′ players, the leaker might be among them.

To remove the n−n′ players without removing the leaker from the game, we use

what we call a continuous protocol. That is, we assume the existence of a real-valued

“clock” that all players see, or more formally, the protocol assumes that all players

have access to some η ∈ R≥0. When the protocol begins, η = 0, and η increases as the

protocol progresses. While this does not fit the usual definition of a communication

protocol, such protocols have been used with the name “protocol with a clock” in

information complexity by Braverman, Garg, Pankratov and Weinstein [8]. Later we

will see how we can turn a continuous protocol into a real communication protocol.

Each player generates a real number ri ∈ [0, 1]. The leaker plrL sets rL := 1;

for i 6= L, plri sets ri uniformly in [0, 1]. As η increases, each player announces

when η = ti. When all but n′ players have spoken, the remaining players run π′. See

Figure 5.4 for a more formal definition of the protocol. We call the communication

before emulating π′ the continuous phase of the communication. It is easy to see

that at the end of this continuous phase, L is uniformly distributed over the n′

remaining players. Thus, π has precisely the same success probability as π′. This

gives us the following lemma.

143

Parameter:

n : number of players we wish to use

n′ < n : number of players in existing protocol

π′ : a protocol for n′ players

Input distribution: (X,L) uniformly distributed on {0, 1}× [n]. Each plri learns
if L = i and if it is, she also learns X.
Protocol:

1. Each player plri choose a number ri. If L 6= i, ri is chosen uniformly at
random from [0, 1], if L = i then ri = 1

2. For time t increasing continuously from 0 to 1

3. If ri = t for some i and less than n − n′ messages have been send, player
plri sends the message “I am not a leaker”

4. If more than n−n′ players have send a message the protocol aborts, otherwise

5. The n′ players who have not sent a message now follow π′

Figure 5.4: Continuous protocol from a protocol with fewer players. The probability
that the protocol aborts because too many players revealed themself as non-leakers
is 0.

Lemma 5.6. Given any n′ player protocol π′ and any n > n′, there exists a n-player

continuous protocol π achieving succ(π) = succ(π′).

Together with Lemma 5.5, we get an efficient protocol for all large n.

Corollary 5.7. For all n ≥ 23, there is a continuous protocol π achieving succ(π) ≥
0.5406.

Proof. The corollary follows from Lemma 5.5 and Lemma 5.6. The resulting protocol

is given in Figure 5.5.

The assumption that all players have shared access to a continuous clock is

perhaps unnatural, and it is unclear how players can emulate such a protocol without

access to this clock. Nevertheless, it is a useful abstraction, and while it is hard to

144

Parameter:

n ≥ 23 : number of players we wish to use

Input distribution: (X,L) uniformly distributed on {0, 1}× [n]. Each plri learns
if L = i and if it is, she also learns X.
Protocol:

1. Each player plri choose a number ri. If L 6= i, ri is chosen uniformly at
random from [0, 1], if L = i then ri = 1

2. For time t increasing continuously from 0 to 1

3. If ri = t for some i and less than n − 23 messages have been send, player
plri sends the message “I am not a leaker”

4. If more than n−23 players have send a message the protocol aborts, otherwise

5. For i from 1 to 23

6. If the i’th of the 23 players who have not sent a message is a leaker,
she sends X otherwise she sends a message chosen uniformly at random from
{0, 1}

Figure 5.5: Continuous protocol proving Corollary 5.7.

see how such protocols can be emulated, it is easy to construct a protocol that

approximates them. Our next protocol is just such a construction.

Lemma 5.8. Fix n, n′ with n > n′, and let ε > 0. For any n′-player protocol

π′, there exists an n-player protocol π with succ(π) ≥ succ(π′) − ε and CC(π) =

CC(π′) +O(n3/ε).

Proof. Given ε, let m = dn2

ε
e. Similar to the continuous protocol, each plri with

i 6= L generates ti ∈ [m] uniformly. The leaker then sets rL := m + 1. In the first

phase of communication, players proceed in rounds k = 1, 2, In the kth round,

each plri announces whether ri ≤ k. Call plri alive if ri > k. Communication in

the first phase continues until k = m or until at most n′ players remain alive. In

the second phase, the remaining alive players execute π′ if exactly n′ players remain;

otherwise, they output something arbitrary. The protocol is defined more formally

145

in Figure 5.6.

Parameter:

n : number of players we wish to use

n′ ≤ n : number of players in existing protocol

m : number of rounds. The higher it is, the better is the resulting protocol

π : protocol for n′ players

Input distribution: (X,L) uniformly distributed on {0, 1}× [n]. Each plri learns
if L = i and if it is, she also learns X.
Protocol:

1. Each player plri choose a number ri. If L 6= i, ri is chosen uniformly at
random from [m], if L = i then ri = m+ 1

2. For time t from 1 to m

3. For i from 1 to n

4. If ri = t and less than n− n′ messages have been send, player plri sends
the message “I am not a leaker”

5. If more than n−n′ players have send a message the protocol aborts, otherwise

6. The n′ players who have not sent a message now follow π

Figure 5.6: Protocol from proof of Lemma 5.8.

There are O
(
n2

ε

)
rounds of communication in the first phase of π, and each

player sends a single bit in each of these rounds. Thus, π uses O
(
n3

ε

)
additional

communication over π′.

It is easy to see that conditioned on the communication in the first phase of π,

L is uniformly distributed over the remaining alive players. The probability that

two particular players choose the same ri is m−1 ≤ ε
n2 . As there are

(
n
2

)
≤ n2 pairs

of players, the union bound implies that the probability that two players have the

same ri is at most n2 ε
n2 = ε. Thus, the probability that players do not execute π′ is

at most ε.

146

The above Lemma is not optimal in terms of communication complexity. We

could easily reduce the number of rounds by improving the analysis: it does not

matter if more than one player drop out in the same round, as long as that does not

bring the number of alive players below n′. We could further decrease the number

of rounds by increasing the probability that a player drop out in the first round.

Taking the majority-votes protocol and fixing ε to be a suitably small constant

yields the following corollary.

Corollary 5.9. For all n ≥ 23, there exists a protocol π with succ(π) > 0.5406 and

CC(π) = O(n3).

Proof. The corollary follows from Lemma 5.5 and Lemma 5.8. The resulting protocol

is given in Figure 5.7.

Beating Majority-Votes. For our final protocol we show that, perhaps surpris-

ingly, one can boost success by reversing the above operations. Specifically, we

consider an n-player protocol with two phases of communication. In the first phase,

each player votes, as in πMAJ. In the second phase of communication, players com-

municate to decide one-by-one who will not participate in the vote. Call a player

dead if he has been chosen to no longer participate. Eventually, players decide to

end the second phase of communication and compute the majority of the remaining

votes. By voting first, and eliminating players from the vote one-by-one, the protocol

can adaptively decide when to stop the protocol. At a high level, the protocol ends

when the votes of the remaining players form a super-majority. Say that t1, . . . tn

form a τ -super-majority if τ of the n bits agree.

Fix a function τ : N → N. For each τ , we define a protocol πτ as follows.

First, the n players vote. Then, while there is no τ(n′)-super-majority among the

remaining n′ live players, they communicate to decide on a player to bow out of

the protocol. The protocol ends when a super-majority of the remaining votes is

achieved. The protocol is defined more formally in Figure 5.8.

Finding a closed-form expression for the optimal τ appears to be nontrivial;

however, for small n (we used n = 1200), we can compute τ and the resulting

succ(πτ) easily using dynamic programming: let v(i, j) denote the probability of

winning if there are currently i players voting 0 and j players voting 1 left and we

147

Parameter:

n ≥ 23 : number of players we wish to use

m : number of rounds. The higher it is, the better is the resulting protocol

Input distribution: (X,L) uniformly distributed on {0, 1}× [n]. Each plri learns
if L = i and if it is, she also learns X.
Protocol:

1. Each player plri choose a number ri. If L 6= i, ri is chosen uniformly at
random from [m], if L = i then ri = m+ 1

2. For time t from 1 to m

3. For i from 1 to n

4. If ri = t and less than n− 23 messages have been send, player plri sends
the message “I am not a leaker”

5. If more than n−23 players have send a message the protocol aborts, otherwise

6. For i from 1 to 23

7. If the i’th of the 23 players who have not sent a message is a leaker,
she sends X otherwise she sends a message chosen uniformly at random from
{0, 1}

Figure 5.7: Protocol proving Corollary 5.9.

stop at the optimal time. Clearly v(i, 0) = v(0, i) = 1− 1
i
. Furthermore, for i, j > 0

we can choose to stop or continue by eliminating one more person. If we stop, we

should guess that the majority is correct. This guess will be correct with probability
max(i,j)
i+j

, and when it is, Eve will guess the leaker with probability max(i, j)−1. Thus,

the probability of winning given that we stop is
max(i,j)(1− 1

max(i,j))
i+j

. If we eliminate

one more player, there is probability i
i+j

that we eliminate a player voting 0, in

which case we win with probability v(i − 1, j) and there is probability j
i+j

that we

eliminate a player voting 1, in which case we win with probability v(i, j − 1). This

148

Parameter:

n : number of players

τ : N→ N : function that determines when we stop eliminating players

m : number of rounds. The higher it is, the better is the resulting protocol

Input distribution: (X,L) uniformly distributed on {0, 1}× [n]. Each plri learns
if L = i and if it is, she also learns X.
Protocol:

1. For i from 1 to n

2. If L = i, plri sends X, otherwise plri sends a message chosen uniformly
from {0, 1}

3. Each player plri choose a number ri. If L 6= i, ri is chosen uniformly at
random from [m], if L = i then ri = m+ 1

4. For time t from 1 to m

5. Let n′ denote the number of people who have not send the message “I am
not a leaker”. For b ∈ {0, 1} let n′b denote the number of these player who
send b in their first message

6. If max(n′0, n
′
1) < τ(n′)

7. For i from 1 to n

8. If ri = t player plri sends the message “I am not a leaker”

Figure 5.8: Protocol proving Theorem 5.10.

gives us a recurrence relation:

v(i, j) = max

max(i, j)
(

1− 1
max(i,j)

)
i+ j

,
iv(i− 1, j) + jv(i, j − 1)

i+ j

 , for i, j > 0.

Together with the values for i = 0 and for j = 0 this formula can be used to compute

v(i, j) for any i, j. Once we have v(i, j) for all i, j with i + j = n we can compute

149

succ(πτ) for this protocol:

succ(πτ) =

∑n
k=0

(
n
k

)
v(k, n− k)

2n
.

Along with Lemma 5.8, this gives a protocol with success probability greater

than 0.5644.

Theorem 5.10. For all n ≥ 1200, there exists an n-player cryptogenography proto-

col π with succ(π) > 0.5644.

5.3 Hardness results

In this section, we give upper bounds on the best possible success probability both

in the two-player and general case. We start with a high-level description of our

approach.

In Section 5.2 we gave several protocols achieving high success probability under

the uniform distribution on inputs (X, J). In this section, it will be helpful to

consider the space of all possible input distributions. Let ∆({0, 1} × [n]) denote

the set of all possible distributions on (X,L). Given a (partial) communication

transcript t ∈ {0, 1}k of a known protocol π, define µt to be the input distribution

µ, conditioned on the first k bits of communication equaling t. Our motivation here is

two-fold: first, examining general distributions allows us to appeal to the geometry

of ∆({0, 1} × [n]). In particular, we show that the success of a protocol satisfies

certain concavity conditions when viewed as a function s : ∆({0, 1} × [n]) → [0, 1]

over the distribution space. Second, our arguments will examine how a protocol π

affects µt. We show that µ is a convex combination of {µt}. We are particularly

interested in how µ “splits” into distributions µ0 and µ1; i.e., we look at convex

combinations on conditional distributions one bit at a time. Importantly, we show

that for each player plri, the set of all possible distributions obtainable by splitting

µ forms a plane in ∆({0, 1} × [n]); we call this the plri-allowed plane through µ.

Any plane, that is an allowed plane through µ′ for some distribution µ′ is called an

allowed plane. Our first lemma characterizes the possible distribution splits made

by a cryptogenography protocol.

150

Lemma 5.11. Let π be a protocol where only one message gets sent, this message is

in {0, 1}, and this message is sent by plri. If π is used with prior distribution µ, let

ν(t) denote the probability that plri sends message t and let µt be the distribution

given that plri sent message t. Then

1. µ = ν(0)µ0 + ν(1)µ1.

2. Each µt is proportional to µ on {0, 1} × ([n] \ {i}).

Proof. 1: We have

µ(x, i) = Pr(X = x, L = i)

=
1∑
t=0

Pr(X = x, L = i, T = t)

=
1∑
t=0

Pr(T = t) Pr(X = x, L = i|T = t)

=
1∑
t=0

ν(t)µt(x, i).

2: Let x′ ∈ {0, 1} and i′ ∈ [n] \ {i}. Then by Bayes’ theorem

µt(x
′, i′) = Pr(X = x′, L = i′|T = t)

=
Pr(T = t|X = x′, L = i′) Pr(X = x′, L = i′)

Pr(T = t)

=
Pr(T = t|X = x′, L = i′)

Pr(T = t)
µ(x′, i′)

The probability distribution plri used to choose his message only depends on his

information, and thus does not depend on (x′, i′) as long as i′ 6= i. So Pr(T=t|X=x′,L=i′)
Pr(T=t)

is a constant, and µt is indeed proportional to µ on {0, 1} × ([n] \ {i})

The next lemma is the converse of Lemma 5.11. It says that every possible

split conforming to the restrictions of Lemma 5.11 are possible in a communication

protocol.

151

Lemma 5.12. Let plri be a player, let µ, µ0, µ1 be distributions over {0, 1} × [n],

and ν a distribution with support {0, 1} such that

1. µ = ν(0)µ0 + ν(1)µ1.

2. Each µt is proportional to µ on {0, 1} × ([n] \ {i}).

Then there is a protocol π where only player plri sends messages, he only sends

one message, he sends message t ∈ {0, 1} with probability ν(t), and the posterior

probability distribution given that he sends the message t is µt.

Proof. If plri has the information and it is 0, he should send the message t ∈ {0, 1}
with probability ν(t)µt(0,i)

µ(0,i)
, if he has the information and it is 1 he should send the

message t ∈ {0, 1} with probability ν(t)µt(1,i)
µ(1,i)

and if he does not have the information,

he should send message t with probability ν(t)µt({0,1}×([n]\{i}))
µ({0,1}×([n]\{i})) . By requirement 1, this

gives well-defined probability distributions. The following computation shows that

the probability of sending t is ν(t)

Pr(T = t) = Pr(T = t|(X,L) = (0, i))µ(0, i) + Pr(T = t|(X,L) = (1, i))µ(1, i)

+ Pr(T = t|L 6= i)µ({0, 1} × ([n] \ {i}))

=
ν(t)µt(0, i)

µ(0, i)
µ(0, i) +

ν(t)µt(1, i)

µ(1, i)
µ(1, i)

+
ν(t)µt({0, 1} × ([n] \ {i}))
µ({0, 1} × ([n] \ {i})) µ({0, 1} × ([n] \ {i}))

=ν(t)µt(0, i) + ν(t)µt(1, i) + ν(t)µt({0, 1} × ([n] \ {i}))
=ν(t).

To finish the proof we need to check that the posterior distribution given tran-

script t is indeed µt. Used Bayes’ theorem we get

Pr((X,L) = (x, i)|T = t) =
Pr(T = t|(X,L) = (x, i)) Pr((X,L) = (x, i))

Pr(T = t)

=

ν(t)µt(x,i)
µ(x,i)

µ(x, i)

ν(t)

=µt(x, i)

152

as wanted. Similarly, for l 6= i we have

Pr((X,L) = (x, l)|T = t) =
Pr(T = t|(X,L) = (x, l)) Pr((X,L) = (x, l))

Pr(T = t)

=

ν(t)µt({0,1}×([n]\{i}))
µ({0,1}×([n]\{i})) µ(x, l)

ν(t)

=
µt({0, 1} × ([n] \ {i}))
µ({0, 1} × ([n] \ {i})) µ(x, l)

=µt(x, l).

Here the last equality follows from requirement 2.

Instead of playing the cryptogenography game starting from the uniform dis-

tribution over {0, 1} × [n], we could start from any other distribution µ (and let

all the players know that we are starting from distribution µ). Let succ(µ, π) de-

note the probability of winning, when using protocol π starting from distribution µ.

Let succ(µ) = supπ succ(µ, π) where the supremum is over all protocols π, and let

succn(µ) = supCC(π)≤n succ(µ, π).

For a distribution µ we now know that the plri-allowed plane through µ, as

defined previously, is the set of all distributions µ′ that are proportional to µ on

{0, 1} × ([n] \ {i}). We see that this is indeed a plane in the set ∆({0, 1} × [n]) of

distributions over {0, 1} × [n].

Lemma 5.13. The function succ : ∆({0, 1} × [n])→ [0, 1] satisfies:

1. succ(µ) ≥ succ(µ, π0) where π0 is the protocol where they do not communicate

at all.

2. For any allowed plane, succ restricted to that plane is concave.

Proof. 1: succ(µ) = supπ succ(µ, π) ≥ succ(µ, π0).

2: Whenever µ0, µ1 are distributions in the plri-allowed plane, and ν is a distri-

bution with support {0, 1} such that µ =
∑1

t=0 ν(t)µt, Lemma 5.12 says that we can

find a protocol where plri sends one message, sends message t with probability ν(t),

and the distribution given that plri sends t is µt. For every ε > 0 we can now con-

struct a protocol πε such that succ(µ, πε) ≥
∑1

t=0 ν(t) succ(µt)− ε. The protocol πε

153

starts with the one-message protocol we obtain from Lemma 5.12. If the message t

is sent, they continue from there, using a protocol πt with succ(µt, πt) ≥ succ(µt)−ε.
The existence of such a protocol follows from the definition of succ(µt). It is clear

that the resulting πε satisfies the required inequality. As we can do this for all

ε > 0 we get succ(µ) ≥∑1
t=0 ν(t) succ(µt). It follows from the converse of Jensen’s

inequality that succ is concave in the plri-allowed plane.

We are now ready for a characterization of succ. This is very similar to a charac-

terization of the information cost discovered independently in the area of information

complexity [8, 57,58].

Theorem 5.14. The function succ : ∆({0, 1}× [n])→ [0, 1] is the point-wise small-

est function s : ∆({0, 1} × [n])→ [0, 1] that satisfies

1. s(µ) ≥ succ(µ, π0) where π0 is the protocol where they do not communicate at

all.

2. For any allowed plane, s restricted to that plane is concave.

Proof. We know from Lemma 5.13 that succ satisfies the two requirements. It is

clear that the point-wise infimum of a family of functions satisfying requirement

1 will itself satisfy requirement 1, and similar for requirement 2. Thus, there is a

smallest function s∗ satisfying both requirements.

Requirement 1 simply says that s∗(µ) ≥ succ0(µ). Assume for induction that

s∗(µ) ≥ succk(µ), and consider a protocol π with CC(π) ≤ k + 1. We can view the

protocol π as first sending one message t1 ∈ {0, 1} sent by plri (if he can send more

than two messages in the first round, we simply let him send one bit of the message

at a time), and for each possible message t1 calling some subsequent protocol πt1 with

CC(πt1) ≤ k. If we let ν(t1) denote the probability that plri sends t1 and let µt1

denote probability distribution given the plri sends t1, we know from Lemma 5.11

that all the µt1s are in the i-allowed plane through µ and that µ =
∑1

t1=0 ν(t1)µt1 .

154

So

succ(µ, π) =
1∑

t1=0

ν(t1) succ(µt1 , πt1)

≤
1∑

t1=0

ν(t1) succk(µt1)

≤
1∑

t1=0

ν(t1)s∗(µt1)

≤s∗(µ)

Here the second inequality follows from induction hypothesis, and the last follows

from the fact that s∗ is concave in the i-allowed plane. As this holds for all π with

CC(π) ≤ k + 1 we get succk+1(µ) ≤ s∗(µ), and by induction we have succk ≤ s∗ for

all k.

Now s∗(µ) ≥ limk→∞ succk(µ) = succ(µ) but succ satisfies the two requirement

in the theorem, and s∗ is the smallest function satisfying the two requirements.

Thus, s∗ = succ.

This theorem gives us a way to show upper bounds on succ(µ): whenever we

have a function s satisfying the two requirements, we have s(µ) ≥ succ(µ). In the

rest of this section we will show upper bounds on succ by guessing such functions s.

A function similar to the function s we will use below was suggested by “fedja”1 and

this function was then improved to s by Wadim Zudilin, both on Mathoverflow [46].

Theorem 5.15. Let µ2 denote the uniform distribution on {0, 1} × [2]. Then

succ(µ2) ≤ 3
8
.

This bound was published in [9]: later Doerr and Künnemann [5] strengthened

the bound from 3
8

= 48
128

= 0.375 to 47
128

< 0.3672.

Proof. For brevity, write xi := µ(0, i), yi := µ(1, i) for i ∈ {1, 2} being one of the

1fedja wishes to stay pseudonymous.

155

players. Define

f(x1, x2, y1, y2) := x2
1 + x2

2 + y2
1 + y2

2 − 6(x1x2 + y1y2) and

s(x1, x2, y1, y2) :=
1− f(x1, x2, y1, y2)

4
.

Proposition 5.16. Let µ2 be the uniform distribution on {0, 1}× [2]. Then s(µ2) =
3
8
.

The proof is a simple calculation.

Lemma 5.17. The function s is concave on all allowed planes.

Proof. By the symmetry of s, it is enough to show that s is concave on all plr1-

allowed planes. Let µ be a distribution and let (µv)v∈R be a line in a plr1-allowed

plane through µ (let us say we get µ at v = 0). We show that f is convex (and thus s

is concave) along this line. Since (µv)v∈R is an allowed line, the values (x2(v), y2(v))

will be proportional to (x2, y2) throughout.

