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Abstract

We find empirical evidence that mean-reverting jump processes are not statistically adequate
to model electricity spot price spikes but independent, signed sums of such processes are sta-
tistically adequate. Further we demonstrate a change in the composition of these sums after a
major economic event. This is achieved by developing a Markov Chain Monte Carlo (MCMC)
procedure for Bayesian model calibration and a Bayesian assessment of model adequacy (poste-
rior predictive checking). In particular we determine the number of signed mean-reverting jump
components required in the APXUK and EEX markets, in time periods both before and after
the recent global financial crises. Statistically, consistent structural changes occur across both
markets, with a reduction of the intensity and size, or the disappearance, of positive price spikes
in the later period. All code and data are provided to enable replication of results.

Keywords: Multi-factor models, Bayesian calibration, Markov Chain Monte Carlo,
Ornstein-Uhlenbeck process, Electricity spot price, Negative jumps

1. Introduction

Electricity spot markets have multiple fundamental drivers, for example baseload and renew-
able production (Würzburg et al., 2013). Disturbances in these drivers, such as plant outages
and renewable gluts, can clearly have different dynamic characteristics and consequences. Since
sharp disturbances create spikes in electricity spot prices (Seifert and Uhrig-Homburg, 2007) we
may hypothesise that, over time, disturbances in different drivers give rise to spikes with sta-
tistically distinguishable directions, frequencies, height distributions and rates of decay. It has
recently been demonstrated that electricity spot price formation can evolve over time (Brunner,
2014). Thus we may also hypothesise that the statistical characteristics of electricity price spikes
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will evolve in step with underlying economic events and developments, such as shifts in demand
and increasing renewable penetrations.

In this paper we find empirical support for these two hypotheses. To this end we use multi-
factor electricity spot price models, with multiple superposed mean-reverting components and a
seasonal trend (Benth et al., 2007). This allows statistical patterns such as mean reversion, sea-
sonality and spikes to be reproduced in modelling. Crucially for the present study, this approach
also allows the statistical modelling of multiple spike components with differing frequencies,
height distributions, decay rates, and directions (positive or negative). We demonstrate that in
some electricity markets two types of positive spike are observed, while other markets require
the inclusion of negative spikes. The modelling of negative spikes is an area of emerging in-
terest (Fanone et al., 2013) as renewable penetrations, and hence gluts in renewable production,
increase. Finally we document evolution of the statistical spike structure through periods of eco-
nomic change by comparing two markets across two time periods, one before the recent global
financial crises (2000-2007) and another afterwards (2011-2015) and reflect on possible inter-
pretations of the results.

The calibration of multi-factor models is a highly challenging task and existing approaches
typically involve making strong a priori assumptions, such as setting thresholds for jump sizes,
which may mask the true statistical structure. Methodologically, we develop a Bayesian ap-
proach to calibration based on Markov Chain Monte Carlo (MCMC) methods. This goes beyond
previous work by making minimal assumptions and enables us, for example, to estimate mod-
els with multiple spike components acting in the same direction, a feature which is confirmed
empirically (in 2001–2006 data from the APXUK electricity spot market). In order to assess
the number of mean-reverting jump components required we perform a Bayesian procedure of
posterior predictive checking.

1.1. Background and related work

Econometric models of electricity spot prices have a number of important applications. They
provide stochastic models which can be used by traders to analyse financial options on power
(Benth et al., 2007), and by power system planners to conduct real options analyses for flexible
physical assets such as storage and cogeneration (Moriarty and Palczewski, 2017; Kitapbayev
et al., 2015). Further the pronounced price spikes which characterise spot electricity markets are
of central interest to electricity market regulators who monitor and influence the economics of
markets, aiming for example to prevent perceived abuses of market power (Stephenson and Paun,
2001).
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The complexity of electricity spot price models, and multi-factor models in particular, makes
their analysis statistically challenging and has given rise to a substantial literature. A single-
factor model including the above stylised features was introduced by Clewlow and Strickland
(2000). Through the use of a threshold, the single-factor model of Geman and Roncoroni (2006)
incorporates two jump regimes: when the price is below the threshold jumps are positive, and
when the price exceeds the threshold jumps are negative. Beginning with Lucia and Schwartz
(2002) multi-factor models have expressed the price as a sum of unobservable or latent pro-
cesses (factors) with distinct purposes, for example the modelling of short-term and long-term
price variations respectively. Unlike many single factor models, multifactor models do not im-
ply a perfect correlation between changes in spot, future and forward prices, which is consistent
with the non-storability of electricity (Benth and Meyer-Brandis, 2009). The model of Lucia and
Schwartz (2002) has two factors, namely a Gaussian mean-reverting process and an arithmetic
Brownian motion (that is, a scaled Brownian motion with drift). Interestingly, while also de-
veloping a two-factor model, Seifert and Uhrig-Homburg (2007) explicitly refer to the physical
origins of various types of jumps. Beyond two-factor models, a simple and flexible multi-factor
model with jumps is given in Benth et al. (2007). Estimation procedures for this model are dis-
cussed in Meyer-Brandis and Tankov (2008), although the latter work adds strong assumptions
in order to obtain tractable methods.

The interdependency between parameters in multi-factor models, in particular, is a challenge
to calibration methods. A straightforward approach is to first separate the observed values into
factors using signal filtering techniques, in order to subsequently employ classical maximum
likelihood estimation. Such methods effectively assume that some of these interdependencies
may be neglected, and this approach is taken for example in Meyer-Brandis and Tankov (2008)
and Benth et al. (2012). An alternative is the joint estimation of latent factors, for which there are
two leading methodologies in the literature: expectation-maximisation (EM) and Markov Chain
Monte Carlo (MCMC) methods. While EM produces point estimates for parameters in either a
Bayesian or frequentist framework2 (see, for example, Rydén et al. (2008)), MCMC is able to
generate samples from posterior parameter distributions. Particularly in models with multiple
parameters and latent processes, these interdependencies may result in likelihood surfaces and

2Two possible approaches to the calibration of model parameters are commonly referred to as frequentist and
Bayesian. In the frequentist approach one seeks to derive point estimates of ‘true’ parameter values from the data,
for example by finding the maximiser of a likelihood function. An alternative viewpoint is taken in the Bayesian
approach, where the unknown parameters are first assigned a probability distribution representing prior beliefs about
their value. This prior distribution is combined with the observed data to produce an updated probability distribution
representing the posterior beliefs about the parameters given both the prior and the data.
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posterior distributions which are rather flat around their maxima. While EM suffers from Monte
Carlo errors which amplify the usual difficulties in numerical optimisation for such problems,
MCMC estimates the posterior distribution providing an analyst with a more complete picture of
the interrelations between parameters.

In related contexts, MCMC has been applied to fit continuous-time stochastic volatility mod-
els to financial time series, where the price is a diffusion process whose volatility is a latent mean
reverting jump process or the sum of a number of such processes (called a superposition model).
In this line of research a missing data methodology is employed whereby the observed pro-
cess is augmented with one or more latent marked Poisson processes and the MCMC procedure
generates posterior samples in this high dimensional augmented state space. Examples include
Roberts et al. (2004), Griffin and Steel (2006) and Frühwirth