First we handle the case that (x2(v), y2(v)) = (x2, y2). That is, plr1’s message

does not change the probabilities involving plr2. In words, she talks only about the

value of her bit, not about whether she knows it or not. In this case we can assume

that

µv = (x1 + v, x2, y1 − v, y2) .

Now f(µv) is a quadratic polynomial in v with leading monomial 2v2, and thus is

convex.

From now on, we assume that (x2(v), y2(v)) 6= (x2, y2) unless v = 0. Let b :=

x2 + y2 be the probability that plr2 has the bit. Note that b > 0, because the case

b = 0 would mean (x2(t) = y2(t)) = (0, 0) throughout, and we have handled this

case already above. Now µv is of the form

x1 + cvb

x2(1− v)

plr1

plr2 y2(1− v)

0 1

y1 + c̄vb

where c is a parameter that describes the “slope” of the line (µv)v∈R, and c̄ := 1− c.
Again, v = 0 recovers the original distribution µ. Again, f(µv) is quadratic in v,

156

and the leading monomial is

(c2 + c̄2)b2 + x2
2 + y2

2 + 6b(cx2 + c̄y2). (5.1)

We want to show that this is non-negative. It is quadratic in c2 with leading mono-

mial 2b2c2 (note that c̄2 = 1−2c+ c2). Thus, (5.1) is minimized when the derivative

with respect to c is 0:

∂(5.1)

∂c
= 2cb2 − 2c̄b2 + 6b(x2 − y2) = 0 ⇔

cb− (1− c)b+ 3(x2 − y2) = 0⇔
2cb− b+ 3(x2 − y2) = 0⇔

2cb+ 2x2 − 4y2 = 0⇔
cb = 2y2 − x2. (5.2)

To get to the second line we use the assumption that b > 0 and divide by 2b, and

to get to the fourth line we use b = x2 + y2. From cb + c̄b = b = x2 + y2 and (5.2)

we get c̄b = 2x2 − y2. Plugging these values of cb and c̄b into (5.1), we obtain

(c2 + c̄2)b2 + x2
2 + y2

2 + 6b(cx2 + c̄y2) =

(cb)2 + (c̄b)2 + x2
2 + y2

2 + 6x2(bc) + 6y2(c̄b) =

(2y2 − x2)2 + (2x2 − y2)2 + x2
2 + y2

2 + 6x2(2y2 − x2) + 6y2(2x2 − y2) = 16x2y2 ≥ 0.

This shows that f , and hence s, is convex on all allowed planes.

Lemma 5.18. Let µ ∈ ∆({0, 1} × [2]) be a distribution and let π0 be the empty

protocol, i.e., the one without any communication. Then s(µ) ≥ succ(µ, π0).

Proof. First, let us compute succ(µ, π0). Since there is no communication, G only

depends on µ. If G = 0, then Eve guesses the player j that maximizes xj. If G = 1,

she maximizes yj. Thus, succ(µ, π0) = max(min(x1, x2),min(y1, y2)). Let us show

that s(µ) ≥ min(x1, x2). The proof that s(µ) ≥ min(y1, y2) will be symmetric. We

introduce the shorthand sx := x1 + x2 and mx := max(x1, x2), and similarly for y.

157

So min(x1, x2) = sx −mx.

s ≥ min(x1, x2)⇔ 1− f − 4 min(x1, x2) ≥ 0⇔ 1− 4sx + 4mx − f ≥ 0 . (5.3)

Let us bound f from above:

f(x1, x2, y1, y2) = x2
1 + x2

2 + y2
1 + y2

2 − 6(x1x2 + y1y2)

= 4(x2
1 + x2

2) + 4(y2
1 + y2

2)− 3(x1 + x2)2 − 3(y1 + y2)2

= 4(x2
1 + x2

2) + 4(y2
1 + y2

2)− 3s2
x − 3s2

y

≤ 4sxmx + 4symy − 3s2
x − 3s2

y .

Let us combine this with (5.3):

1− 4sx + 4mx − f ≥ 1− 4sx + 4mx − 4mxsx − 4symy + 3s2
x + 3s2

y

= (1− sx)(1− 3sx) + 4mx(1− sx)− 4mysy + 3s2
y

= sy(1− 3sx + 4mx − 4my + 3sy) (note that 1− sx = sy)

≥ sy(1− 3sx + 2sx − 4sy + 3sy) (since mx ≥ sx
2

and my ≤ sy)

= sy(1− sx − sy) = 0 .

This shows that s(µ) ≥ min(x1, x2). Together with s(µ) ≥ min(y1, y2), which

can be show in a similar way, this implies s(µ) ≥ max(min(x1, x2),min(y1, y2)) =

succ(µ, π0) and proves the lemma.

By Theorem 5.14 this implies that succ(µ2) ≤ s(µ2) = 3
8
.

This upper bound in the two player case was later improved by Doerr and Künne-

mann to 0.3672 [5].

Our final theorem generalizes the above argument to n players.

Theorem 5.19. Let µn denote the uniform distribution on {0, 1} × [n]. Then

succ(µn) ≤ 3
4
− 1

2n
.

Proof. For brevity, we denote by xi the probability that player i has the bit, and it

158

is 0, that is, xi := µ(0, i). Similarly, yi := µ(1, i). We define

f(~x, ~y) := 2 ‖~x‖2
2 + 2 ‖~y‖2

2 − ‖x‖
2
1 − ‖y‖

2
1 .

where ‖~x‖p := (
∑n

i=1 x
p
i)

1/p
and define

sn(~x, ~y) :=
1− f(~x, ~y)

2
.

We will prove three things. First, sn(µn) = 3
4
− 1

2n
. Second, sn(µ) ≥ succ(µ, π0),

where π0 is the “empty” protocol without any communication. Third, sn is concave

along allowed planes. This will conclude the proof.

Proposition 5.20. Let µn be the uniform distribution on {0, 1}×[n]. Then sn(µn) =
3
4
− 1

2n
.

Proof. Every (x, l) has probability 1
2n

. Therefore, ‖~x‖2
2 = ‖~y‖2

2 = n ·
(

1
2n

)2
and

‖~x‖2
1 = ‖~y‖2

1 =
(

1
2

)2
= 1

4
. Thus, f(µn) = 4n ·

(
1

2n

)2 − 2 ·
(

1
2

)2
= 1

n
− 1

2
, and

sn(µn) = 3
4
− 1

2n
.

Proposition 5.21. Let µ ∈ ∆({0, 1}× [n]) be a distribution and let π0 be the empty

protocol, i.e., the one without any communication. Then sn(µ) ≥ succ(µ, π0).

Proof. What is succ(µ, π0)? The transcript of π0 is empty, thus G(T) only depends

on µ. If G = 0, then Eve optimally guesses the player i that maximizes xi, and the

success probability for the players is µ(0, [n])−maxi µ(0, i). Similarly, if G = 1, she

chooses the i maximizing yi, and the success probability is µ(1, [n]) − maxi µ(1, i).

Thus, the success probability of π0 is

max
(
µ(0, [n])−max

i
µ(0, i), µ(1, [n])−max

i
µ(1, i)

)
.

For brevity, we define mx := maxi xi = maxi µ(0, i), my := maxi yi = maxi µ(1, i),

sx :=
∑

i xi = µ(0, [n]), and sy :=
∑

i yi = µ(1, [n]). We want to show that sn(µ) ≥
succ(µ, π0) = max(sx − mx, sy − my). We will show that sn(µ) ≥ sx − mx. The

159

inequality sm(µ) ≥ sy −my will follow analogously.

sn(µ) ≥ sx −mx ⇐⇒
1− f(~x, ~y)

2
≥ sx −mx ⇐⇒ 1− 2sx + 2mx − f(~x, ~y) ≥ 0 .

(5.4)

Let us bound f(~x, ~y) from above:

f(~x, ~y) = 2 ‖~x‖2
2 + 2 ‖~y‖2

2 − ‖x‖
2
1 − ‖y‖

2
1 ≤ 2mxsx + 2mysy − s2

x − s2
y .

Thus, we evaluate (5.4):

1− 2sx + 2mx − f(~x, ~y) ≥ 1− 2sx + 2mx − 2mxsx − 2mysy + s2
x + s2

y

= 1− 2sx + s2
x + s2

y + 2mx(1− sx)− 2mysy

= (1− sx)2 + s2
y + 2mx(1− sx)− 2mysy

= 2s2
y + 2mxsy − 2mysy

= 2sy(sy +mx −my) ≥ 0 .

In the penultimate equality we use 1− sx = sy and the last inequality follows from

sy − my ≥ 0. Replacing the roles of x and y, a similar calculation shows that

sn(µ) ≥ sy −my, and thus sn(µ) ≥ max(sx −mx, sy −my) = succ(µ, π0).

Proposition 5.22. For any allowed plane, sn restricted to that plane is concave.

Proof. By symmetry, we can restrict ourselves to plr1-allowed planes. That is, all

distributions µ′ that are proportional to µ on {0, 1} × ([n] \ {1}). Let µ be any

distribution and let (µv)v∈R be a line through µ that is contained in a plr1-allowed

plane. It suffices to show that sn is concave along all such lines.

First suppose that in our line, each µv is not only proportional to µ on {0, 1} ×

160

([n] \ {1}), but actually identical to it. Then µv looks as follows:

x1 + v

x2

...
...

...

plr1

plr2

plrn

y2

0 1

y1 − v

xn yn (5.5)

and f(µv) is quadratic in v with leading monomial 2v2. Therefore, it is convex, and

sn is concave, along (µv)v∈R.

Suppose from now on that µv is not identical to µ on {0, 1} × ([n] \ {1}). How

does a line (µv)v∈R through µ in a plr1-allowed plane look? The probabilities

x2, . . . , xn and y2, . . . , yn get multiplied by a factor (1− v). Let b0 := x2 + · · ·+ xn,

b1 := y2 + · · · + yn, and b = b0 + b1. Note that b > 0, otherwise all µv are 0 on

{0, 1} × ([n] \ {1}), and this belongs to the above case. The distribution µv on the

plr1-allowed plane containing µ has the form

x1 + cvb

x2(1− v)

...
...

...

plr1

plr2

plrn

y2(1− v)

0 1

y1 + c̄vb

xn(1− v) yn(1− v)
(5.6)

where c ∈ R is some parameter specific to the line (µv)v∈R, and c̄ := 1− c. For fixed

~x, ~y, c, all µv lie on a line. It remains to show that f is convex along this line. We

evaluate f(µv), which is a quadratic polynomial in v, and analyze the coefficient of

the monomial v2: In the terms ‖~x‖2
2, ‖~y‖2

2, ‖~x‖2
1, ‖~y‖2

1, evaluated at µt, the monomial

161

v2 has the following coefficients:

‖~x‖2
2 −→ c2b2 + x2

2 + · · ·+ x2
n ≥ c2b2

‖~y‖2
2 −→ c̄2b2 + y2

2 + · · ·+ y2
n ≥ c̄2b2

‖~x‖2
1 −→ (cb− x2 − · · · − xn)2 = (cb− b0)2 = c2b2 − 2cbb0 + b2

0

‖~y‖2
1 −→ (c̄b− y2 − · · · − yn)2 = (c̄b− b1)2 = c̄2b2 − 2c̄bb1 + b2

1

Thus, the coefficient of v2 of f(~x, ~y) = 2 ‖~x‖2
2 + 2 ‖~y‖2

2 − ‖x‖
2
1 − ‖y‖

2
1 is at least

2c2b2 + 2c̄2b2 − (c2b2 − 2cbb0 + b2
0)− (c̄2b2 − 2c̄bb1 + b2

1)

=b2(c2 + c̄2)− b2
0 − b2

1 + 2b(cb0 + c̄b1) . (5.7)

It remains to show that this is non-negative. Recall that b is the probability that

plr1 does not know the bit. Since we assume b > 0, the expression in (5.7) is

quadratic in c with leading monomial 2b2c2 (note that c̄2 = (1− c)2 = 1− 2c+ c2).

Thus, (5.7) is minimized if its derivate with respect to c is 0:

∂(5.7)

∂c
= 2b2(c− c̄) + 2b(b0 − b1) = 2b2(2c− 1) + 2b(b− 2b1) = 4b2c− 4bb1 .

This is 0 if and only if c = b1
b

. At that point, c̄ = b0
b

. In particular, c, c̄ ≥ 0. This is

not a priori clear, since c is a parameter of the line (µt), not a probability. Let us

evaluate (5.7) at c = b1
b

:

(5.7) = b2(c2 + c̄2)− b2
0 − b2

1 + 2b(cb0 + c̄b1)

≥ b2(c2 + c̄2)− b2
0 − b2

1

= b2

((
b1

b

)2

+

(
b0

b

)2
)
− b2

0 − b2
1 = 0 .

This shows that f is convex along the line (µt)t∈R, and thus on whole plr1-allowed

plane containing µ. Thus, sn is concave along those planes, which proves the propo-

sition.

162

5.4 Multiple leakers

We now move on to look at the problem with more than one leaker and more than

one bit of information X to be leaked. It is obvious how to generalize X to more

information, we simply take X to be uniformly distributed on {1, . . . , 2dhe}. It is

less obvious how to generalize to more leakers. When more people are leaking, it

would be unreasonable to require Eve to guess all the leakers. If this was the rule,

one of the leaking players could just reveal himself as a leaker and say what X is,

while the rest of the leakers and all the non-leakers send empty messages. Instead,

we let Eve guess at one person and if that person is leaking, she wins.

Definition 5.1. For fixed values of h, number of leakers l and number of com-

municating players n > l and a collaborating cryptogenography protocol π, we let

Succ(h, l, n, π) denote the probability that after the players communicate using pro-

tocol π, Joe will guess the correct value of X ∈ [2dhe] but Eve’s guess will not be

a leaker, assuming that Joe and Eve each guess using the strategy that maximizes

their own chance of winning and that Eve learns Joe’s guess before guessing herself.

We define

Succ(h, l, n) = sup
π

(Succ(h, l, n, π)),

where the supremum is over all collaborating cryptogenography protocols π. Finally,

we define

Succ(h, l) = lim
n→∞

Succ(h, l, n).

In this section we will investigate the asymptotic behavior of Succ(h, l) when at

least one of l and h tends to infinity. First we need some propositions. The first

proposition implies that the limit, which defines Succ(h, l), really exists.

Proposition 5.23. Succ(h, l, n) is non-decreasing in n.

Proof. We use the elimination strategy used in the proof of Lemma 5.8. Let n′ > n

and let π be a protocol for parameters h, l, n. We now construct a sequence of

protocols π′m for parameters h, l, n′. In the protocol π′m each non-leaking player

163

thinks of a uniformly chosen number in {1, . . . ,m}. First everyone who thought of

the number 1 announce that and they are out, then everyone who thought of the

number 2 and so on, until only n players are left. If two or more players thought

of the same number, we might end up with less than n players left. In that case

the leakers just announce themselves. If we are left with exactly n players, we know

that the l leakers are still among them, and we have no further information about

who they are. They then use protocol π, and win with probability Succ(h, l, n).

For a formal definition of the protocol, see Figure 5.9. As m→∞, the probability

that two players thought of the same number tends to 0, so Succ(h, l, n′, π′m) →
Succ(h, l, n, π).

Proposition 5.24. Succ(h, l, n) and Succ(h, l) are non-increasing in h.

Proof. Let h > h′ and let π be a protocol for parameters h, l, n and let the secret be

denoted X. We construct a protocol π′ with parameters h′, l, n and secret denoted

by X ′. In the first round of π′, plr1 announces h − h′ independent and uniformly

chosen bits Y , and from then on, everyone follows protocol π for X = X ′ ◦ Y . This

protocol is more formally defined in Figure 5.10. It is clear that Succ(h, l, n, π) ≤
Succ(h′, l, n, π′).

Proposition 5.25. The probability that the communicating players wins the game

does not change if Eve is told the value of X before they start to communicate.

Proof. If Joe guesses the correct value of X, Eve was going to assume that that

was the correct value anyway (as she wants to maximize the probability that she

is correct given that Joe was correct), and if Joe guesses wrong, she would win

anyway.

In the rest of this section, we will assume that Eve knows the value of X. We

can now prove a lower bound on Succ as l and h tends to infinity. The proof uses

Corollary 3.21, so it is not constructive.

Theorem 5.26. For all p ∈ (0, 1),

lim inf
l→∞

Succ

(⌈(− log(p)

1− p − log(e)

)
l

⌉
, l

)
≥ p.

164

Parameter:

n : number of players we wish to use

n′ ≤ n : number of players in existing protocol

l ≤ n′ : number of leakers

m : number of rounds. The higher it is, the better is the resulting protocol

π : protocol that allows l leakers among a total of n′ players to reveal h bits

Input distribution: X,L are independently distributed, X is uniformly dis-
tributed on {1, . . . 2dhe} and L is uniformly distributed on all vectors {0, 1}n with
exactly l 1’s. Each plri learns if Li and if it Li = 1 she also learns X.
Protocol:

1. Each player plri choose a number ri. If Li = 0, ri is chosen uniformly at
random from [m], if Li = 1 then ri = m+ 1

2. For time t from 1 to m

3. For i from 1 to n

4. If ri = t and less than n− n′ messages have been send, player plri sends
the message “I am not a leaker”

5. If more than n−n′ players have send a message the protocol aborts, otherwise

6. The n′ players who have not sent a message now follow π

Figure 5.9: Protocols from proof of Proposition 5.23.

Proof. We know from Corollary 3.21 that the safe (Fixed, bm)-capacity is − log(1−c)
c

−
log(e). If we let ε > 0, and use this corollary for bm = 1 − p + ε/2 we get that

for sufficiently high l, n and h =
⌈(
− log(p)

1−p − log(e)
)
l
⌉

there is a protocol π that

will ensure that Joe’s probability of guessing wrong is at most ε/2, and seen from

Eve’s perspective, no one is leaking with probability greater than 1 − p + ε/2. By

the union bound, the probability that Joe is wrong or Eve is correct2 is at most

2Here we assume that Joe guesses on the most likely value of X, and we allow Eve to use
any strategy. It could be that Joe could do better by taking Eve’s guess into account, but he is
guaranteed at least this probability of winning.

165

Parameter:

n : number of players

l : number of leakers

h : number of bits revealed in original protocol

h′ : number of bits we wish to reveal

π : protocol that allows l leakers among a total of n′ players to reveal h bits

Input distribution: X ′, L are independently distributed, X ′ is uniformly dis-
tributed on {1, . . . 2dhe} and L is uniformly distributed on all vectors {0, 1}n with
exactly l 1’s. Each plri learns if Li and if it Li = 1 she also learns X ′.
Protocol:

1. plr1 sends a message Y chosen uniformly from {0, 1}h−h′ .

2. Everyone follows π as if the secret to be revealed is X = X ′ ◦ Y

Figure 5.10: Protocols from proof of Proposition 5.24.

ε/2 + 1 − p + ε/2, thus the communicating players win with probability at least

p− ε.

In particular we have the following corollary.

Corollary 5.27. Let l → ∞ and h = h(l) be a function of l with h = o(l). Then

Succ(h, l)→ 1.

Proof. Let h(l) = o(l) be a function. For each l, we have Succ(h(l), l) ∈ [0, 1], so we

only need to show that for any ε > 0 there exists l0 such that for all l ≥ l0 we have

Succ(h(l), l) ≥ 1− 2ε. If we put p = 1− ε in Theorem 5.26 we get

lim inf
l→∞

Succ

(⌈(− log(1− ε)
ε

− log(e)

)
l

⌉
, l

)
≥ 1− ε.

This means that there is some l1 such that for all l ≥ l1 we have

Succ

(⌈(− log(1− ε)
ε

− log(e)

)
l

⌉
, l

)
≥ 1− 2ε.

166

As h(l) = o(l), there must be some l2 such that h(l) ≤
(
− log(1−ε)

ε
− log(e)

)
l for all

l ≥ l2. Now define l0 = max(l1, l2). For all l ≥ l0 we have

Succ(h(l), l) ≥ Succ

(⌈(− log(1− ε)
ε

− log(e)

)
l

⌉
, l

)
≥1− 2ε.

Here the first inequality uses Proposition 5.24 and l ≥ l0 ≥ l2 and the second

inequality uses that l ≥ l0 ≥ l1.

Next we want to show upper bounds on Succ(h, l). In order to do that, we will

need to be able to modify a protocol, and say that the resulting protocol is equivalent.

To do that, we will use the following definition of equivalence of protocols, which

will also be useful in the next chapter.

Definition 5.2. Let the distribution of (X,L1, . . . , Ln) be given and let π be a

protocol with transcript T and π̄ a protocol with transcript T̄ . For a transcript t of

π let µt denote the distribution (X,L1, . . . , Ln)|T=t, and similar for transcripts t̄ of

π̄. We say that π and π̄ are equivalent for (X,L1, . . . , Ln) (or just equivalent when

it is clear what the distribution of (X,L1, . . . , Ln) is) if the distribution of µT is the

same as the distribution of µT̄ .

Notice that for fixed t, µt is a distribution of (X,L1, . . . , Ln), so µT is a random

variable those values are themselves distributions over (X,L1, . . . , Ln). For π and

π′ to be equivalent, we require the probability that the posterior distribution of

(X,L1, . . . , Ln) is µ to be the same for both π and π′. We have the following

proposition.

Proposition 5.28. If µ and µ′ are two distributions of (X,L1, . . . , Ln) with the

same support, then π and π̄ are equivalent for µ if and only if they are equivalent

for µ′.

Proof. Let (X,L) = (X,L1, . . . , Ln) be random variables with distribution given by

µ, and (X ′, L′) have the distribution given by µ′. Furthermore, let T̄ be the distri-

bution of the transcript when X,L are given by µ following protocol π̄. Similarly, we

167

define T, T ′ and T̄ ′ the obvious way. By symmetry it is enough to prove one of the im-

plications in the proposition. Assume that π and π̄ are equivalent for µ. That means

that µT and µT̄ have the same distribution. As these distributions are over (X,L)

that is equivalent to the distributions (X,L, µT) and (X,L, µT̄) being the same. In

particular, for any (x, l) in the domain of µ we have µT |(X,L)=(x,l) ∼ µT̄ |(X,L)=(x,l).

Thus, we have (X ′, L′, µT ′) ∼ (X ′, L′, µT̄ ′), where µT ′ denote the posterior distribu-

tion we would have over (X,L) given transcript T ′ if the prior distribution was still

given by µ. Let µ′T denote the posterior distribution given transcript T if the prior

distribution was given by µ′. What we need to show is (X ′, L′, µ′T ′) ∼ (X ′, L′, µ′
T̄ ′

).

We already know (X ′, L′, µT ′) ∼ (X ′, L′, µT̄ ′), so to finish the proof, we only need

to show that µ′t is a function of µt and that this function does not depend on which

protocol we use to produce T .

Using Bayes’ Theorem we have

µt(x, l) = Pr((X,L) = (x, l)|T = t) =
Pr(T = t|(X,L) = (x, l))

Pr(T = t)
µ(x, l) (5.8)

and

µ′t(x, l) = Pr((X ′, L′) = (x, l)|T ′ = t)

=
Pr(T ′ = t|(X ′, L′) = (x, l))

Pr(T ′ = t)
Pr((X ′, L′) = (x, l))

=
Pr(T = t|(X,L) = (x, l))

Pr(T ′ = t)
µ′(x, l)

=
µt(x, l)µ

′(x, l)

µ(x, l)

Pr(T = t)

Pr(T ′ = t)

The last equality we use equation 5.8. This shows that given µ, µ′ and µT we can

compute µ′T up to the multiplicative constant Pr(T=t′)
Pr(T ′=t′)

. But as µ′T is a probability

measure, it sums to 1, so it is a function of µ, µ′ and µT .

Thus, when the support of (X,L1, . . . , Ln) is clear, we can simply say equivalent.

Proposition 5.29. If π and π′ are equivalent collaborating cryptogenography pro-

tocols, then Succ(h, l, n, π) = Succ(h, l, n, π′).

Proof. The probability of winning given T = t only depends on µT . Thus, when

168

µT ∼ µT ′ the probability of winning is the same for π and π′.

The next lemma shows that we can ensure that before any player crosses prob-

ability c of having the bit, seen from Eve’s perspective, that player lands on this

probability.

Lemma 5.30. Let π be any collaborating cryptogenography protocol, let (X,L1, . . . , Ln)

have any distribution and let c ∈ (0, 1). If Pr(Li = 1|X = x) < c for all i, x then

there exists an equivalent collaborating cryptogenography protocol π′ such that when

we use it on (X,L1, . . . Ln) and let T ′ denote its transcript, it satisfies: for all x ∈ X ,

all plri and all non-empty partial transcripts t′k, if

Pr(Li = 1|T ′k = t′k, X = x) > c.

then there is a k′ < k such that

Pr(Li = 1|T ′k′ = t′k
′
, X = x) = c

Proof. Let π, (X,L1, . . . , Ln) and c be given, and assume that (x, i) = (x0, i0) is

a counterexample to the requirement from the lemma. We will then construct a

protocol π′ such that (x0, i0) is not a counterexample for π′, and any (x, i) that

satisfied the requirement for π also satisfy it for π′. By induction, this is enough to

prove the lemma.

We can assume that the messages in π are sent one bit at a time. We say a

partial transcript tk is problematic if

Pr(Li0 = 1|T k = tk, X = x0) < c

but

Pr(Li0 = 1|T k+1 = tk ◦m,X = x0) > c.

for some bit value m. Without loss of generality, assume that m = 1. Let p =

Pr(Tk+1 = 1|T k = t′k).

We will use the c-notation from Section 3.1, so for example

ctk,x0 = Pr(Li = 1|T k = tk, X = x0).

169

Now

c > ctk,x0 = pctk◦1,x0 + (1− p)ctk◦0,x0

so ctk◦0,x0 < c. Let q ∈ (p, 1) be the number such that

c = qctk◦1,x0 + (1− q)ctk◦0,x0 .

Now we modify π. First, the player plrj, who is going to send to k + 1’th message

in π, decides if she would have sent 0 or 1 in π. If she would have sent 1 she sends

the bits 11. If she would have sent 0 she sends 10 with probability p(1−q)
q(1−p) ∈ (0, 1),

and otherwise she sends 00. In all cases she sends the bits one at a time. They

then continue the protocol π as if only the last of the two bits had been sent. The

protocol is defined more formally in Figure 5.11.

If we let T ′ denote the transcript of the protocol with this modification, we get

cT ′k+1=tk◦0,x0 = cTk+1=tk◦0,x0 < c

and

cT ′k+1=tk◦1,x0 =
pcTk+1=tk◦1,x0 + (1− p)p(1−q)

q(1−p)cTk+1=tk◦0,x0

p+ (1− p)p(1−q)
q(1−p)

=qcTk+1=tk◦1,x0 + (1− q)cTk+1=tk◦0,x0

=c.

So if plrj sends 11 or 10 in the modified protocol, we land on probability c after

the first bit. Let π′ be the protocol we get from π by doing this modification for

each problematic partial transcript tk in π. It is clear that π and π′ are equivalent,

and that any (x, i) that satisfied the requirement before also does so afterwards.

170

Parameters:

n : number of players

h : number of bits being leaked

(X,L) : joint distribution of secret and leakers

c : a probability

(x0, i0) : a counterexample to the requirement

π : a protocol where each message is one bit

Input distribution: (X,L) has some distribution over X × {0, 1}n. Each plri
learns Li and if Li = 1 she also learns X.
Protocol:

1. t := λ, k := 0

2. While t is not a complete transcript of π

3. Let plrj be the player to send the next bit in π when the transcript is t

4. If Pr(Li0 = 1|T k = t,X = x0) ≥ c or Pr(Li0 = 1|T k+1 = t ◦ b,X = x0) ≤ c
for both b ∈ {0, 1}

5. Player i choose and send her next message b as she would in π

6. t := t ◦ b, k := k + 1

7. else,

8. let b be the bit such that Pr(Li0 = 1|T k+1 = t ◦ b,X = x0) > c

9. p := Pr(Tk+1 = b|T k = t,X = x0)

10. let q be the number such that c = qctk◦1,x0 + (1− q)ctk◦0,x0
11. let plrj choose her next message b′ as she would in π when the transcript

is t

12. if b′ = b she sends b′ ◦ b′

13. if b′ 6= b she sends b ◦ b′ with probability p(1−q)
q(1−p) and otherwise she sends

b′ ◦ b′

14. t := t ◦ b′, k := k + 1 (here everyone knows b′ because is always the last
bit plrj sent)

Figure 5.11: Protocol from the proof of Lemma 5.30.

171

We are now ready to upper bound Succ.

Lemma 5.31. For any c ∈ (0, 1) and any h, l, n, π, we have Succ(h, l, n, π) ≤
1− ch+l log(1−c)+lc log(e)−c

h
.

Proof. As Succ(h, l, n) is non-decreasing in n, we can assume that n > l
c
, so that

Pr(Li = 1|X = x) < c at the beginning. By Lemma 5.30 and Proposition 5.29 we

can assume that π satisfies the requirement for π′ in 5.30.

Let π′ be the protocol that starts of as π, but where all the players starts to

pretend ignorance (as in the proof of Lemma 3.17) if Pr(Li = 1|T k = tk, X = x) = c

for some i, current transcript tk and the true value x of X. This ensures that

Pr(Li = 1|T ′ = t,X = x) ≤ c for all i and t. Let T ′ be the transcript of π′. From

Theorem 3.5 we get

I(X;T ′) ≤
(
− log(1− c)

c
− log(e)

)
l

We let Joe guess as he would if we used protocol π. By Fano’s inequality, (1.3),

Joe’s probability of being wrong when he only sees the transcript of π′ is

Pe ≥
H(X|T ′)− 1

log(|X |)

=
H(X)− I(X;T ′)− 1

log(|X |)

≥
h− l

(
− log(1−c)

c
− log(e)

)
− 1

h

In the cases where Joe is wrong in π′ there are two possibilities: Either the players

did not pretend ignorance, in which case Joe would also be wrong if they used

protocol π, or they did pretend ignorance so Pr(Li = 1|T k = tk, X = x) = c for

some i and some smallest k. When this first happens Eve can just ignore all further

messages in π and guess that plri is leaking. This way she is wins with probability

at least c. Thus, all the situations in π′ where Joe guesses wrong, correspond to

situations in π where Eve would win with probability at least c. So Eve’s probability

172

of winning when the players are using protocol π is at least

cPe ≥
ch+ l log(1− c) + lc log(e)− c

h
.

The following corollary will be strengthened in Corollary 5.34.

Corollary 5.32. For fixed l we have

lim
h→∞

Succ(h, l) = 0.

Proof. By Lemma 5.31 we have Succ(h, l) ≤ 1 − ch+l log(1−c)+lc log(e)−c
h

for each c ∈
(0, 1). Setting c = 1− ε we get

lim sup
h→∞

Succ(h, l) ≤ lim sup
h→∞

1− ch+ l log(1− c) + lc log(e)− c
h

= ε.

As Succ(h, l) ∈ [0, 1] and the above holds for all ε > 0 we have limn→∞ Succ(h, l) =

0.

We can now show an upper bound on Succ even when both l and h tend to

infinity linearly. This upper bound is illustrated in Figure 5.12

Theorem 5.33. Let r > 0 be a real number. Now

lim sup
l→∞

Succ(br log(e)lc, l) ≤ log(r + 1)

r log(e)

Proof. Set c = r
r+1

and h = br log(e)lc in Lemma 5.31. Then Eve’s probability of

winning is at least

rbr log(e)lc − l(r + 1) log(r + 1) + lr log(e)− r
br log(e)lc(r + 1)

As l tends to infinity, this tends to

r2 log(e)− (r + 1) log(r + 1) + r log(e)

r log(e)(r + 1)
= 1− log(r + 1)

r log(e)

173

c

Succ(cl, l)

0

1

0 1 2 3 4 5 6 7

Figure 5.12: The above graph shows our upper and lower bounds (Theorem 5.33
and Theorem 5.26) on Succ(cl, l) as a function of c for sufficiently large values of l.
We have not proved that the limit exists. Both upper and lower bounds are 1 at
c = 0 and tends to 0 for c→∞.

as wanted.

In particular we have the following corollary.

Corollary 5.34. Let h → ∞ and let l = l(h) be a function of h with l(h) = o(h).

Then Succ(h, l)→ 0.

Proof. Let l(h) = o(h) be a function. As Succ(h, l(h)) ∈ [0, 1] for all h, we only

need to show that for all ε > 0 there exists a h0 such that for all h ≥ h0 we have

Succ(h, l(h)) ≤ 2ε. We see that log(r+1)
r log(e)

→ 0 as r → ∞, so we can find a number r

such that log(r+1)
r log(e)

≤ ε. By Theorem 5.33 we have

lim sup
l→∞

Succ(br log(e)lc, l) ≤ log(r + 1)

r log(e)
≤ ε

So there exists a number l1 such that for all l ≥ l1 we have

Succ(br log(e)lc, l) ≤ 2ε.

As l(h) = o(h) there is a h1 such that for all h ≥ h1 we have h ≥ r log(e)l(h). By

Corollary 5.32 limh→∞ Succ(h, l) = 0 for each value l. So for each value l there is a

174

h2(l) such that for all h ≥ h2(l) we have Succ(h, l) ≤ 2ε. Define h2 = maxl<l1 h2(l).

Now define h0 = max(h1, h2). We want to show that for any h ≥ h0 we have

Succ(h, l(h)) ≤ 2ε. If l(h) < l1, then h ≥ h0 ≥ h2 ≥ h2(l(h)), so Succ(h, l(h)) ≤ 2ε.

If l(h) ≥ l1 then

Succ(h, l(h)) ≤ Succ(br log(e)lc, l)
≤2ε.

Here the first inequality follows from h ≥ h0 ≥ h1 and Proposition 5.24, and the

second inequality follows from l ≥ l1.

175

Chapter 6

Hiding Among Innocents

Until now, we have assumed that even the players who are not trying to leak in-

formation will collaborate. In this chapter we will show that we do not need the

non-leakers to collaborate. As long as some people are communicating innocently

in a sufficiently non-deterministic way, we can use these people as if they were col-

laborating.

Formally, we model the innocent communication by an innocent communication

protocol. While protocols usually are designed to compute some function, innocent

communication protocols is a way of describing what is already going on. An inno-

cent communication protocol ι is a protocol that for each possible partial transcript

sk and each player j gives a finite set Msk,j of possible messages that that person

can send in the next round, and a probability distribution on that set. In innocent

communication protocols every person sends a message in each round. This assump-

tion is not a restriction: if we have a protocol where only one player sends messages

at a time, we can turn it into an innocent communication protocol, by requiring that

all the other players send the empty message with probability 1. Given an innocent

communication protocol ι and a cryptogenography protocol π, we will construct a

protocol ιπ which achieves the same as π, but where the non-leaker follow ι. We will

see that this is possible both for collaborative cryptogenographic protocols (The-

orem 6.1) and for the case where there are censors (Theorem 6.3), under slightly

different assumptions about ι.

To keep the theorems simple, we will only consider innocent communication

176

protocols that continue for infinitely many rounds. This assumption is of course

unrealistic, but we will see that for any particular protocols ι and π and number

ε > 0 there is an integer k′ such that with probability 1− ε the first k′ messages of

ι will be enough.

In order to find the protocol ιπ you need have a description of the protocol ι.

This is a strong assumption: even if you are able to communicate innocently, it

does not mean that you are aware of the distribution you use to pick your random

messages. In steganography, the weaker assumption that you have a random oracle

that takes history and player index as input and gives a message following the

innocent distribution as output, is sometimes enough [41]. However, it is not clear

if this weaker assumption is enough for doing cryptogenography. While it may not

be possible to find ι for all kinds of innocent communications, there are situations

where we can approximate ι very well. For example, if a person posts blog posts,

we can consider the message to be only the parity of the minutes in the sending

time. This value will probably, for most people, be close to uniformly distributed

on {0, 1}.

6.1 Hiding among innocents without censors

Let S denote the random variable that is the infinite transcript we get from run-

ning ι, and let Sk denote the partial transcript of the first k rounds. We say

that ι is informative if for a random transcript S and for each player j we have∏
k∈N Pr(Sk,j = sk,j|Sk−1 = sk−1) = 0 with probability 1. Here Sk,j is the message

sent by player j in round k. In other words, if at each round in the protocol you try

to guess what message player j will send in the next round, then with probability 1

you will eventually fail. Notice that the model for innocent communication here is

almost the same as the definition of always informative in Hopper’s PhD thesis [41]

when one player is communicating.1

We say that a collaborating cryptogenography protocol π is revealing if there is

a partial transcript tk and a player plrj that is to send the next message A when

the transcript is tk and a message a such that plrj will send message a with positive

1The differences are that in [41], the communication is only from one player to another and∏
k∈N Pr(Sk,j = sk,j |Sk−1 = sk−1) has to go to 0 exponentially fast.

177

probability if Lj = 1 but not if Lj = 0. If plrj did send such a message a, it would

reveal her as a leaker. If π is not revealing, we say that it is non-revealing.2 The

point in cryptogenography is to hide who is sending the information, so we are only

interested in non-revealing protocols.

The following is the main theorem of this section. Notice that in this theorem we

will assume that π is collaborative. Thus, the result can be used to strengthen the

results in Chapter 3 and Chapter 53 to a model where non-leakers are not actively

collaborating, but it cannot be used in the case where some players are actively

trying to prevent the leakage. In Theorem 6.3 we will show that a similar result

holds in that model.

Theorem 6.1. Let π be a non-revealing collaborating cryptogenography protocol,

and let ι be an informative innocent communication protocol. Then there exists a

protocol ιπ that is equivalent to π, but where the non-leakers follow the protocol ι.

Proof. We will define an algorithm that given π and ι constructs a protocol ιπ and at

the same time an interpretation function i that sends transcripts s of ιπ to transcripts

t of π. We want them to satisfy the following.

1. For each partial transcript sk of ιπ and each player plrj, the protocol ιπ gives

a probability distribution, depending only on X,Lj, s
k and j that plrj will

use to choose his next message.

2. If Lj = 0 then plrj chooses her messages in ιπ using the same distributions

as in ι.

3. The interpretation function i sends (infinite) transcripts s of ιπ to either tran-

scripts t of π or to “error”. The probability of error is 0.

2A non-revealing protocol can also reveal who the leakers are. For example, if it is known that
exactly one person is leaking and all but one person sends a message that could not have been
sent by a leaker. However, if Pr(L = (0, . . . , 0)) > 0 then a non-revealing protocol will never reveal
anyone as a leaker.

3The construction suggested in Lemma 5.1 for achieving certainty about the secret results in
revealing protocol. However, assuming that it is possible to send message that are never send in
ι, you can use Lemma 5.1 on ιπ to get a protocol where you learn X with certainty. All other
protocols in Chapter 3 and Chapter 5 are non-revealing.

178

4. If T denotes the transcript of π and S denotes the transcript of ιπ, then given

that i(S) is not error, (X,L1, . . . , Ln, i(S)) is distributed as (X,L1, . . . , Ln, T).

5. For each transcript t of π, the random variable (X,L1, . . . , Ln) is independent

from S given i(S) = t.

Here the second requirement ensures that non-leakers can follow the protocol without

knowing X or π. In fact, unlike in the collaborating communication protocol, they

might be thinking that everyone is just having an innocent conversation. Thus, in ιπ

we often refer to the non-leakers as innocents. Notice the important assumption that

first the innocent communication protocol ι is defined and then we create a protocol

ιπ for leaking information on top of that. This corresponds to assuming that the

non-leaking players either do not care about the leak, or that they are oblivious to

the protocol. If ι was allowed to depend on what the leakers do, the non-leaking

players could try to prevent the leak. The model where some of the non-leakers are

motivated to prevent the leakage has been analysed in Chapter 4.

The fourth of the above requirements tells us that ιπ reveals at least as much

about (X,L1, . . . , Ln) as π and the last requirement says that we do not learn any-

thing more. This ensures that Joe and Eve, who both know ιπ, learn exactly as much

from the transcript of ιπ as they would from the transcript of π. Recall that in Def-

inition 5.2, we defined two protocols π and π′ to be equivalent for a distribution µ

of (X,L) if, when used on input (X,L), the distributions of posterior distributions

µT and µT ′ are the same.

Proposition 6.2. If ιπ satisfies the above requirements, then ιπ and π are equivalent.

Proof. By assumption, i gives error with probability 0, so we can ignore all those

cases. By requirement 4, i(S) has the same distribution as T , and by requirement

4 and 5 the distribution µs of (X,L1, . . . , Ln) given S = s equals the distribution

µi(s). Thus, µS, µi(S) and µT have the same distribution.

Before we construct the protocol ιπ we will define a function i′ that sends partial

transcripts sk
′

of ιπ to tuples (tk, [y, z)) where tk is a partial transcript of π, and

[y, z) ⊂ [0, 1) is a half-open interval. When i′(sk
′
) = (tk, [y, z)), we refer to tk as

179

the interpretation of sk
′
. Loosely speaking, the point of the interval is that not

all messages in ι are sufficiently unlikely that they can correspond to a message in

π, so instead of interpreting them to a message in π, we store the information by

remembering an interval. This is very similar to arithmetic coding [76], however

it is complicated by the fact that each player’s messages depend on other players’

messages. For an infinite transcript s, the function i′ will satisfy

1. i′(λ) = (λ, [0, 1)), where λ is the empty transcript

2. If i′(sk
′
) = (tk, [y, z)) then either

• i′(sk′+1) = (tk ◦m, [0, 1)) for some message m in π, or

• i′(sk′+1) = (tk, [y′, z′)), where [y′, z′) ⊆ [y, z)

3. If i′(sk
′
) = (tk, [y, z)) and tk is a complete transcript for π, then y = 0, z = 1

and i′(sk
′′
) = (tk, [0, 1)) for all k′′ ≥ k′

Thus, every time we reveal one more round from the transcript s, we will either

learn one message in π from the interpretation of s, or the interval gets smaller or

stays the same. If i′(sk
′
) = (tk, [y, z)) we say that tk is the interpretation of sk

′
. We

let j(sk
′
) and j(tk) denote the index of the player to send the next message in π

when the current transcript is tk. When it is clear what sk
′

is, we write j instead

of j(sk
′
). We will sometimes abuse language, and talk about what the players are

doing in π even if they are following ιπ. For example if j = j(sk
′
) we might say that

“j is sending the message m in π” instead of “j is sending messages in ιπ which will

be interpreted as m by i′”. If i′(sk
′
) = (tk, [y, z)) and i′(sk

′+1) = (tk ◦m, [0, 1)) we

say that at time k′ player j(sk
′
) finished sending the message m in π and at time

k′ + 1 player j(sk
′+1) starts sending a new message in π.

For each partial transcript tk of π, we let Atk denote the set of possible next

messages. We assume that all sets of messages, both in π and ι, have an ordering,

for example the lexicographical order. Algorithm 1 gives a pseudo code for i′, but

we will also define it in the main text.

Define a function f : [0, 1)→ Atk,j such that

f−1(a) = [Pr(Tk+1 < a|T k = tk, Lj = 0),Pr(Tk+1 ≤ a|T k = tk, Lj = 0)).

180

Algorithm 1 i′.

1: procedure I’(sk
′
)

2: t← λ . λ denotes the empty string, t a partial transcript
3: k ← 0
4: y ← 0
5: z ← 1
6: for r from 1 to k’ do
7: y′ ← y + (z − y) Pr(Sr,j(t) < sr,j(t)|Sr−1 = sr−1)
8: z′ ← y + (z − y) Pr(Sr,j(t) ≤ sr,j(t)|Sr−1 = sr−1)
9: y ← y′

10: z ← z′

11: if ∃a ∈ At : Pr(Tk+1 < a|T k = t, Lj(t) = 0) ≤ y and
12: z ≤ Pr(Tk+1 ≤ a|T k = t, Lj(t) = 0) then
13: t← t ◦ a
14: k ← k + 1
15: y ← 0
16: z ← 1
17: if t is a complete transcript then
18: return (t, [0, 1))
19: end if
20: end if
21: end for
22: return (t, [y, z))
23: end procedure

181

By definition of innocent communication protocol, each message in ι is chosen from

a finite set, but to explain the point of the function f , imagine for now that ι said

that in the next round plrj should send a real number chosen uniformly from [0, 1).

We could now interpret that as the message f(x) ∈ Atk in π. Then ιπ would say

that if plrj was innocent he should send a number uniformly from [0, 1) and if he

was leaking, he should first choose a ∈ Atk using the distribution specified by π, and

then send a number chosen uniformly at random from f−1(a). More generally, if ι

said that plrj should choose his next message M from some continuous distribution

on R, we could take the quantile function given Lj = 0 of the message, that is

m 7→ Pr(M < m|Lj = 0),

to turn it into a message that is uniform on [0, 1) given Lj = 0. Unfortunately, there

is only finitely many possible messages for plrj to sent in each round, so instead of

getting a number out of the quantile function, we define a similar function to get

an interval. Let i′(sk
′
) = (tk, [y, z)) and choose some ordering on Msk′ ,j. Define

g : [y, z)→Msk′ ,j by

g−1(m) = {y + (z − y)t|t ∈ [Pr(M < m|Lj = 0),Pr(M ≤ m|Lj = 0))}.

Here when we write M we are implicitly assuming that the current transcript is sk
′
.

Instead of getting a number in [0, 1) out of m ∈Mj,sk′ , as we did above, we now get

an interval g−1(m) ⊂ [y′, z′), whose length is proportional to the probability that

an innocent player would send that message. If g−1(m) ⊂ f−1(a) for some a ∈ Atk
we say that plrj send a in π and define i′(sk

′+1) = (tk ◦ a, [0, 1)). Otherwise, plrj

is not done sending his message and we define i′(sk
′+1) = (tk, g−1(m)). Algorithm

1 gives a pseudo code for computing i′. Here sr,j denotes the message in ι sent by

player j in round r.

If for some k′ we have i′(sk
′
) = (t, [0, 1)) where t is a complete transcript of π we

define i′(sk
′′
) = (t, [0, 1)) for all k′′ > k′ and i(s) = t. If for some s no such k′ exists,

we define i(s) to give “error”.

Next we define the protocol ιπ. Any non-leaking player chooses his messages as

given by ι and when the current transcript is sk
′

all players except plrj(sk′) also

182

choose their messages as in ι. When a leaking player, plrj(sk′), starts sending a

message in π, he first choose the message a ∈ Atk using the distribution given by π

(this distribution depends on X = x). Next he chooses a number α randomly and

uniform in f−1(a). Until he has sent his message in π, he will now send messages

m such that α ∈ g−1(m). This uniquely specifies which messages m to send (notice

that g will depend on current transcript in ιπ, so m is not necessarily the same for

every round, and can depend on messages sent by other players). When we get to a

transcript sk
′

that is interpreted as a complete transcript t of π, all the players will

just follow ι. Figure 6.1 defines ιπ more formally, and Figure 6.2 gives an example

of how one message in π is send by using ιπ.

We see that if in π a leaking player’s distribution of a is exactly the same as a

non-leaking players, then the distribution of the number α chosen by the leaking

player is uniform on [0, 1). By the definition of g, the probability that a leaking

player sends a particular message m in ιπ is exactly the probability given by ι, and

thus the same as a non-leaking player. Using this reasoning in the opposite direction,

this tells us that we can assume that even the innocents, when starting sending a

message in π, chooses a uniformly distributed α ∈ [0, 1) and sends the message m

such that α ∈ g(m), until they have sent the message in π. They probably do not

do that, but the probability of any transcript is the same as if they did.

Finally, we need to check that ιπ satisfies the 5 requirements. The first two

follow from the construction. To show the third, we need to show that for a random

transcript s of ιπ there will with probability 1 exists a k′ such that i′(sk
′
) = (t, [0, 1))

where t is a complete transcript for π. As π only has finitely many rounds, it is

enough to show that for each message of π we start sending in ιπ, there is probability

1 that we will finish sending it. Assume that i′(sk
′
) = (tk, [0, 1)) for some k′, where

tk is an incomplete transcript of π, but for all k′′ > k′ the interpretation of sk
′′

is still

tk. If plrj(sk′) is innocent, everyone will be following ι, so by the assumption that ι

is informative, the set of transcripts where the length of the interval does not go to

0 has probability 0. As stated earlier we can assume that when sending a message in

π, even the innocents starts by choosing a random number α uniformly from [0, 1).

As f only jumps in finitely many points, there is probability 0 that plrj(sk′) chooses

one of these points. If he does not, and the length of the interval goes to 0, he will

eventually send his message in π. Thus, there is probability 0 that a non-leaker

183

does not send his message. A leaker chooses his random α ∈ [0, 1) using a different

distribution, but we can divide [0, 1) into a finite set of intervals (given by f−1(a))

such that it is uniform on each of these intervals. This tells us that given sk
′

there

is a constant C such that, as long as plrj(sk′) is still sending the same message in

π, any continuation of the transcript is at most C times more likely when plrj(sk′)
is leaking as when he is not leaking. Thus, there is still probability C · 0 = 0 that

he will not finish his message in π.

For the fourth requirement, we observe that any leaking player is actually choos-

ing messages in π following the distribution given by π, and then making sure that

the message send in ιπ will be interpreted as the message he wanted to send in π.

The innocent players are not doing this, but we have seen that the distribution on

the message they send in ιπ are the same as if they did. Thus, requirement 4 holds.

Finally, we see that given i(S) = t a player not sending a message in π always

follows ι and a player sending a message in π can be thought of as haven chosen

an α uniformly from f−1(a) where a is the next message in transcript t. This is

independent from (X,L1, . . . , Ln) and thus the last requirement follows.

To implement the protocol ιπ the leaking players do not have to choose all the

infinitely many digits in a random number α. Instead, they can just for each message

compute the probability that they would send each message if they had chosen an

α. We also see that if i(S) does not give an error, then there is some k such that

Sk determines i(S). If we let K be the random variable that is ∞ when we have

error and otherwise gives the smallest value k such that Sk determines i(S), then

we know that Pr(K =∞) = 0. So all the probability mass of K is on the integers,

hence for any ε > 0 there must exists some k0 such that Pr(K ≥ k0) < ε. That is,

i(Sk0) gives a total transcript with probability greater than 1− ε.

184

Parameters:

π : A collaborative cryptogenography protocol

ι : An informative innocent communication protocol

Input distribution: (X,L) has some distribution over X × {0, 1}n. Each plri
learns Li and if Li = 1 she also learns X.
Protocol:

1. t := λ, k := 0, s′ := λ, k′ := 0

2. While t is not a complete transcript of π

3. Let plrj be the player to send the next bit in π when the transcript is t

4. If Lj = 1, plrj chooses the message tk+1 according to π and she chooses
an α uniformly at random from the interval [Pr(Tk+1 < a|T k = tk, Lj =
0),Pr(Tk+1 ≤ a|T k = tk, Lj = 0))

5. y := 0, z := 1

6. While no new message have been added to t:

7. If Lj = 1 let sk′+1 be the unique message such that y+(z−y) Pr(Sk′+1,j <
sk′+1) ≤ α < y+(z−y) Pr(Sk′+1,j < sk′+1) where the probabilities are according
to ι.

8. Leakers plri with i 6= j and non-leakers all sends a message according to
ι, if plrj is a leakers, she now sends the message sk′+1,j chosen in the previous
line

9. s′ := s′ ◦ sk′+1, k
′ := k′ + 1 where sk′+1 is the list of messages sent in the

previous line

10. y′ = y + (z − y) Pr(Sk′+1,j < sk′+1), z′ = y + (z − y) Pr(Sk′+1,j < sk′+1)

11. y := y′, z := z′

12. If there exists a tk+1 with [y, z) ⊂ [Pr(Tk+1 < a|T k = tk, Lj =
0),Pr(Tk+1 ≤ a|T k = tk, Lj = 0)) then t := t ◦ tk+1 and k := k + 1

13. Everyone follows ι

Figure 6.1: Protocol from the proof of Theorem 6.1.

185

1

0

α

A

a2

a1

f

f

Mλ

M1

m2
λ

m1
λ

m2
1

m1
1

g1

g1

g2

g2

Figure 6.2: Example of how to construct a part of ιπ.
In this figure we see an example of how construct a part of ιπ. The line in the
middle represent the interval [0, 1), which contain subsets [y, z) for i′. In π, the next
player to send a message is plrj. The message A1 should come from A = {a1, a2},
which is represented on the left of the figure. We have Pr(A1 = a1|Lj = 0) = 0.4,
so f : [0, 1) → A sends x ∈ [0, 0.4) to a1, and x ∈ [0.4, 1) to a2 as indicated. Now
Lj = 1, so plrj first chooses a message from A to send, this happens to be a1, and
then a number α chosen randomly and uniformly from f−1(a1).
In ι, the next message Mλ that plrj sends should be fromMλ = {m1

λ,m
2
λ}. If plrj

was innocent and was following the protocol ι, we would have Pr(Mλ = m1
λ) = 0.6,

so g1 : [0, 1) → Mλ sends x ∈ [0, 0.6) to m1
λ and the rest to m2

λ. As α ∈ [0, 0.6),
plrj now sends the message m1

λ. We see that g−1
λ (m1

λ) overlaps with both f−1(a1)
and f−1(a2), so an observer cannot yet determine which message in π plri was
sending, so plrj has not sent his message yet. His next message, M1, should be
send from M1 = {m1

1,m
2
1}, and again it happens that if he was following ι then

Pr(M1 = m1
1) = 0.6, so g1 : [0, 0.6) → M1 sends x ∈ [0, 0.36) to m1

1 and the rest
to m2

1. As α ∈ [0, 0.36), plrj sends the message m1
1, and now g−1

1 (m1
1) ⊂ f−1(a1),

so now an observer can see that plrj was sending the message a1 in π, and plrj is
done sending his message in π.

186

6.2 Hiding among innocents with censors

In this section we will show that even when there are censors, the leakers can still

hide among players who are following a fixed innocent strategy ι. We cannot simply

reuse the protocol ιπ from above, because the censors might obstruct the protocol.

This can be done in two ways: either by obstructing when j(sk) is a censor, or when

it is not. When j(sk) is a censor, that censor can keep sending message which makes

the interval in i′(sk) smaller: the censor could simply send messages as if he had

chosen an α which is on the boundary between two intervals on the form f−1(a).

When the j(sk) is not a censor, the censors could possibly obstruct the protocol by

making player j(sk)s messages uninformative. For example, suppose that ι says that

only one player should send a non-empty message in each round, and no players can

start sending non-empty messages before the player who currently sends non-empty

messages sends the message “over”. Then a censor can ensure that j(sk) cannot

send her message in π by never sending the message “over”. Such a protocol ι could

still satisfy our definition of informative, if the probability that a player following ι

does not send “over” tends to 0.

To avoid this problem, we need a stronger definition than informative. We say

that an innocent communication protocol ι is strongly informative for all players

plrj, we have
∏

k∈N Pr(Sk,j = sk,j|Sk−1 = sk−1) = 0 for all possible transcripts s.

While “informative” means that we cannot predict all of player js messages with

positive probability when all the players follow ι, “strongly informative” means that

we cannot do so with positive probabilities, even if we can control the messages send

by all the other players.

Even if we assume that ι is strongly informative, censors could still obstruct

the protocol ιπ when they are j(sk) as described above. To avoid this, we need to

eventually give up on a player sending a message in π. That is, if the interval in

i′(sk
′
) = (tk, [y, z)) becomes too small, we will define i′(sk+1) = (tk ◦ tk+1,0, [0, 1))

where tk+1,0 is the lexicographically first element in Atk . When this happens, we say

that player j = j(sk
′
) timed out. From here, the players (and the function i) will

continue as if player j had sent tk+1,0 in π, except that if player j is a leaker, she

will now follow ι, i.e. pretend ignorance, for the rest of the protocol.

The following is a resilient version of Theorem 6.1.

187

Theorem 6.3. Let n,L ∈ N, h, ε, ε′ > 0, b = (bl, bc, bm) with bm < 1 be given. Let π

be an (n, h,L, ε, b)-protocol and ι a strongly informative innocent communication

protocol. Then there exists an (n, h,L, ε + ε′, b)-protocol ιπ,res where the neutral

players follow ι.

Proof. Let π and ι be as in the statement of the theorem.

We define i′ just as in the proof of Theorem 6.1, except that if the interval

z − y becomes very small, i′ will just say that the current player j(tk) sent the

lexicographically first message, tk+1,0, in Atk . When this happens, we say that

player j(tk) timed out. More precisely, for any partial transcript tk we define

Ctk =
mintk+1∈A

tk
Pr(Tk+1 = tk+1|T k = tk, Lj(tk) = 0)

2k+2 · |Atk | · ε′

Notice that Ctk is strictly positive: as π is a (n, h,L, ε, b)-protocol, it is a b-leaker

protocol, hence it is non-revealing, so any message send by a leaker could be send

by a non-leaker. Algorithm 2 computes this new i′.

Next we need to specify ιπ,res. In this protocol, the non-leakers will follow ι. Any

leaker j will do as in the proof of Theorem 6.1 (of course using the new i′ to interpret

other player’s messages), unless j has previously timed out. Once a leaker has timed

out, that leaker will follow ι for the rest of the communication. The protocol ιπ,res

is defined more formally in Figure 6.3.

Before we show that this ιπ,res is a (n, h,L, ε + ε′, b)-protocol, we will show two

propositions.

Proposition 6.4. For any infinite transcript S where leaker and innocent are fol-

lowing ιπ,res and censors are following σ′, there exists some k′ such that i′(Sk
′
) =

(t, [0, 1)) where t is a complete transcript using protocol π and some σ.

Proof. As π only has finitely many rounds, it is enough to show that any message

started will be finished. Assume the i′(sk
′
) = (tk, [0, 1)) for some k′. For k′′ > k′

with i′(sk
′′
) = (tk, [y, z]) we have

z − y =
k′′−1∏
l=k′

Pr
(
Sl,j(tk) = sl,j(tk)|Sl−1 = sl−1

)

188

Algorithm 2 i′.

1: procedure I’(sk
′
)

2: t← λ . λ denotes the empty string, t a partial transcript
3: k ← 0
4: y ← 0
5: z ← 1
6: for r from 1 to k’ do
7: y′ ← y + (z − y) Pr(Sr,j(t) < sr,j(t)|Sr−1 = sr−1)
8: z′ ← y + (z − y) Pr(Sr,j(t) ≤ sr,j(t)|Sr−1 = sr−1)
9: y ← y′

10: z ← z′

11: if ∃a ∈ At : Pr(Tk+1 < a|T k = t, Lj(t) = 0) ≤ y and
12: z ≤ Pr(Tk+1 ≤ a|T k = t, Lj(t) = 0) then
13: t← t ◦ a
14: k ← k + 1
15: y ← 0
16: z ← 1
17: else
18: if z − y < Ctk then
19: t← t ◦ tk+1,0 . If this line is evaluated we say j(tk) timed out
20: k ← k + 1
21: y ← 0
22: z ← 1
23: end if
24: end if
25: if t is a complete transcript then
26: return (t, [0, 1))
27: end if
28: end for
29: return (t, [y, z))
30: end procedure

189

By the assumption that ι is strongly informative, we have∏
l∈N

Pr
(
Sl,j(tk) = sl,j(tk)|Sl−1 = sl−1

)
= 0.

We know that
∏k′−1

l=1 Pr
(
Sl,j(tk) = sl,j(tk)|Sl−1 = sl−1

)
> 0, so4 there must exists a

k′′ such that
∏k′′

l=k′ Pr
(
Sl,j(tk) = sl,j(tk)|Sl−1 = sl−1

)
< Ctk . This shows that i′(sk

′′+1)

cannot be on the form (tk, [y, z)), so the message must be finished.

Thus, we can define i(S) to be the complete transcript t with i′(Sk
′
) = (t, [0, 1))

just as we did in the proof of Theorem 6.1.

Proposition 6.5. For any x and any l, if the leakers and neutral are following

ιπ,res, and the censors are following some σ′, the probability that at least one leaker

or neutral will time out during the execution of the protocol given X = x and L = l

is at most ε′.

Proof. Let us bound the probability that a leaker or neutral will time out while in

round k of π given tk−1. As stated in the proof of Theorem 6.1, we can assume that

leakers and neutrals first decide on a message a ∈ Atk−1 and then choose a number

α ∈ f−1(a). We want to bound the probability that α is within a distance of Ctk−1 of

the boundary between two intervals on the form f−1(a′). As there are |Atk−1| such

intervals, there are |Atk−1| − 1 < |Atk−1| such boundaries. Thus, the set of numbers

that are within Ctk−1 of such a boundary has measure at most 2Ctk−1 |Atk−1 |. When

choosing α, uniformly from f−1(a), the probability density is taking the value

1

|f−1(a)| ≤
1

mina′∈A
tk−1
|f−1(a′)| =

1

mina′∈A
tk−1

Pr(T k = a′|T k−1 = tk−1, Lj = 0)
.

Here | · | denotes the length of an interval. Thus, the probability given a that α is

within Ctk−1 of a boundary is at most
2C

tk−1 |Atk−1 |
mina′∈A

tk−1
Pr(Tk=a′|Tk−1=tk−1,Lj=0)

= 2−kε′. As

this is true for all a, the probability is this at most 2−kε′ when taking the weighted

average over a. We see that when α is at least Ctk−1 away from a boundary point,

4Here we are assuming, just as in Chapter 4, that the censors will only send messages that a
neutral would send with positive probability. If we allow censors to send other messages we would
have to modify i′, but just as we argued in Chapter 4, this can be done by pretending that such
players send a default message tk,0 whenever it is their turn.

190

we cannot have z − y < Ctk−1 and α ∈ [y, z) without [y, z) being contained in an

interval on the form f−1(a). Thus, in round k of π there is probability at most 2−kε′

that a leaker or a neutral will time out, so in total there is probability at most ε′

that a non-censor times out.

We are now ready to show that ιπ,res is a (n, h,L, ε + ε′, b)-protocol. To do so,

we need to show two properties of ιπ,res: reasonable doubt and reliable leakage.

Proposition 6.6. The protocol ιπ,res keeps reasonable doubt, that is, it is a b-leaker

protocol.

Proof. By assumption, π is a b-leaker protocol. This implies that the likelihood ratio

of π is at most r(b). From the proof of Theorem 6.1 we know that if it was not for

the possibility of timing out, the likelihood ratio of ιπ,res would also be at most r(b).

For any particular player, j, we see that the fact that other players can time out

does not affect the upper bound on player js likelihood ratio, and if player j times

out, she will just start pretending ignorance. Thus, the likelihood ratio of ιπ,res is at

most r(b), so ιπ,res is a b-leaker protocol.

Proposition 6.7. Let X be uniformly distributed on X =
[
2dhe
]

and independently

L = (L1, . . . Ln) ∼ b. Assume the leakers and neutrals use ιπ,res to communicate.

Then there is a function G′ taking as values subsets of X = [2dhe] of size at most L,

such that no matter what protocol σ′ the censors use, we have Pr(X ∈ G′|X = x) ≥
1− ε− ε′.

Proof. Define G′(S) = G(i(S)), where G is the function which shows π to be an

(n, h,L, ε, b)-protocol. For any censor protocol σ′ used against ιπ,res, we define a

joint distribution of (X,L, T, S) as follows. We let (X,L) be distributed as in the

statement of this theorem. For simplicity, we first consider the case without censor.

When the leakers and neutral sends a message in ιπ,res we can, as we argued in the

proof of Theorem 6.1, assume that they first think of a message in π they want to

send. By using the messages they were thinking of to get a distribution of T , and

the message they send to get the distribution of S, we get a distribution (X,L, T, S)

such that i(S) = T unless someone timed out. Next we add the censors. For these,

we simply assume that they follow σ′ to construct our distribution of S, and we

use i′ to interpret this as a distribution of message tk. This way we still have a

191

distribution of (X,L, T, S) where i(S) = T unless either a leaker or a neutral timed

out. The probability that such a player times out is at most ε′ given X = x. By the

union bound,

Pr(X 6∈ G′(S)|X = x) = Pr(X 6∈ G(i(S))|X = x)

≤Pr(X 6∈ G(T)|X = x) + Pr(i(S) 6= T |X = x)

≤ε+ ε′.

192

Parameters:

π : A resilient cryptogenography protocol

ι : A strongly informative innocent communication protocol

ε′ : Acceptable increase in probability of error

Input distribution: (X,L) has some distribution over X ×{−1, 0, 1}n. Each plri
learns Li and if |Li| = 1 she also learns X, and if Li = −1 she also learns L− =
(min(L1, 0), . . . ,min(Ln, 0)). Players plri with Li 6= −1 will follow the protocol we
define here, but and players with Li = −1 might follow any censor protocol σ.
Protocol:

1. t := λ, k := 0, s′ := 0, k′ := 0

2. While t is not a complete transcript of π

3. Let plrj be the player to send the next bit in π when the transcript is t

4. If Lj = 1, plrj chooses the message tk+1 according to π and then chooses
an α uniformly at random from the interval [Pr(Tk+1 < a|T k = tk, Lj =
0),Pr(Tk+1 ≤ a|T k = tk, Lj = 0))

5. y := 0, z := 1

6. While no new message have been added to t:

7. If Lj = 1, let sk′+1 be the unique message such that y+(z−y) Pr(Sk′+1,j <
sk′+1) ≤ α < y + (z − y) Pr(Sk′+1,j < sk′+1) where Sk′+1,j ∼ ι.

8. Leakers plri with i 6= j and non-leakers all sends a message according to
ι, if plrj is a leakers, she now sends the message sk′+1,j chosen in line 7

9. s′ := s′ ◦ sk′+1, k
′ := k′ + 1 where sk′+1 is the list of messages sent in line

8 , y′ := y + (z − y) Pr(Sk′+1,j < sk′+1), z′ := y + (z − y) Pr(Sk′+1,j < sk′+1) ,
y := y′, z := z′

10. If there exists a tk+1 with [y, z) ⊂ [Pr(Tk+1 < a|T k = tk, Lj =
0),Pr(Tk+1 ≤ a|T k = tk, Lj = 0)) then t := t ◦ tk+1 and k := k + 1

11. Else, if z−y < Ctk as defined in the proof, then t := t◦ tk+1,0, k := k+1

12. Everyone follows ι

Figure 6.3: Protocol from the proof of Theorem 6.3.

193

Chapter 7

Anonymous Steganography

In this chapter, we consider a model where there is only one leaker and we want

to ensure that an observer can guess a secret, but does not get much advantage in

guessing who the leaker was. However, unlike in the rest of this thesis, we will in

this chapter assume that the adversary has bounded computational power. We will

see that even with this weaker adversary, the leaker can only reveal a very small

amount of information. However, the leaker can do something she cannot do against

an unbounded adversary: she can bootstrap an anonymous channel. That is, if she

has access to an expensive or small anonymous channel as well as a large public

non-anonymous channel, she can use this to send a large message anonymously.

One idea for having anonymous communication might be to use steganography.

The goal of traditional steganography is to hide that a certain communication is

taking place, by embedding sensitive content in innocent looking traffic (such as

pictures, videos, or other documents). There is no doubt that steganography is a

useful tool for Lea the leaker: using steganography she could send sensitive docu-

ments to Joe the journalist in such a way that even someone monitoring all internet

traffic would not be able to notice that this sensitive communication is taking place.

However, steganography alone cannot help Lea if she wants to make sure that even

Joe does not learn her identity.

To solve this problem, we introduce a novel cryptographic primitive, which we

call anonymous steganography. Very informally, anonymous steganography works

in the following way: Lea wants to communicate a sensitive large message x to

194

Joe. To do so, she embeds x in some large innocent looking document c which

she uploads to a popular website, not necessarily in an anonymous way. Then

Lea produces some short decoding key dk which is a function of c and all other

documents on the website – or at least a set large enough so that her identity is

hidden in a large group of users, such as “all videos uploaded last week”. She then

sends dk to Joe using an anonymous channel. Now Joe is able to recover the original

message x from the website using the decoding key dk, but at the same time Joe

has no way of telling which document contains the message and therefore which

of the website’s users is the leaker. Intuitively, it is crucial for Lea’s anonymity

that Joe can only decode the entire website: if Joe had a way of decoding single

documents or portions he would easily be able to pinpoint which document actually

contains the leaked message. To construct an anonymous steganography scheme we

will be using an indistinguishablity obfuscator. These are conjectured to exist and

a candidate construction exists [30], but they have not been proved secure under

standard cryptographic assumptions. Furthermore, the candidate construction is so

slow that our scheme is currently infeasible in practice.

In the scheme described above, Lea sends Joe a decoding key dk using a pre-

existing anonymous channel. It is a natural question to ask whether this is necessary,

or if we can construct a scheme where all communication between Lea and Joe takes

place over regular channels. Unfortunately this is too good to be true, and in

Section 7.4 we prove that it is impossible to construct an anonymous steganography

scheme unless Lea sends a key of super-logarithmic size to Joe. The idea behind the

proof is: if the scheme is correct at some point the probability that Joe outputs x

has to increase from exponentially small to 1. Once the probability has increased

to only polynomially small, Joe can estimate how each message sent by any of the

users over the non-anonymous channel affects this probability and concludes that

the messages which increases this probability the most, must come from the leaker.

Hence, the message that causes this increase has to be sent over an anonymous

channel.

In this chapter we will assume that the innocents sample their documents in-

dependently from the uniform distribution. As we are assuming the adversary has

bounded computational power, we could weaken this to the assumption that inno-

cents are uploading documents which are computationally indistinguishable from

195

uniformly distributed. This is a good model if Lea is uploading her message to a

webpage where people upload encrypted documents or if she is taking part in a

cryptographic protocol where each person provides a large amount of randomness.

If she is uploading to a webpage where the innocent communication is not com-

putational indistinguishable from uniform, we could imagine using the results from

Chapter 6. However, this requires knowing the distribution of innocent messages.

This might be a reasonable assumption when the domain is small, for example

it is realistic to find a distribution which is very close to computationally indis-

tinguishable from the minute number a blogpost is posted. However, for larger

messages, this is much harder, for example it will be extremely difficult to define a

distribution over videos which is indistinguishable from videos uploaded to youtube.

Instead, if Lea is uploading to a website where the documents do not look uniformly

distributed, she should use a steganography protocol to transform her uniformly

looking message ti to an innocent looking message t′i. If the transcript of innocent

looking documents is (t′1, . . . , t
′
n) we define tj to be what you get when applying the

steganographic extraction algorithm on t′j. For a good steganography protocol this

tj should be computationally indistinguishable from uniform, when t′j is chosen from

the innocent distribution. The problem of finding such steganography protocols is

well known (see Section 2.3).

7.1 Definitions

We define an anonymous steganography scheme to be a tuple of four algorithms,

(Gen,Enc,KeyEx,Dec). All algorithms, even when not specified, take as input the

security parameter λ, and the length parameters s, `, `′ (s is short, ` is long). The

syntax of the algorithm is as follows:

• ek ← Gen(1λ) is a randomized algorithm which generates an encoding key ek.

• c ← Encek(x) is a randomized algorithm which encodes a secret message x ∈
{0, 1}`′ into a (random looking) document c ∈ {0, 1}`.

• dk ← KeyExek(t, i) takes as input a public vector of documents t ∈ ({0, 1}`)d,
an index i ∈ [d] such that ti = c and extracts a (short) decoding key dk ∈

196

{0, 1}s.

• x′ = Decdk(t) recovers a message x′ using the decoding key dk and the public

vector of documents t in a deterministic way.

We chose to keep Gen separated from Enc since a single key could be used to

encode multiple messages – in a natural extension of the scheme Lea hides her

secret(s) in a subset of documents I ⊂ [d]. Finally, KeyEx is a separated algorithm

since it takes as input documents which are generated from honest users after c is

published.

7.1.1 How to use the scheme

To use anonymous steganography, Lea generates the encoding key ek using Gen and

encodes her secret x using Encek to get the c. Lea then uploads c to this website

as if she was a normal user of the website, and waits until more honest content is

published. Then she chooses the set of documents she is hiding among, for example,

all files uploaded to this website during that day or that week. Lea then downloads

all these documents t and finds the index i of her own document in this set. Finally,

she computes dk ← KeyExek(t, i), and uses the small anonymous channel to send dk

to Joe together with a pointer to t.

Lea can use this scheme, even if Joe have never heard about anonymous steganog-

raphy beforehand. In this case, Lea can just send him a short message over the

anonymous channel, asking him to run a program that finds t on the internet and

computes Decdk on them.

7.1.2 Properties

We require the following properties: correctness (meaning that x′ = x with over-

whelming probability), compactness (meaning that s < `′) and anonymity (meaning

that the receiver does not learn any information about i). Another natural require-

ment is confidentiality (meaning that one should not be able to learn the message

without the decoding key dk), but we will see that this follows from anonymity.

Formal definitions follow.

197

Definition 7.1 (Correctness). We say an anonymous steganography scheme is q-

correct if for all λ ∈ N, x ∈ {0, 1}`′ , i ∈ [d], t−i ∈ ({0, 1}`)d−1 over {0, 1}` the

following holds:

Pr [Decdk ((t−i, c)) = x] ≥ q,

where ek ← Gen(1λ), c ← Encek(x), dk ← KeyExek((t−i, c), i) and the probabilities

are taken over all the randomness in these algorithms. We simply say that a scheme

is correct when q ≥ 1− negl(λ).

Definition 7.2 (Anonymity). We define a game between an adversary A and a

challenger C :

1. The adversary A outputs a message x ∈ {0, 1}`′ ;

2. The challenger C:

(a) generates a key ek ← Gen(1λ);

(b) samples a bit b← {0, 1};
(c) computes cb ← Encek(x) and samples c1−b ← {0, 1}`;
(d) outputs c0 and c1;

3. The adversaryA outputs a vector t such that there exists i0 and i1 with ti0 = c0

and ti1 = c1;

4. The challenger C finds a possible value of ib and outputs dk ← KeyExek (t, ib);

5. A outputs a guess bit g;

We say π satisfies anonymity if for all PPT A we have
∣∣Pr[g = b]− 1

2

∣∣ = negl(λ).

This definition says that even if all but two of the players are censors, Eve will

not be able to get an advantage in guessing which of the two non-censors is the

leaker. This definition implies that if there are more than two non-leakers, Eve still

do not get any advantage when guessing who the leakers are. The definition given

here is much stronger than the definition in the published version of the work [50]:

in the original definition, the adversary had to send i0, i1 and t−(i0,i1) before receiving

ti0 and ti1 . Unlike the original definition, the above definition provides anonymity

198

against an adversary who controls the database to which Lea is uploading files, and

who can reorder, insert and delete documents in an attempt to break the anonymity.

The anonymity set will be the set of users who uploaded documents that have not

been modified. Thus, an adversary with control over the website would be able to

confirm that Lea was the leaker by modifying all the other documents. However, this

is unlikely, as the adversary would have to do this before the leak has been completed,

and would have to suspect that Lea was about to leak information anonymously

using this particular database.

It might also seem natural to add the requirement that an adversary who does

not know dk cannot get any information about the message. However, as we will

see below, this follows from the anonymity requirement.

Definition 7.3 (Confidentiality). Consider the following game:

1. A outputs x0, x1 ∈ {0, 1}`, i, t−i;

2. Coutputs ti ← EncGen(1λ)(mb) with b← {0, 1};

3. A outputs a guess bit g;

We say π satisfies confidentiality if for all PPT A we have
∣∣Pr[g = b]− 1

2

∣∣ = negl(λ).

Given an adversary B which breaks confidentiality we construct an adversary A
for anonymity. First, assume for contradiction that for any message x0 adversary B
has only negligible advantage when guessing if a string is t0 ← EncGen(1λ)(x0) or r ←
{0, 1}`. By a hybrid argument, B would then only have negligible advantage when

guessing if a string is t0 ← EncGen(1λ)(x0) or t1 ← EncGen(1λ)(x1). This contradicts

the assumption that B breaks confidentiality.

Thus, we can choose a message x0 where B has non-negligible advantage in

distinguishing it from r ← {0, 1}`. Now we let A be an adversary that sends this

message x0 in the first round of the anonymity game, and later chooses i0, i1 and t

in any legal way. Then A runs B on c0. Because B has a non-negligible advantage at

telling the difference between c0 ← EncGen(1λ)(x0) and a random sample c0 ← {0, 1}`,
A will have a non-negligible advantage at the anonymity game.

199

7.2 Building blocks

In this section, we will describe the building blocks we will use to construct an

anonymous steganography scheme.

7.2.1 Indistinguishability obfuscation.

An indistinguishability obfuscator is a randomized function that takes a circuit as

input and gives a circuit as output. The idea is that the output circuit should

compute the same function as the input circuit, but at the same time hide the

information, such as a secret key, which was used to build the input circuit. We use

an obfuscator O as proposed in [30] which takes any polynomial size circuit C and

outputs an obfuscated version O(C) that satisfies the following property.

Definition 7.4 (Indistinguishability Obfuscation). We say O is an indistinguisha-

bility obfuscator for a circuit class C if for all C0, C1 ∈ C such that ∀x : C0(x) = C1(x)

and |C0| = |C1| it holds that:

1. ∀C ∈ C,∀x ∈ {0, 1}n,O(C)(x) = C(x);

2. |O(C)| = poly(λ|C|)

3. for all PPT A:

|Pr[A(O(C0)) = 1]− Pr[A(O(C1)) = 1]| < negl(λ)

It is not known if indistinguishable obfuscators exist, but a candidate has been

proposed [30]. Even if they exist, they are far from being efficient enough to be

practical.

7.2.2 IND-CPA public-key encryption scheme

A public-key encryption scheme is a tuple (E.G,E.E,E.D) where, E.G takes the secu-

rity parameter as input and outputs (pk, sk) where pk is called the public key and

sk is the (secret) private key. The encryption algorithm E.E takes the public key

200

and a message as input, and outputs a ciphertext c ← E.Epk(x), and the decryp-

tion algorithm E.D takes the private key and a ciphertext as input, and outputs a

message x′ ← E.Dsk(c). We make the following definitions

Definition 7.5. A public-key encryption scheme (E.G,E.E,E.D) is correct if, for all

λ and all x ∈ {0, 1}` we have x = E.Dsk(E.Epk(x)) whenever (pk, sk)← E.G(λ).

Definition 7.6. We define the indistinguishability game for chosen plaintext attack,

or IND-CPA game as follows.

1. C choose b← {0, 1}.

2. C compute (pk, sk)← E.G(λ) and sends pk to the attacker.

3. A outputs two messages m0,m1.

4. C outputs c← E.Epk(mb)

5. A outputs a guess g

We say that (E.G,E.E,E.D) is IND-CPA secure if for all PPTA we have
∣∣Pr[g = b]− 1

2

∣∣ <
negl(λ).

7.2.3 Homomorphic encryption

Informally, a homomorphic encryption scheme is a way to encrypt data in such a

way that someone can make computations on the data, even if they cannot decrypt

it.

Formally, let (HE.G,HE.E,HE.D) be an IND-CPA public-key encryption scheme

with an additional algorithm HE.Eval which on input the public key pk, n ciphertexts

c1, . . . , cn and a circuit C : {0, 1}n → {0, 1} outputs a ciphertext c∗, then we say

that:

Definition 7.7 (Correctness – HE). An HE scheme (HE.G,HE.E,HE.D,HE.Eval) is

correct for a circuit class C if for all C ∈ C

HE.Dsk(HE.Evalpk(C,HE.Epk(x1), . . . ,HE.Epk(xn)) = C(x1, . . . , xn)

201

Definition 7.8 (Compactness – HE). An HE scheme (HE.G,HE.E,HE.D,HE.Eval)

is called compact if there exists a polynomial s ∈ poly(λ) such that the output of

HE.Eval(C, c1, . . . , cn) is at most s bits long (regardless of the size of the circuit |C|
or the number of inputs n).

The first candidate homomorphic encryption for all circuits was introduced by

Gentry [31]. Later Brakerski and Vaikuntanathan [7] showed that it is possible to

build homomorphic encryption based only on the (reasonable) assumption that the

learning with error problem (LWE) is computationally hard.

7.2.4 Pseudorandom functions

A pseudorandom function family (or a PRF) is a function f : {0, 1}λ × {0, 1}λ →
{0, 1}, such that for random k ∈ {0, 1}λ, the function x → f(k, x) is indistinguish-

able from random. More formally, we consider the following game.

• Challenger chooses b← {0, 1}, k ← {0, 1}λ.

• If b = 1 then h(x) = f(k, x) if b = 0 then h(x) is chosen uniformly and

independently from {0, 1} for each x ∈ {0, 1}λ.

• The adversary A gets oracle access to h.

• The adversary A outputs a guess bit g.

We say that f is a PRF if for all PPT A we have
∣∣Pr[g = b]− 1

2

∣∣ < negl(λ).

It is well known that the existence of one way function (implied by the existence

of homomorphic encryption) implies the existence of PRFs.

7.2.5 Somewhere statistically binding vector commitment

scheme

This primitive was introduced by Hubáček and Wichs [43] under the name some-

where statistically binding hash, but we think that the term vector commitment

scheme is better at communicating the goal of this primitive.

The idea behind commitment schemes in general is that you can commit to

some value without revealing it. For example, suppose you made some prediction,

202

represented with a string β, which you do not want to reveal for now. However, you

also want to ensure that in the future, you can prove that you made this particular

prediction. To do this, you could compute γ = H(β ◦r) for some cryptography hash

function H and randomness r and reveal the result, or you could encrypt β and

reveal the result γ. Later you can reveal that you had chosen β, by revealing β and

the randomness used. This is called decommiting. In the first case, γ will typically

be much shorter than β, and the commitment will only be computational. That is,

there exists a β′ 6= β with H(β′ ◦ r′) = γ, but the commitment scheme still works,

because such β′and r′ are hard to find. In the second case, the commitment will

be statistically binding1, which means that there are no β′ 6= β which encrypt to γ,

however, γ will have to be at least as long as β.

To construct an anonymous steganography scheme, we will need a commitment

scheme. The problem is, we need the best from both types of commitments: we

need the γ to be much shorter than β to make our dk shorter than the message

we send, but we also need the commitment to be statistically binding to make our

proofs work. This is impossible, for the simple reason that if γ is much shorter than

β, there are more possible values of β than γ, so each β cannot have their own γ.

Instead, we will be using what we call a vector commitment scheme. In this scheme,

any commitment will be computationally binding, which mean that we can make

γ shorter than β, but it will also be statistically binding in one particular entry i.

That is, if you can open γ as both β and β′ we must have βi = β′i. Furthermore,

the value of i will not be known to the person who makes the commitment.

More formally a SSB vector commitment scheme is composed of the following

algorithms:

Key Generation: The key generation algorithm ck ← VC.G(1λ, L, i) takes as input

an integer L ≤ 2λ and index i ∈ [L] and outputs a public key ck.

Commit: The commit algorithm VC.Cck : ({0, 1}`b)L → {0, 1}`c is a deterministic

polynomial time algorithm which takes as input a string x = (x1, . . . , xL) ∈
({0, 1}`b)L and outputs VC.Cck(x) ∈ {0, 1}`c .

1Assuming the encryption scheme is correct will probability 1, not just probability 1− negl(λ).
This is not the case for deniable encryption, which is designed specifically to ensure that the
encryption can be opened to something else. [11]

203

Decommit: The decommit algorithm π ← VC.Dck(x, j) given the commitment key

ck, the input x ∈ ({0, 1}`b)L and an index j ∈ [L], creates a proof of correct

decommitment π ∈ {0, 1}`d .

Verify: The verify algorithm VC.Vck(y, j, u, π) given the key ck and y ∈ {0, 1}`c an

integer index j ∈ [L], a value u ∈ {0, 1}`b and a proof π ∈ {0, 1}`d , outputs 1

for accept (that y = VC.Cck(x) and xj = u) or 0 for reject.

Definition 7.9 (Vector Commitment Scheme – Correctness). A vector commitment

scheme is correct if for any L ≤ 2λ and i, j ∈ [L], any ck ← VC.G(1λ, L, i), x ∈
({0, 1}`b)L, π ← VC.Dck(x, j) it holds that VC.Vck(VC.Cck(x), j, xj, π) = 1.

Definition 7.10 (Vector Commitment Scheme – Index Hiding). We consider the

following game between an attacker A and a challenger C:

• The attacker A(1λ) chooses an integer L and two indices i0 6= i1 ∈ [L];

• The challenger C chooses a bit b← {0, 1} and sets ck ← VC.G(1λ, L, ib).

• The attacker A gets ck and outputs a guess bit g.

We say a vector commitment scheme is index hiding if for all PPT A we have∣∣∣∣Pr[g = b]− 1

2

∣∣∣∣ < negl(λ)

Definition 7.11 (Vector Commitment Scheme – Somewhere Statistically Binding).

We say ck is statistically binding for index i if there are no y, u, u′, π, π′ such that

u 6= u′ and

VC.Vck(y, i, u, π) = VC.Vck(y, i, u
′, π′) = 1

In Hubáček and Wichs [43] it is shown how to construct SSB vector commitments

using homomorphic encryption. Notice that we do not require the scheme to be

computationally binding, because this property follows from the properties of being

somewhere statistically binding and index hiding: an adversary who can break the

binding at some coordinate will learn that that coordinate was not statistically

bound.

204

7.3 A protocol for anonymous steganography

We start with a high-level description of our protocol (in steps) before presenting

the actual construction and proving that it satisfies our notion of anonymity.

First attempt: Let the encoding key ek be a key for a PRF f , and let the

encoding procedure simply be a random looking symmetric encryption of x using

this PRF. That is, cj = xj ⊕ fek(j) where xj is the jth bits in x and cj the jth bit

in c. Clearly now the resulting document c is indistinguishable from other elements

sampled from the uniform distribution over {0, 1}`.
In this first attempt we let the decoding key dk be the obfuscation of a circuit

C[i, ek, γ](t). The circuit contains two hard-wired secrets, the index of Lea’s docu-

ment i ∈ [d] and the key for the PRF ek. It also contains the hash of the entire set

of documents γ = H(t). On input a database t the circuit checks if γ = H(t) and if

this is the case outputs x by decrypting ti with ek.

Clearly this first attempt fails miserably since the size of the circuit is now

proportional to the size of the entire database t = d`, which is even larger than the

size of the secret message |x| = `′ ≤ `.

Second attempt:2 To remove the dependency on the number of documents

d, we include in the decoding key an encryption α = HE.Epk(i) of the index i

(using the homomorphic encryption scheme), and an obfuscation of a (new) circuit

C[ek, sk, γ](β), which contains hardwired secrets ek and sk (the secret key for the

homomorphic encryption scheme), as well as a hash γ = H(HE.Eval(mux[t], α)),

where the circuit mux[t](i) outputs ti. The circuit C now checks that γ = H(β) and

if this is the case computes ti ← HE.Dsk(β) using the secret key of the HE scheme,

then decrypts ti using the PRF key ek and outputs the secret message x. When Joe

receives the decoding key dk, Joe constructs the circuit mux[t] (using the public t)

and computes β = HE.Eval(mux[t], α). To learn the secret, he runs the obfuscated

circuit on β.

In other words, we are now exploiting the compactness of the homomorphic

encryption scheme to let Joe compute an encryption of the document c = ti from

the public database t and the encryption of i. Since Lea the leaker can predict this

2A different approach at this stage could be to use iO for Turing machines [53]. Unfortunately,
[53] uses complexity-leveraging and therefore must assume sub-exponentially hard iO for circuits,
while the solution described next will be secure using only standard hardness.

205

ciphertext3, she could construct a circuit which only decrypts when this particular

ciphertext is provided as input. However, the size of β is proportional to poly(λ)+`,

so the obfuscation of C is still too long.4

Third attempt: To remove the dependency from the length of the document

`, we construct a circuit which takes as input an encryption of a single bit j of ti

instead of the whole ciphertext. However, we also need to make sure that the circuit

only decrypts these particular ciphertexts, and does not help Joe in decrypting

anything else. Moreover, the circuit must perform this check efficiently (meaning,

independent of the size of `), so we cannot simply “precompute” these ` ciphertexts

and hardwire them into C.

This is where we use the vector commitment scheme: we let the decoding key

include a commitment key ck. We include in the obfuscated circuit a commitment

γ = VC.Cck(β), where β = (β1, . . . , β`) is a vector of encryptions of bits, and we

make sure that the circuit only helps Joe in decrypting these ` ciphertexts. In

other words, we obfuscate the circuit C[ek, sk, ck, γ](β′, π′, j) which first checks if

VC.Vck(γ, j, β
′, π′) = 1 and if this is the case it outputs the jth bit of x from the jth

bit of the ciphertext tji ← HE.Dsk(β
′). We have now almost achieved our goal, since

the size of the decoding key is poly(λ log(d`)).

Final attempt: We now have to argue that our scheme is secure. Intuitively,

while it is true that the index i is only sent in encrypted form, we have a problem

since the obfuscated circuit contains the secret key for the homomorphic encryption

scheme, and we therefore need a final fix to be able to argue that the adversary does

not learn any information about i.

The final modification to our construction is to encrypt the index i twice under

two independent public keys. From these encryptions Joe computes two independent

encryptions of the bit tji which he inputs to the obfuscated circuits together with

proofs of decommitment. The circuit now outputs ⊥ if any of the two decommitment

proofs are incorrect, otherwise the circuit computes and outputs xj from one of the

two encryptions and ignores the second ciphertext.

Anonymity: Very informally, we can now prove that Joe cannot distinguish

3The evaluation algorithm HE.Eval can always be made deterministic since we do not need
circuit privacy.

4Note that the decryption key also contains an encryption of i which depends logarithmically
on d, but we are going to ignore all logarithmic factors.

206

between the decoding keys computed using indices i0 and i1 in the following way:

we start with the case where the decoding key contains two encryptions of i0 (this

corresponds to the game in the definition with b = 0). Then we define a hybrid game

where we change one of the two ciphertext from being an encryption of i0 with an

encryption of i1. In particular, since we change the ciphertext which is ignored by

the obfuscated circuit, this does not change the output of the circuit at all (and

we can argue indistinguishability since the obfuscated circuit does not contain the

secret key for this ciphertext). We also replace the random document ci1 with an

encryption of x with a new key for the PRF. Finally, we change the obfuscated

circuit and let it recover the message x from the second ciphertext. Thanks to the

SSB property of the commitment scheme it is possible to prove, in a series of hybrids,

that the adversary cannot notice this change. To conclude the proof we repeat the

hybrids (in inverse order) to reach a game which is identical to the definition of

anonymity when b = 1.

The Actual Construction: A complete specification of our anonymous steganog-

raphy scheme follows. Note that in our construction `′ = `.

Key Generation: On input the security parameter λ the algorithm Gen samples

a random key ek ∈ {0, 1}λ for the PRF and outputs ek.

Encoding: On input a message x ∈ {0, 1}` and an encoding key ek the algorithm

Enc outputs an encoded message c ∈ {0, 1}` where for each bit j ∈ [`], cj =

xj ⊕ fek(j).

Key Extraction: On input the encoding key ek, the database of documents t,

and index i such that ti = c the algorithm KeyEx outputs a decoding key dk

generated as follows:

1. For all u ∈ {0, 1} run (pku, sku)← HE.G(1λ) and αu ← HE.Epku(i).

2. For all j ∈ [`], u ∈ {0, 1} run βju = HE.Evalpku(mux[t, j], αu)
5 where the

circuit mux[t, j](i) outputs the j-th bit of the i-th document tji ;

3. For all u ∈ {0, 1} run cku ← VC.G(1λ, `, 1) and γu ← VC.Ccku(β1
u, . . . , β

`
u).

5Note that we consider HE.Eval to be a deterministic algorithm. This can always be achieved
by fixing the random tape of HE.Eval to some constant value.

207

4. Pick a random bit σ ∈ {0, 1}.
5. Construct the circuit C[ek, σ, skσ, ck0, ck1, γ0, γ1](β′0, β

′
1, π

′
0, π

′
1, j) as fol-

lows:

(a) if(∀u ∈ {0, 1} : VC.Vcku(γu, j, β
′
u, π

′
u)) output HE.Dskσ(β′σ)⊕ fek(j);

(b) else output ⊥;

6. Compute an obfuscation C̄ ← O(Cσ) where Cσ is a shorthand for the

circuit defined before, padded to length equal to maxτ,ρ(C,C
′
τ,ρ), where

the circuits C ′τ,ρ are defined in the proof of security.

7. Output dk = (pk0, pk1, α0, α1, ck0, ck1, C̄)

Decoding: On input a decoding key dk and a database of documents t the algo-

rithm Dec outputs a message x′ in the following way:

1. Parse dk = (pk0, pk1, α0, α1, ck0, ck1, C̄);

2. For all j ∈ [`], u ∈ {0, 1} run βju = HE.Evalpku(mux[t, j], αu);

3. For all u ∈ {0, 1} run γu ← VC.Ccku(β1
u, . . . , β

`
u).

4. For all j ∈ [`], u ∈ {0, 1} compute πju ← VC.Dcku((β1
u, . . . , β

`
u), j);

5. For all j ∈ [`] output (x′)j ← C̄(βj0, β
j
1, π

j
0, π

j
1, j);

Theorem 7.1. If a) f is PRF b) (VC.G,VC.C,VC.D,VC.V) is a vector commitment

scheme satisfying Definitions 7.9-7.11 c) (HE.G,HE.E,HE.D,HE.Eval) is a homomor-

phic encryption scheme satisfying Definition 7.5-7.8 and d) O is an obfuscator for

all polynomial size circuits satisfying Definition 7.4 then the anonymous steganogra-

phy scheme (Gen,Enc,KeyEx,Dec) constructed above satisfies Definition 7.1 and 7.2

and has |dk| = poly(λ log(d`)).

Proof. Correctness follows from inspection of the protocol. In particular, for each

bit j ∈ [`] Definition 7.4 Bullet 1 implies that

C̄(βj0, β
j
1, π

j
0, π

j
1, j) = C[ek, σ, skσ, ck0, ck1, γ0, γ1](βj0, β

j
1, π

j
0, π

j
1, j)

By Definition 7.7, ∀u ∈ {0, 1} the ciphertext βju is such that

HE.Dsku(βju) = mux[t, j](HE.Dsku(αu)) = mux[t, j](i) = tji .

208

Now, since tji = xj⊕fek(j) it follows that the output z of C̄ is either ⊥ or xj. Finally,

the circuit only outputs ⊥ if ∃u ∈ {0, 1} such that VC.Vcku(γu, j, β
j
u, π

j
u) = 0. But

since

cku ← VC.G(1λ, `, 1), γu ← VC.Ccku(β1
u, . . . , β

`
u), π

j
u ← VC.Dcku((β1

u, . . . , β
`
u), j),

Definition 7.9 shows that VC.Vcku(γu, j, β
j
u, π

j
u) = 1 so C̄, and therefore Dec, outputs

xj.

We prove anonymity using a series of hybrid games. We start with a game

which is equivalent to the definition when b = 0 and we end with a game which is

equivalent to the definition when b = 1. We prove at each step that the next hybrid

is indistinguishable from the previous. Therefore, at the end we conclude that the

adversary cannot distinguish whether b = 0 or b = 1.

Hybrid 0: This is the same as the definition when b = 0. In particular, here it

holds that

(α0, α1)← (HE.Epk0(i0),HE.Epk1(i0)).

Hybrid 1: In the first hybrid we replace α1−σ with α1−σ ← HE.Epk1−σ(i1). Note

that the circuit C[ek, σ, skσ, ck0, ck1, γ0, γ1](·) does not contain the secret key sk1−σ,

therefore any adversary that can distinguish between Hybrid 0 and 1 can be turned

into an adversary which breaks the IND-CPA property of the HE scheme.

Hybrid 2: In the previous hybrids ti1 is a random string from {0, 1}`. In this

hybrid we replace ti1 with an encryption of x using a new PRF key ek′. That is, for

each bit j ∈ [`] we set tji1 = xj ⊕ fek′(j). Clearly, any adversary that can distinguish

between Hybrid 1 and Hybrid 2 can be used to break the PRF.

Hybrid 3.(τ, ρ): We now define a series of 2` hybrids indexed by τ ∈ [`], ρ ∈
{0, 1}. In Hybrid 3.(τ, ρ) we replace the obfuscated circuit with the circuit:

C ′[τ, ρ, ek, ek′, σ, sk0, sk1, ck0, ck1, γ0, γ1](β′0, β
′
1, π

′
0, π

′
1, j):

1. if(∃u ∈ {0, 1} : VC.Vcku(γu, j, β
′
u, π

′
u) = 0) output ⊥

2. else if(j ≥ τ + ρ) output HE.Dskσ(β′σ)⊕ fek(j);

3. else output HE.Dsk1−σ(β′1−σ)⊕ fek′(j);

209

We use C ′τ,ρ as a shorthand for a circuit defined as above, and which, if necessary,

is padded to make Cσ and all the C ′τ,ρ’s equally long.

In addition, we also replace the way the keys for the vector commitment schemes

are generated. Remember that in the previous hybrids

∀u ∈ {0, 1} cku ← VC.G(1λ, `, 1),

which are now replaced with

∀u ∈ {0, 1} cku ← VC.G(1λ, `, τ).

From inspection it is clear that in Hybrid 3.(1, 0) is computationally indistin-

guishable from Hybrid 2 thanks to Definition 7.4 (Bullet 3) since 1) the keys ck0, ck1

are identically distributed and 2) the circuit C ′1,0 computes the same function as the

circuit C obfuscated in Hybrid 2: since j is indexed starting from 1 we always have

j ≥ 1 + 0 and the branch (3) is never taken.

Next, we argue that Hybrid 3.(τ, 0) is indistinguishable from Hybrid 3.(τ, 1).

First we note that the commitment keys ck0, ck1 are identically distributed in these

two hybrids i.e., in both hybrids

∀u ∈ {0, 1} cku ← VC.G(1λ, `, τ).

The only difference between the two hybrids is what circuits are being obfuscated:

in Hybrid 3.(τ, 0) we obfuscate C ′τ,0 and in Hybrid 3.(τ, 1) we obfuscate C ′τ,1. We will

now argue that these two circuits give the same output on every input, and therefore

an adversary that can distinguish between Hybrid 3.(τ, 0) and Hybrid 3.(τ, 1) can

be used to break the indistinguishability obfuscator.

It follows from inspection that the two circuits behave differently only on inputs

of the form (β′0, β
′
1, π

′
0, π

′
1, τ). On input of this form:

• C ′τ,0 (since j = τ ≥ τ) chooses branch (2) and outputs

xj0 ← HE.Dskσ(β′σ)⊕ fek(j),

210

• C ′τ,1 (since j = τ 6≥ τ + 1) chooses branch (3) and outputs

xj1 ← HE.Dsk1−σ(β′1−σ)⊕ fek′(j).

Now, the statistically binding property of the vector commitment scheme (Defini-

tion 7.11) allows us to conclude that there exists only one single pair (β′0, β
′
1) for

which C ′τ,0 and C ′τ,1 do not output ⊥ (remember that in both hybrids the commit-

ment keys ck0, ck1 are statistically binding on index τ), namely the pair

∀u ∈ {0, 1} βju = HE.Evalpku(mux[t, τ], αu)

which decrypts to the pair (tji0 , t
j
i1

) (since we changed α1−σ in Hybrid 1), which in

turns were defined as (since we changed tji1 in Hybrid 2)

(tji0 , t
j
i1

) = (xj ⊕ fek(j), xj ⊕ fek′(j))

which implies that xj0 = xj1 and therefore the two circuits have the exact same

input/output behavior.

Finally, we argue that Hybrid 3.(τ, 1) is indistinguishable from Hybrid 3.(τ+1, 0)

for all τ ∈ [`] since by definition the circuits C ′τ,1 and C ′τ+1,0 are identical and the

only difference between these hybrids is in the way the commitment keys ck0, ck1

are generated. In particular, the only difference is the index on which the keys

are statistically binding. Therefore, any adversary who can distinguish between

3.(τ, 1) and Hybrid 3.(τ + 1, 0) can be used to break the index hiding property

(Definition 7.10) of the vector commitment scheme.

This concludes the technical core of our proof, what is left now is to make few

simple changes to go from Hybrid 3.(`, 0) to the game from Definition 7.2 when

b = 1.

Hybrid 4: In this hybrid we replace the obfuscated circuit with

C[ek′, σ′, skσ′ , ck0, ck1, γ0, γ1](·)

where σ′ = 1− σ. It is easy to see that the input/output behavior of this circuit is

exactly the same as C ′`,1: since ∀j ∈ [`] : j 6≥ ` + 1 the circuit C ′`,1 always executes

211

branch 3) and therefore an adversary that can distinguish between Hybrid 4 and

Hybrid 3.(`, 0) can be used to break the indistinguishability obfuscator.

Hybrids 5, 6, 7: In Hybrid 5 we change the distribution of both commit-

ment keys ck0, ck1 to VC.G(1λ, `, 1) whereas in Hybrid 4 they were both sampled

as VC.G(1λ, `, `). Indistinguishability follows from the index hiding property. In

Hybrids 6 we replace ti0 with a uniformly random string in {0, 1}` whereas in the

previous hybrid it was an encryption of x using the PRF f with key ek. Since the

obfuscated circuit no longer contains ek we can use an adversary which distinguishes

between Hybrids 5 and 6 to break the PRF. In Hybrid 7 we replace α1−σ′ (which

in the previous hybrid is an encryption of i0) with an encryption of i1. Since the

obfuscated circuit no longer contains sk1−σ′ = skσ we can use an adversary which

distinguishes between Hybrids 6 and 7 to break the IND-CPA property of the en-

cryption scheme. Now Hybrid 7 is exactly as the definition of anonymity with b = 1

with a random bit σ′ = 1 − σ (which is distributed uniformly at random) and a

random encoding key ek′. This concludes the proof.

Our theorem, together with the results of [43] implies the following.

Corollary 7.2. Assuming the existence of homomorphic encryption and indistin-

guishability obfuscators for all polynomially sized circuits, there exists an anonymous

steganography scheme.

7.4 Lower bound

In this section we show that no correct anonymous steganography scheme can have a

decoding key of size O(log(λ)). Since the decoding key must be sent over an anony-

mous channel, this gives a lower bound on the number of bits which are necessary

to bootstrap anonymous communication.

To show this, we find a strategy for Joe that gives him a higher probability of

guessing the leaker than if he guessed uniformly at random.

Our lower bound applies to a more general class of anonymous steganography

schemes than defined earlier, in particular it also applies to reactive schemes where

the leaker can post multiple documents to the website, as a function of the documents

212

posted by other users. We define a reactive anonymous steganography scheme as a

tuple of algorithms π = (Enc,KeyEx,Dec) where:

• (tk, statej) ← Encek(x, t
k−1, statej−1) is an algorithm which takes as input a

message x ∈ {0, 1}`′ , a sequence of documents tk−1 (which represents the set

of documents previously sent) and a state of the leaker, and outputs a new

document tk ∈ {0, 1}`, together with a new state.

• dk ← KeyExek(t
d, state) is an algorithm which takes as input a transcript of all

documents sent and the current state of the leaker and outputs a decryption

key dk ∈ {0, 1}s.

• x′ = Decdk(t
d) is an algorithm that given transcript td returns a guess x of

what the secret is in a deterministic way.

To use a reactive anonymous steganography scheme, the leaker’s index i is chosen

uniformly at random from {1, . . . , n} where n is the number of players. For each

k from 1 to d we generate a document tk. If k 6≡ i mod n we let tk ← {0, 1}`.
This corresponds to the non-leakers sending a message. When k ≡ i mod n we

define (tk, statej)← Encek(x, t
k−1, statej−1). Then we define dk ← KeyExek(t

d, state)

and x′ = Decdk(t
d). Here dk is the message that Lea would send over the small

anonymous channel.6

The definition of q-correctness for reactive schemes is the same as for standard

schemes, but our definition of anonymity is weaker because we do not allow the

adversary to choose the documents for the honest users. By using a weaker definition

of anonymity, we get a stronger lower bound.

Definition 7.12 (Correctness). A reactive anonymous steganography scheme is q-

correct if for all λ and x ∈ {0, 1}`′(λ) we have

Pr
[
Decdk

(
td
)

= x
]
≥ q.

where t and dk is chosen as above.

6Note that an anonymous steganography scheme can easily be turned into a reactive anonymous
steganography scheme by combining Gen and Enc into one algorithm and storing ek in the state.

213

Definition 7.13 (Weak Anonymity). Consider the following game between an ad-

versary A and a challenger C

1. The adversary A outputs a message x ∈ {0, 1}`′ ;

2. The challenger C samples random i ∈ [n], and generates td, dk as described

above

3. The challenger C outputs td, dk

4. A outputs a guess g;

We say that an adversary has advantage ε(λ) if
∣∣Pr[g = i]− 1

n

∣∣ ≥ ε(λ). We say a

reactive anonymous steganography scheme provides anonymity if, for any adversary,

the advantage is negligible.

In this model we assume that the non-leakers’ documents are chosen uniformly

at random. This is realistic in the case where we use steganography, so that each tk

is the result of extracting information from a larger file. We could also define a more

general model where the distribution of each non-leaker’s documents tk depends on

the previous transcript. The proof of our impossibility results works as long as the

adversary can sample from Tk|Tk−1=tk−1,i 6≡k mod n in polynomial time. An assumption

like this is necessary to ensure that running a cryptographic protocol, for example

multi-party computation, is not considered to be innocent communication. Using

this general model, we can also model the more realistic situation where the players

do not take turns in sending documents, but at each step only send a document

with some small probability. To do this, we just consider “no document” to be a

possible value of tk.

We could also generalize the model to let the leaker use the anonymous channel

at any time, not just after all the documents have been sent. However, in such a

model, the anonymous channel transmits more information than just the number

of bits send over the channel: the times at which the bits are sent can be used to

transmit information [44]. For the number of bits sent to be a fair measure of how

much information is transferred over the channel, we should only allow the leaker

214

to use the channel when Joe knows she would use the anonymous channel7, and

the leaker should only be allowed to send messages from a prefix-free code, which

might depend on the transcript, but should be computable in polynomial time for

Joe. This ensures that he receives another bit if and only if he expects to receive a

bit, thus, he only gets information from the values of the bits he receives, not from

whether he receives a bit. Our impossibility result also holds for this more general

model, however, to keep the notation simple, we will assume that the anonymous

channel is only used at the end.

Also note that we assume that Eve knows the secret. If we assume that Eve

does not know the message X, but its distribution is known to everyone, there is

a protocol π that reveals the secret with probability 1
n

but reveals no information

about the leaker: Simply let the first player say a random number i between 1 and

n. Then player i sends a message. If she is the leaker she sends x otherwise she

just send a random message from the same distribution as X. Then Dec is just the

message she sent.

Finally, we could generalize the model by allowing access to public randomness.

However, this does not help the players: as none of the players are controlled by the

adversary, the players can generate trusted randomness themselves.

We let T ′ = (T ′1, . . . , T
′
d) denote the random variable where each T ′i is uniformly

distributed on {0, 1}`. In particular T ′|T ′k=tk is the distribution the transcript would

follow if the first k documents are given by tk and all the players were non-leakers.

We let dk′ be uniformly distributed on {0, 1}s. Joe can sample from both T ′|T ′k=tk

and dk′ and he can compute Dec. His strategy to guess the leaker, given a transcript

t, will be to estimate Pr(Decdk′(T
′) = x|T ′k = tk) for each k ≤ d. That is, given that

the transcript of the first k documents is tk and all later documents are chosen as

if the sender was not a leaker and the anonymous channel just sends random bits,

what is the probability that the result is x? He can estimate this by sampling: given

tk he randomly generates td and dk′, and then he computes Dec of this extended

transcript.

If we assume that the protocol π is symmetric8 in the messages x, then before

7That is, there should be a polynomial time algorithm that given previous transcript tk and
previous messages over the anonymous channel decides if the leaker sends a message over the
anonymous channel.

8By this we mean that for random transcript T ′ and random dk′ the result Decdk′(T
′) is uni-

215

any documents are sent, we have Pr(Decdk′(T
′) = x|T ′0 = t0) = 2−`

′
. If, after all

the documents are sent, there exists a key dk′ ∈ {0, 1}s such that Decdk′(t
d) = x,

then for a random dk′ we must have Pr(Decdk′(T
′) = x|T ′d = td) ≥ 2−s. As s < `′

the documents in td must have increased the probability of decoding to x. The

non-leakers’ documents affect this probability, but in expectation they do not, so

in most cases most of this increase will have to come from the leaker, that is,

these probabilities would tend to be higher just after the leaker’s documents than

just before. Of course, a leaking player might send some documents that lowers

Pr(Decdk′(T
′) = x|T ′k = tk) to confuse Joe, so we need a way to add up all the

changes a players does to Pr(Decdk′(T
′) = x|T ′k = tk). The simplest idea would be

to compute the additive difference

Pr(Decdk′(T
′) = x|T ′k = tk)− Pr(Decdk′(T

′) = x|T ′k−1 = tk−1)

and add these for each player. However, the following example shows that if Joe

uses this strategy for determining who the leakers is, there is a protocol for two

people which ensures that Pr(Decdk(T) = X) > 1 − ε but Joe will almost always

guess that the non-leaker is the leaker.

Example 3. Consider this protocol for two players, where one of them wants to

leak one bit. We have s = 0, that is dk is the empty string and will be omitted

from the notation. First we define the function Dec. This function looks at the

two first documents. If none of these are 0`, it returns the first bit of the third

document. Otherwise, it defines the leader to be the first player who send 0`. Next

Dec looks at the first time the leader sent a document different from 0`. If this

number represents a binary number less than 9
10
· 2`, then Dec returns the last bit

of the document before, otherwise it outputs the opposite value of that bit. If the

leader only sends the document 0`, then the output of Dec is just the last bit sent

by the other player.

The leaker’s strategy is to become the leader. There is extremely small proba-

bility that the non-leaker sends 0` in his first document, so we will ignore this case.

Otherwise, the leaker sends 0` in her first document and becomes the leader. When

sending her next document, she looks at the last document from the non-leaker. If

formly distributed. In the formal proof we will show why we can make this assumption.

216

it ended in 0, Joe will think there is 90% chance that 0 it is output and 10% chance

that the output will be 1, and if it ended in 1 it is the other way around. If the last

bit in the non-leakers document is the bit the leakers wants to leak, she just sends

the document 0`−11. To Joe, this will look like the non-leaker raised the probability

of this outcome from 50% to 90% and then the leaker raised it to 100%. Thus, Joe

will guess that the non-leaker was the leaker.

If the last bit of the previous document was the opposite of what the leaker

wanted to reveal, she will “reset” by sending 0`. This brings Joe’s estimate that

the result will be 1 back to 50%. The leaker will continue “resetting” until the

non-leaker have sent a document ending in the correct bit more times than he has

sent a document ending in the wrong bit. For sufficiently high d, this will happen

with high probability, and then the leaker sends 0`1. This ensures that Dec(T) gives

the correct value and that Joe will guess that the non-leaker was the leaker.

If the leaker wants to send many bits, the players can just repeat this protocol.

Obviously, the above protocol for revealing information is not a good protocol:

it should be clear to Joe that the leader is not sending random documents.

As the additive difference does not work, Joe will instead look at the multiplica-

tive factor
Pr(Decdk′(T

′) = x|T ′k = tk)

Pr(Decdk′(T ′) = x|T ′k−1 = tk−1)
.

Definition 7.14. For a transcript t the multiplicative factor mfj,[k0,k1] of player j

over the time interval [k0, k1] is given by

mfj,[k0,k1](t) =
∏

k∈[k0,k1]∩(j+nN)

Pr(Decdk′(T
′) = x|T ′k = tk)

Pr(Decdk′(T ′) = x|T ′k−1 = tk−1)
,

We also define

mf−j,[k0,k1](t) =
∏

k∈[k0,k1]\(j+nN)

Pr(Decdk′(T
′) = x|T ′k = tk)

Pr(Decdk′(T ′) = x|T ′k−1 = tk−1)
,

If we use the multiplicative factor on the non-leaker in the protocol in Example

3 we see that for each document sent by the non-leaker there is probability 0.5

that his multiplicative factor increases by a factor 1.8 and probability 0.5 that it

is multiplied by a factor 0.2. Thus, if the non-leaker first sends a document which

217

decreases Pr(Decdk′(T
′) = x|T ′k = tk) from 0.5 to 0.1 and later a document that

increases it from 0.5 to 0.9, the two documents no longer cancel each other out: they

result in multiplying the multiplicative factor by 0.36.

For fixed k0 and non-leaking player j the sequence

mfj,[k0,k0](T),mfj,[k0,k0+1](T), . . .

is a martingale. This implies that if we consider the first k1−2 documents to be fixed

and player 1 sends a document at time k1 − 1 and player 2 at time k1, then player

1’s document can affect the distribution of mf2,[k0,k1](T
′)|T ′k1−1=tk1−1 but no matter

what document tk1−1 player 1 sends, mf2,[k0,k1](T
′)|T ′k1−1=tk1−1 will have expectation

mf2,[k0,k1−1](t
k1−1). Similar statements holds for the sum of additive differences, but

the advantage of the multiplicative factor is that it is non-negative. For example, as

the multiplicative factor starts at 1 there is probability at most 0.1 that it will ever

be at least 10. Thus, while the leaker’s multiplicative factor has to be large in most

cases, all the non-leakers will with high probability have small multiplicative factors.

The same does not hold for the sum of additive differences, because as Example 3

shows, you can have a probability arbitrarily close to 1 that a non-leaker’s sum of

additive differences increases to 0.4 (or any other positive number) as long as there

is a small probability that it decreases to negative values of large absolute value.

Proposition 7.3. For j and k0, k1 we have:

Et′∼T ′|
Tk1−1=tk1−1

mfj,[k0,k1](t
′) = mfj,[k0,k1−1](t)

Proof. For k1 6≡ j mod n we have mfj,[k0,k1](t) = mfj,[k0,k1−1](t) for any t so the

218

statement is trivially true. For k1 ≡ j mod n and fixed t we have

Et′∼T ′|
T ′k1−1=tk1−1

mfj,[k0,k1](t
′)

=
∑
t′

Pr(T ′ = t′|T ′k1−1 = tk1−1)
∏

k∈[k0,k1]∩(j+nN)

Pr(Decdk′(T
′) = x|T ′k1 = t′k1)

Pr(Decdk′(T ′) = x|T ′k1−1 = t′k1−1)

=
∑
t′

Pr(T ′ = t′|T ′k1−1 = tk1−1) Pr(Decdk′(T
′) = x|T ′k1 = t′k1)

Pr(Decdk′(T ′) = x|T ′k1−1 = t′k1−1)
mfj,[k0,k1−1](t)

=
∑
t′

Pr(T ′ = t′|T ′k1 = t′k1) Pr(T ′k1 = t′k1|T ′k1−1 = tk1−1) Pr(Decdk′(T
′) = x|T ′k1 = t′k1)

Pr(Decdk′(T ′) = x|T ′k1−1 = t′k1−1)

·mfj,[k0,k1−1](t)

=
∑
t′k1

Pr(T ′k1 = t′k1|T ′k1−1 = tk1−1) Pr(Decdk′(T
′) = x|T ′k1 = t′k1)

Pr(Decdk′(T ′) = x|T ′k1−1 = t′k1−1)
mfj,[k0,k1−1](t)

=
∑
t′k1

Pr(Decdk′(T
′) = x|T ′k1−1 = t′k1−1)

Pr(Decdk′(T ′) = x|T ′k1−1 = t′k1−1)
mfj,[k0,k1−1](t)

= mfj,[k0,k1−1](t)

Here the second equality is obtained by pulling the k = k1 term out of the product,

and recognising the resulting product as mfj,[k0,k1−1](t).

By sampling T ′d|T ′k=tk and dk′ Joe can estimate Pr(Decdk′(T
′) = x|T ′k = tk) with

a small additive error, but when the probability is small, there might still be a large

multiplicative error. In particular, Joe can only do polynomially many samples, so

when Pr(Decdk′(T
′) = x|T ′k = tk) is less than polynomially small Joe will most

likely estimate it to be 0.9 Instead, the idea is to estimate the multiplicative factor

starting from some time k0 such that Pr(Decdk′(T
′) = x|T ′k = tk) is not too small

for any k ≥ k0. The following proposition is useful when choosing k0 and choosing

how many samples we make.

Definition 7.15. In the following we say that Joe’s estimate of Pr(Decdk′(T
′) =

x|T ′k = tk) is bad if Pr(Decdk′(T
′) = x|T ′k = tk) ≥ ε2

2s+7d2
but his estimate is not in

9This is the reason that anonymous steganography with small anonymous channel works at all:
we keep Pr(Decdk′(T

′) = x|T ′k = tk) exponentially small until Lea uses the anonymous channel.
When Lea then uses the anonymous channel to send dk, the probability of x being the output
increases from exponentially small to 1.

219

the interval[(
1− 1

2d

)
Pr(Decdk′(T

′) = x|T ′k = tk),

(
1 +

1

2d

)
Pr(Decdk′(T

′) = x|T ′k = tk)

]
.

Proposition 7.4. Assume that Joe makes 3·2s+9d4

ε2
ln
(

4d
ε

)
samples of Decdk′(T

′)|T ′k=tk

to estimate Pr(Decdk′(T
′) = x|T ′k = tk).

No matter the true value of Pr(Decdk′(T
′) = x|T ′k = tk), there is probability at

most ε
2d

that his estimate is bad.

Proof. By definition, the estimate cannot be bad unless Pr(Decdk′(T
′) = x|T ′k =

tk) ≥ ε2

2s+7d2
, so in the following we assume this inequality holds.

Let Yi be the random variable that is 1 if the ith sample of T ′, dk′ satisfy

Decdk′(T
′) = x and is 0 otherwise. Let Y be the sum of all the Yis. We see that

µ := EY ≥ 3 · 2s+9d4

ε2
ln

(
4d

ε

)
ε2

2s+7d2
= 12d2 ln

(
4d

ε

)
.

Joe’s estimate of Pr(Decdk′(T
′) = x|T ′k = tk) is going to be divided by number of

samples. Thus, Joe’s estimate is going to be within a factor 1 ± δ of the correct

probability if Y is within a factor 1± δ of µ.

As the Yis are independent and only take the values 0 and 1, we can use the

multiplicative Chernoff bound [61, Theorem 4.1 and Theorem 4.2]:

Pr(Y ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)1+δ

)µ
≤ e

−δ2µ
3 , for δ < 1

Pr(Y ≤ (1− δ)µ) ≤e−δ
2µ
2 ≤ e

−δ2µ
3 .

So the probability of a bad estimate is at most 2e
−δ2µ

3 , where δ = 1
2d

and µ ≥
12d2 ln(4d

ε
). We get

2e
−δ2µ

3 ≤ 2e−
(1
2d)

2
12d2 ln(4d

ε)
3 = 2e− ln(4d

ε) =
ε

2d
.

Proposition 7.5. Fix a leaker protocol and a number m0 > 2. Let i denote the

220

(random) index of the leaker. For a random transcript T given X = x there is

probability at most 4d
m0

that there exists j 6= i and k0 such that mfj,[k0,d](T) ≥ m0

2
or

mf−i,[k0,d](T) ≥ m0

2
.

Proof. For fixed k0, and non-leaker j we have ET |X=x

(
mfj,[k0,d](T)

)
= 1 no matter

the leakers strategy. As

mfj,[k0,d](t) ≥ 0

this implies that

Pr
(
mfj,[k0,d](T) ≥ m0

2

∣∣∣X = x
)
≤ 2

m0

.

Similarly for mf−i,[k0,d]. We have

mfj,[k0,d](t) = mfj,[k0−1,d](t)

if player j does not send the k0’th document, so for fixed t there are only d different

values (not counting 1) of mfj,[k0,d](t) with j 6= i and k0 ≤ d. By the union bound,

the probability that one of the mfj,[k0,d](t)’s or one of the mf−i,[k0,d](t)’s are above
m0

2
is at most 2d 2

m0
= 4d

m0
.

Now we are ready to prove the impossibility result.

Theorem 7.6. Let ε be a function in λ such that 1
ε

is bounded by a polynomial,

and let π be a q(λ)-correct reactive anonymous steganography scheme with s(λ) =

O(log(λ)) and `′ ≥ s+7+2 log(d)−2 log(ε). Now there is a probabilistic polynomial

time Turing machine A that takes input t and x and outputs the leaker identity with

probability

q(λ) +
1− q(λ)

n(λ)
− ε(λ).

Notice that we cannot do better than q + 1−q
n

. The players could use a protocol

where with probability q the leaker reveals herself and the information and otherwise

no-one reveals any information. This protocol succeeds with probability q, and when

it does, Joe will guess the leaker. With probability 1 − q it does not succeed, and

Joe has probability 1
n

of guessing the leaker. In total Joe will guess the leaker with

probability q + 1−q
n

.

221

Proof. Let π be a reactive anonymous steganography scheme. We assume that for

random T ′ and dk′ the random variable Decdk′(T
′) is uniformly distributed10 on

{0, 1}`′ and we will just let the adversary send 0`
′

in the anonymity game.

Let m0 = 8d
ε

. Consider a random transcript t. If for some k0 and some non-leaker

j we have mfj,[k0,d] ≥ m0

2
or if we have mf−i,[k0,d] ≥ m0

2
we set E = 1.

First Joe will estimate Pr(Decdk′(T
′) = 0`

′ |T ′k = tk) for all k using

3 · 2s+9d4

ε2
ln

(
4d

ε

)
samples for each k. Set E = 1 if at least one of these estimates is bad. In all cases

where E has not been defined yet we set E = 0. By the above propositions and the

union bound, Pr(E = 1) ≤ 4d
8d
ε(λ)

+ d ε(λ)
2d

= ε(λ).

Now let k0 be the smallest number such that for all k ≥ k0 Joe’s estimate of

Pr(Decdk′(T
′) = 0`

′ |T ′k = tk) is at least ε2

2s+7d2
. The idea would be to estimate the

multiplication factors mfj,[k0+1,d], but the problem is that Pr(Decdk′(T
′) = 0`

′|T ′k0 =

tk0) could be large (even 1) even though Pr(Decdk′(T
′) = 0`

′|T ′k0−1 = tk0−1) is small,

so the players might not reveal any information after the k0−1’th document. Thus,

Joe needs to include the k0 − 1’th document in his estimate of the multiplication

factors, but his estimate of Pr(Decdk′(T
′) = 0`

′|T ′k0−1 = tk0−1) might be off by a

large factor. To solve this problem, we define

mfj =

mfj,[k0+1,d] if j 6≡ k0 − 1 mod n

mfj,[k0+1,d]
Pr(Decdk′ (T

′)=0`
′ |T ′k0=tk0)

(1− 1
2d

)−1 ε2

2s+7d2

if j ≡ k0 − 1 mod n

that is, we pretend that Pr(Decdk′(T
′) = 0`

′|T ′k0 = tk0) = (1 − 1
2d

)−1 ε2

2s+7d2
and

then use mfj,[k0,d]. We define mf−i the similar way. Joe’s estimate of Pr(Dec(T) =

X|T k0−1 = tk0−1) is less than ε2

2s+7d2
, otherwise k0 would have been lower (here we

are using the assumption h ≥ s+ 7 + 2 log(d)− 2 log(ε). Without this, k0 could be

10If this is not the case, we can define a reactive anonymous scheme π̃ where this is the case:

just let X ′ be uniformly distributed on {0, 1}`′ , let Ẽnc(x, tk, state) = Enc(x ⊕ X ′, tk, state) and

D̃ecdk(t) = X ′ ⊕ Decdk(t), where ⊕ is bitwise addition modulo 2. To use π̃ we would need `′ bits
of public randomness to give us X ′. To get this, we can just increase ` by `′ and let X ′ be the last
`′ bits of the first document.

222

1). Thus, if this estimate it not bad we must have

Pr(Decdk′(T
′) = 0`

′ |T ′k0−1 = tk0−1) ≤
(

1− 1

2d

)−1
ε2

2s+7d2

So if E = 0 then mfj ≤ mfj,[k0,d] ≤ m0

2
. Similar for mf−i.

If E = 0 then mfj ≤ m0

2
for all j 6= i and mf−i ≤ m0

2
. Furthermore, as all of Joe’s

estimate are good, his estimate of mfj is off by at most a factor
(
1− 1

2d

)−d
< 2.

Now we define Joe’s guess: if exactly one of his estimated mfj’s are above m0 he

guesses that this player j is the leaker. Otherwise, he chooses his guess uniformly

at random from all the players. There are two ways Pr(Decdk′(T
′) = 0`

′|T ′k = tk)

can increase as k increases11: by the leaker sending documents or by a non-leaker

sending documents. In the cases where E = 0 and Joe’s estimate of mfi is less than

m0 we know that the contribution from the leaker’s documents is a factor less than

2m0. As E = 0 we also know that the total contribution from all the non-leakers is

at most a factor m0

2
. So when only dk′ has not been revealed to Joe we have

Pr(Decdk′(T) = X|T = td) <
ε2

2s+7d2

(
1− 1

2d

)−1

2m0
m0

2
≤ ε2

2s+6d2
m2

0 = 2−s

As the only randomness left to be revealed12 is dk′ which is uniformly distributed

on a set of size 2−s, we know that

Pr(Decdk′(T) = 0`
′|T = td)

is a multiple of 2−s. This implies

Pr(Decdk′(T) = 0`
′ |T = td) = 0.

11If we allow the leaker to send anonymous bits before the end of the open communication,
this is a third way Pr(Decdk′(T

′) = 0`
′ |T ′k = tk) can increase. However, if the times where the

anonymous channel is used are predictable by Joe, he can still sample as if the anonymous bits
where random. This way, each anonymous bits makes Pr(Decdk′(T

′) = 0`
′ |T ′k = tk) increase by

at most a factor 2. If the leaker can only send s anonymous bit in total this only moves a factor
2s increase in Pr(Decdk′(T

′) = 0`
′ |T ′k = tk) from a later point in the proof to here.

12Here we are using that Dec is deterministic. However, allowing it to be non-deterministic does
not help: we could just increase ` and let Dec use the extra bits in each document as randomness
instead of using a random tape.

223

In other words, if Decdk(T) = 0`
′

and E = 0 then A must output i. Furthermore, in

all other cases where E = 0 Joe will either guess the leaker correctly (because Joe’s

estimate of mfi is sufficiently high) or guess uniformly among all the players. The

probability that Joe is correct is now

Pr(g = i) ≥Pr(Decdk(T) = 0`
′
, E = 0) +

Pr(Decdk(T) 6= 0`
′
, E = 0)

n

= Pr(Decdk(T) = 0`
′
)− Pr(Decdk(T) = 0`

′
, E = 1)

+
Pr(Decdk(T) 6= 0`

′
)

n
− Pr(Decdk(T) 6= 0`

′
, E = 1)

n

≥q +
1− q
n
− Pr(E = 1) ≥ q +

1− q
n
− ε.

Finally we can conclude that:

Corollary 7.7. If π is a reactive anonymous steganography scheme with s = O(log(λ)),

d polynomial in λ and `′

log(λ)
→∞ that ensures weak anonymity, then the probability

of correctness q tends to 0 as λ→∞.

Proof. Let π be as in the assumption and define

ε = max
(
λ−1, 2−

s+7+2 log(d)−`′
2

)
By assumption, s = O(log(λ)), log(d) = O(log(λ)), and `′

log(λ)
→∞, so ε→ 0. The

parameters satisfy the assumptions in Theorem 7.6 so there is an adversary that can

guess the leaker with probability

q +
1− q
n
− ε =

1

n
+
n− 1

n
q − ε ≥ 1

n
+
q(n− 1)− nε

n
.

As π ensures anonymity, q(n−1)−nε
n

must be negligible and as ε → 0 we must have

q → 0.

224

Chapter 8

Summary and Conclusions

In Chapter 3 we studied the problem of sending information anonymously in the

presence of what might be the strongest possible passive adversary who cannot read

people’s minds: an adversary who has unbounded computational power, who can

observe all messages and (this assumption was implicit) knows all of people’s shared

randomness. Intuitively, it should be impossible to send information anonymously,

when such an adversary exists: any hint towards a secret should increase the ad-

versary’s suspicion towards the leaker. We formalized this intuition by defining a

measure of suspicion and showed that it exactly captures the price of revealing in-

formation: when you reveal one bit of information, your suspicion must increase by

one in expectation. Conversely, it is always possible to reveal one bit of information

while only increasing your expected suspicion by one.

We used this measure to show that if leakers just want to preserve reasonable

doubt, they can reveal some amount of information. However, even in the best case

models1, each leaker can reveal at most − log(1−bm)
bm

− log(e), where bm is the threshold

of reasonable doubt. For bm = 0.3 this is only 0.27 . . . bits and even for bm = 0.95

it is only 3.1 . . . bits.

Perhaps the biggest obstacle to using cryptogenography, is to get people to follow

a protocol. Part of this problem is that many people might not care to follow a

protocol. This issue was addressed in Chapter 6, and it turned out not to be a

problem at all: as long as people send out a sufficient amount of randomness, we

1That is, in the model where the total number of people is much larger than the number of
leakers, and in two of the adaptive models: “bl-threshold centrally organised” and “bl- threshold
informed choice”.

225

can take a protocol π, and adapt it to the distribution of innocent communication.

To do so, we need to know the distribution of the innocent communication used.

This should be possible by, for example, using the last digit of time stamps, or

by using the randomness that people send out when participating in cryptographic

protocols.

Another part of the problem of getting people to follow a protocol, is that some

people might be actively against the purpose of the protocol, and want to obstruct

it. This problem was addressed in Chapter 4. If bl denotes the probability that

any given person is a leaker and bc denotes the probability that they are a censor

(that is, they are trying to obstruct the protocol), then the censors can prevent any

information from being revealed if bl+bc ≥ bm. However, we also saw that if bl+bc is

much smaller than bm, the censors only have a small effect on the number of leakers

it takes to leak a bit of information. In the case where bl and bc are both small, the

main effect of the censors is that they can spread false stories: they can ensure that

the observer of the communication can only produce a list of length 1 + b bc
bl
c which,

unless something unlikely happens, contains the truth x.

Probably the largest part of the problem of getting people to follow a cryp-

togenography protocol, is to choose a protocol and communicate it to people who

want to reveal information, without being stopped or punished by the adversary.

One way of doing this would be to prepare the protocol before the adversary is

“active”. Warrant canaries is an example of a communication method which has to

be prepared before an adversary is “activated”. Besides providing anonymity to the

leakers, cryptogenography has the advantage over warrant canaries that there is a

much smaller risk of false positives: while a warrant canary can die (disappear) by

mistake, in cryptogenography it is possible to ensure that G(T) returns an empty

message with very high probability, unless some people try to send a message. How-

ever, there would be many legal questions about such a use of cryptogenography:

is it “speech”, if you send less than one bit of information? Is it legal to prepare

to use cryptogenography to leak information you will not be allowed to leak? Can

a company, whose employees have, beyond reasonable doubt, leaked information,

be punished for leaking information, if no particular employee, no particular action

and no particular message is likely to have been part of the leakage?

In the model in Chapter 3 and Chapter 4 we assumed the leakers would never

226

be willing to lose reasonable doubt, and as long as they had reasonable doubt, they

did not care how suspicious they were. Perhaps it would be more realistic if the

leakers were willing to make trade-offs between the amount of information revealed

and how suspicious they are. There is no canonical model for such a situation, as

different people might prefer different outcomes, but in Chapter 5 we considered a

model where the players had to make such trade-offs. We saw that in the case with

many leakers, the measure of suspicion was still useful, although in this model we

did not manage to get matching upper and lower bounds. We proved a concavity

characterization, which is useful for proving upper bounds on the utility in the case

of only one leaker.

Finally, in Chapter 7 we considered a model where the adversary has bounded

computational power. We showed that this is still not enough for a single leaker

to be able to reveal information anonymously, but it can in theory be used for

bootstrapping a small or expensive anonymous channel. One of the building blocks

used for doing this bootstrapping is indistinguishability obfuscation, so the scheme

is currently infeasible in practice. It is still an open problem if you can bootstrap

anonymous communication in a computationally cheaper way. Another disadvan-

tage in the scheme is that it requires the leaker to download a large amount of

information. Perhaps this could be improved by finding a protocol, where the leaker

only needs to get a hash of the transcript.

Throughout the thesis we have considered the problem of how to get anonymity in

the presence of an extremely strong adversary. In particular, we have only considered

models where leakers cannot get any meaningful help from non-leakers. While we

do have positive results, we have also shown very strong impossibility results. Most

anonymity research assumes that there exist helpers and at least one of them can

be trusted. Our impossibility results justify this assumption, by showing that only

very little can be done without it.

227

References

[1] Anonymizer. anonymizer. https://www.anonymizer.com/. 27

[2] Michael Backes, Aniket Kate, Praveen Manoharan, Sebastian Meiser, and Es-

maeil Mohammadi. AnoA: A framework for analyzing anonymous communi-

cation protocols. In Computer Security Foundations Symposium (CSF), 2013

IEEE 26th, pages 163–178. IEEE, 2013. 25

[3] Rajiv Bagai, Huabo Lu, Rong Li, and Bin Tang. An accurate system-wide

anonymity metric for probabilistic attacks. In Proceedings of the 11th Privacy

Enhancing Technologies Symposium (PETS 2011), July 2011. 25

[4] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems

for non-cryptographic fault-tolerant distributed computation. In Proceedings of

the twentieth annual ACM symposium on Theory of computing, pages 1–10.

ACM, 1988. 29

[5] Marvin Künnemann Benjamin Doerr. Improved protocols and hardness results

for the two-player cryptogenography problem. arXiv preprint arXiv:1603.06113,

2016. 18, 136, 141, 155, 158

[6] Daniel J Bernstein, Johannes Buchmann, and Erik Dahmen. Post-quantum

cryptography. Springer Science & Business Media, 2009. 14

[7] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic en-

cryption from (standard) LWE. In IEEE 52nd Annual Symposium on Foun-

dations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October

22-25, 2011, pages 97–106, 2011. 202

228

https://www.anonymizer.com/

REFERENCES

[8] Mark Braverman, Ankit Garg, Denis Pankratov, and Omri Weinstein. From

information to exact communication. In Proc. 45th Annual ACM Symposium

on the Theory of Computing, 2013. 143, 154

[9] Joshua Brody, Sune Jakobsen, Dominik Scheder, and Peter Winkler. Cryp-

togenography. In ITCS, 2014. 2, 14, 136, 155

[10] Christian Cachin. An information-theoretic model for steganography. In Infor-

mation Hiding, Second International Workshop, Portland, Oregon, USA, April

14-17, 1998, Proceedings, volume 1525 of Lecture Notes in Computer Science,

pages 306–318. Springer, 1998. 31

[11] Rein Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. Deniable

encryption. In Advances in Cryptology?CRYPTO’97, pages 90–104. Springer,

1997. 203

[12] Konstantinos Chatzikokolakis, Catuscia Palamidessi, and Prakash Panangaden.

Probability of error in information-hiding protocols. In 20th IEEE Computer

Security Foundations Symposium (CSF’07), pages 341–354. IEEE, 2007. 25, 52

[13] David Chaum. Untraceable electronic mail, return addresses, and digital

pseudonyms. Communications of the ACM, 24(2), February 1981. 28

[14] David Chaum. The dining cryptographers problem: Unconditional sender and

recipient untraceability. Journal of Cryptology, 1:65–75, 1988. 24, 29

[15] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private

information retrieval. Journal of the ACM (JACM), 45(6):965–981, 1998. 30

[16] Sebastian Claußand Stefan Schiffner. Structuring anonymity metrics. In Pro-

ceedings of the Second ACM Workshop on Digital Identity Management, DIM

’06, pages 55–62, New York, NY, USA, 2006. ACM. 25

[17] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. Riposte: An anony-

mous messaging system handling millions of users. In Security and Privacy

(SP), 2015 IEEE Symposium on, pages 321–338. IEEE, 2015. 30

229

REFERENCES

[18] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley-

Interscience, New York, NY, 1991. 19, 109, 110

[19] George Danezis and Claudia Diaz. A survey of anonymous communication

channels. Technical Report MSR-TR-2008-35, Microsoft Research, January

2008. 27, 30

[20] George Danezis, Roger Dingledine, and Nick Mathewson. Mixminion: Design

of a type iii anonymous remailer protocol. In Security and Privacy, 2003.

Proceedings. 2003 Symposium on, pages 2–15. IEEE, 2003. 28

[21] Claudia Diaz, Stefaan Seys, Joris Claessens, and Bart Preneel. Towards mea-

suring anonymity. In Proceedings of Privacy Enhancing Technologies Workshop

(PET 2002). Springer-Verlag, LNCS 2482, April 2002. 24, 25

[22] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-

generation onion router. In Proceedings of the 13th USENIX Security Sympo-

sium, August 2004. 29

[23] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential

privacy. Foundations and Trends in Theoretical Computer Science, 9(3-4):211–

407, 2014. 25

[24] M. Edman, F. Sivrikaya, and B. Yener. A combinatorial approach to measuring

anonymity. Intelligence and Security Informatics, 2007 IEEE, pages 356–363,

May 2007. 25

[25] Alexandre Evfimievski, Johannes Gehrke, and Ramakrishnan Srikant. Limit-

ing privacy breaches in privacy preserving data mining. In Proceedings of the

twenty-second ACM SIGMOD-SIGACT-SIGART symposium on Principles of

database systems, pages 211–222. ACM, 2003. 32, 96

[26] Lee Ferran. Ex-NSA chief: ’we kill people based on metadata’. abc-

news, 2014. http://abcnews.go.com/blogs/headlines/2014/05/

ex-nsa-chief-we-kill-people-based-on-metadata/. 13

[27] Freedom of the Press Foundation. Securedrop. https://freedom.press/

securedrop. 29

230

http://abcnews.go.com/blogs/headlines/2014/05/ex-nsa-chief-we-kill-people-based-on-metadata/
http://abcnews.go.com/blogs/headlines/2014/05/ex-nsa-chief-we-kill-people-based-on-metadata/
https://freedom.press/securedrop
https://freedom.press/securedrop

REFERENCES

[28] Freehaven. Anonymity bibliography. http://www.freehaven.net/anonbib/.

30

[29] Jessica Fridrich. Steganography in Digital Media: Principles, Algorithms, and

Applications. Cambridge University Press, New York, NY, USA, 1st edition,

2009. 30

[30] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and

Brent Waters. Candidate indistinguishability obfuscation and functional en-

cryption for all circuits. In 54th Annual IEEE Symposium on Foundations

of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA,

pages 40–49, 2013. 195, 200

[31] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings

of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009,

Bethesda, MD, USA, May 31 - June 2, 2009, pages 169–178, 2009. 202

[32] Benedikt Gierlichs, Carmela Troncoso, Claudia Diaz, Bart Preneel, and In-

grid Verbauwhede. Revisiting A Combinatorial Approach Toward Measuring

Anonymity. In WPES ’08: Proceedings of the 7th ACM workshop on Privacy in

the electronic society, volume ACM, pages 111–116, Alexandria,VA,USA, 2008.

ACM. 25

[33] Naomi Gilens. The NSA has not been here: Warrant canaries as tools for

transparency in the wake of the snowden disclosures. Harv. J. Law & Tec,

28:525–593, 2015. 32, 33

[34] David M Goldschlag, Michael G Reed, and Paul F Syverson. Hiding routing

information. In Information Hiding, pages 137–150. Springer, 1996. 28

[35] Glenn Greenwald. The crux of the NSA story in one phrase: ’collect it all’.

The Guardian, 2013. http://www.theguardian.com/commentisfree/2013/

jul/15/crux-nsa-collect-it-all. 13

[36] Glenn Greenwald and Ewen MacAskill. NSA prism program taps in to user

data of apple, google and others. The Guardian, 7(6):1–43, 2013. 27

231

http://www.freehaven.net/anonbib/
http://www.theguardian.com/commentisfree/2013/jul/15/crux-nsa-collect-it-all
http://www.theguardian.com/commentisfree/2013/jul/15/crux-nsa-collect-it-all

REFERENCES

[37] Ceki Gülcü and Gene Tsudik. Mixing e-mail with babel. In Network and

Distributed System Security, 1996., Proceedings of the Symposium on, pages

2–16. IEEE, 1996. 28

[38] Venkatesan Guruswami. Algorithmic results in list decoding. Foundations and

Trends in Theoretical Computer Science, 2(2):107–195, 2006. 108

[39] Temporary injunction in the anonymous remailer case. http://web.archive.

org/web/19970414065743/http://www.penet.fi/injuncl.html. 27

[40] Johan Helsingius. Johan helsingius closes his internet remailer.

http://web.archive.org/web/19970414065812/http://www.penet.fi/

press-english.html. 27

[41] Nicholas J. Hopper. Toward a theory of Steganography. PhD thesis, Carnegie

Mellon University, 2004. 177

[42] Nicholas J. Hopper, John Langford, and Luis von Ahn. Provably secure

steganography. In Advances in Cryptology - CRYPTO 2002, 22nd Annual In-

ternational Cryptology Conference, Santa Barbara, California, USA, August

18-22, 2002, Proceedings, pages 77–92, 2002. 31

[43] Pavel Hubacek and Daniel Wichs. On the communication complexity of secure

function evaluation with long output. In Proceedings of the 2015 Conference

on Innovations in Theoretical Computer Science, pages 163–172. ACM, 2015.

202, 204, 212

[44] Russell Impagliazzo and Ryan Williams. Communication complexity with syn-

chronized clocks. In Computational Complexity (CCC), 2010 IEEE 25th Annual

Conference on, pages 259–269. IEEE, 2010. 214

[45] Luca Invernizzi, Christopher Kruegel, and Giovanni Vigna. Message in a bot-

tle: Sailing past censorship. In Proceedings of the Annual Computer Security

Applications Conference (ACSAC). ACM, 2013. 31

[46] Sune K. Jakobsen. Greatest function satisfying some convexity requirements.

mathoverflow.net/questions/81753. (2011). 155

232

http://web.archive.org/web/19970414065743/http://www.penet.fi/injuncl.html
http://web.archive.org/web/19970414065743/http://www.penet.fi/injuncl.html
http://web.archive.org/web/19970414065812/http://www.penet.fi/press-english.html
http://web.archive.org/web/19970414065812/http://www.penet.fi/press-english.html

REFERENCES

[47] Sune K. Jakobsen. Information theoretical cryptogenography. In ICALP (1),

pages 676–688, 2014. 2

[48] Sune K Jakobsen. Information theoretical cryptogenography. arXiv preprint

arXiv:1402.3125, 2014. 2

[49] Sune K Jakobsen and Claudio Orlandi. How to bootstrap anonymous commu-

nication. arXiv preprint arXiv:1502.05273, 2015. 3

[50] Sune K Jakobsen and Claudio Orlandi. How to bootstrap anonymous com-

munication. In Proceedings of the 2016 ACM Conference on Innovations in

Theoretical Computer Science, pages 333–344. ACM, 2016. 3, 23, 198

[51] Sune K Jakobsen, Troels B Sørensen, and Vincent Conitzer. Timeability of

extensive-form games. In Proceedings of the 2016 ACM Conference on Innova-

tions in Theoretical Computer Science, pages 191–199. ACM, 2016. 28

[52] Dogan Kesdogan, Jan Egner, and Roland Bschkes. Stop-and-go-mixes providing

probabilistic anonymity in an open system. In In Proceedings of Information

Hiding workshop, pages 83–98. Springer-Verlag, 1998. 23

[53] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishabil-

ity obfuscation for turing machines with unbounded memory. In Proceedings

of the Forty-Seventh Annual ACM on Symposium on Theory of Computing,

STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 419–428, 2015. 205

[54] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge

University Press, New York, NY, USA, 1997. 36

[55] Ladar Levison. Secrets, lies and snowden’s email: why I was forced to shut down

lavabit. The Guardian, 2014. http://www.theguardian.com/commentisfree/

2014/may/20/why-did-lavabit-shut-down-snowden-email. 27

[56] Richard J. Lipton. Who knew the secret? https://rjlipton.wordpress.

com/2013/12/13/who-knew-the-secret/, 2013. 14

[57] N. Ma and P. Ishwar. Interactive source coding for function computation in

collocated networks. IEEE Trans. Inf. Theory, 58(7):4289–4305, 2012. 154

233

http://www.theguardian.com/commentisfree/2014/may/20/why-did-lavabit-shut-down-snowden-email
http://www.theguardian.com/commentisfree/2014/may/20/why-did-lavabit-shut-down-snowden-email
https://rjlipton.wordpress.com/2013/12/13/who-knew-the-secret/
https://rjlipton.wordpress.com/2013/12/13/who-knew-the-secret/

REFERENCES

[58] N. Ma and P. Ishwar. The infinite-message limit of two-terminal interactive

source coding. IEEE Trans. Inf. Theory, 59(7):4071–4094, 2013. 154

[59] Hooman Mohajeri Moghaddam, Baiyu Li, Mohammad Derakhshani, and Ian

Goldberg. Skypemorph: Protocol obfuscation for tor bridges. In Proceedings

of the 2012 ACM conference on Computer and communications security, pages

97–108. ACM, 2012. 31

[60] Ulf Möller, Lance Cottrell, Peter Palfrader, and Len Sassaman. Mixmaster

protocol?version 2. Draft, July, 154, 2003. 28

[61] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Chapman

& Hall/CRC, 2010. 220

[62] Andreas Pfitzmann and Marit Hansen. A terminology for talking about privacy

by data minimization: Anonymity, unlinkability, undetectability, unobservabil-

ity, pseudonymity, and identity management, 2010. 24

[63] The Tor project. Tor metrics – relays with exit, fast, guard, stable, and hsdir

flags. https://metrics.torproject.org/relayflags.html. 15

[64] Niels Provos and Peter Honeyman. Hide and seek: An introduction to steganog-

raphy. Security & Privacy, IEEE, 1(3):32–44, 2003. 30

[65] Michael K Reiter and Aviel D Rubin. Crowds: Anonymity for web transactions.

ACM Transactions on Information and System Security (TISSEC), 1(1):66–92,

1998. 27, 28

[66] Andrei Serjantov and George Danezis. Towards an information theoretic metric

for anonymity. In Proceedings of Privacy Enhancing Technologies Workshop

(PET 2002). Springer-Verlag, LNCS 2482, April 2002. 24, 25

[67] Claude E. Shannon. A mathematical theory of communication. Bell system

technical journal, 27, 1948. 22, 57

[68] Paul Syverson. Why I’m not an entropist. In Security Protocols XVII, pages

213–230. Springer, 2009. 28, 29

234

https://metrics.torproject.org/relayflags.html

REFERENCES

[69] Gergely Tóth, Zoltán Hornák, and Ferenc Vajda. Measuring anonymity revis-

ited. In Proceedings of the Ninth Nordic Workshop on Secure IT Systems, pages

85–90, November 2004. 24, 25, 26

[70] Jelle Van Den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. Vu-

vuzela: Scalable private messaging resistant to traffic analysis. In Proceedings

of the 25th Symposium on Operating Systems Principles, pages 137–152. ACM,

2015. 30

[71] Stanley L Warner. Randomized response: A survey technique for eliminat-

ing evasive answer bias. Journal of the American Statistical Association,

60(309):63–69, 1965. 31, 40

[72] Canary Watch. Canary watch. https://www.canarywatch.org/. 32

[73] Nicholas Watt, Rowena Mason, and Ian Traynor. David Cameron

pledges anti-terror law for internet after paris attacks. The

Guardian, 2015. http://www.theguardian.com/uk-news/2015/jan/12/

david-cameron-pledges-anti-terror-law-internet-paris-attacks-nick-clegg.

13

[74] Zachary Weinberg, Jeffrey Wang, Vinod Yegneswaran, Linda Briesemeister,

Steven Cheung, Frank Wang, and Dan Boneh. Stegotorus: a camouflage proxy

for the tor anonymity system. In Proceedings of the 2012 ACM conference on

Computer and communications security, pages 109–120. ACM, 2012. 31

[75] Rebecca Wexler. Warrant canaries and disclosure by design: The real threat

to national security letter gag orders. Yale LJF, 124:158–349, 2014. 32, 33

[76] Ian H. Witten, Radford M. Neal, and John G. Cleary. Arithmetic coding for

data compression. Commun. ACM, 30(6):520–540, June 1987. 180

[77] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron Johnson.

Dissent in numbers: Making strong anonymity scale. In Presented as part of the

10th USENIX Symposium on Operating Systems Design and Implementation

(OSDI 12), pages 179–182, 2012. 29

235

https://www.canarywatch.org/
http://www.theguardian.com/uk-news/2015/jan/12/david-cameron-pledges-anti-terror-law-internet-paris-attacks-nick-clegg
http://www.theguardian.com/uk-news/2015/jan/12/david-cameron-pledges-anti-terror-law-internet-paris-attacks-nick-clegg

REFERENCES

[78] Andrew Chi-Chih Yao. Some complexity questions related to distributive com-

puting(preliminary report). In Proceedings of the Eleventh Annual ACM Sym-

posium on Theory of Computing, STOC ’79, pages 209–213, New York, NY,

USA, 1979. ACM. 36

[79] Ye Zhu and Riccardo Bettati. Anonymity vs. information leakage in anonymity

systems. In ICDCS’05, pages 514–524, 2005. 25

236

	Contents
	List of Figures
	1 Introduction
	1.1 Scope of the thesis
	1.1.1 Unbounded computational power
	1.1.2 Non-leakers will not help leakers

	1.2 Contributions of the thesis
	1.2.1 Suspicion
	1.2.2 Information theoretic cryptogenography
	1.2.3 Resilient cryptogenography
	1.2.4 Cryptogenography games
	1.2.5 Anonymous steganography

	1.3 Notation and preliminaries

	2 Previous Work
	2.1 Definition of anonymity
	2.2 Ways of communicating anonymously
	2.3 Other related ideas

	3 Information Theoretic Cryptogenography
	3.1 Bounds on I(X;T)
	3.1.1 Suspicion
	3.1.2 Keeping reasonable doubt
	3.1.3 Why use reasonable doubt?

	3.2 Reliable leakage
	3.2.1 General L-structures

	3.3 Adaptive cryptogenographic protocols

	4 Resilient Cryptogenography
	4.1 Generalized list decoding
	4.2 Minimal list size
	4.3 Capacity
	4.4 Getting the best of both
	4.5 Few leakers and censors

	5 Cryptogenography Games
	5.1 Model
	5.2 Cryptogenography game protocols
	5.2.1 Two player cryptogenography game
	5.2.2 Cryptogenography game protocols with many players

	5.3 Hardness results
	5.4 Multiple leakers

	6 Hiding Among Innocents
	6.1 Hiding among innocents without censors
	6.2 Hiding among innocents with censors

	7 Anonymous Steganography
	7.1 Definitions
	7.1.1 How to use the scheme
	7.1.2 Properties

	7.2 Building blocks
	7.2.1 Indistinguishability obfuscation.
	7.2.2 IND-CPA public-key encryption scheme
	7.2.3 Homomorphic encryption
	7.2.4 Pseudorandom functions
	7.2.5 Somewhere statistically binding vector commitment scheme

	7.3 A protocol for anonymous steganography
	7.4 Lower bound

	8 Summary and Conclusions
	References

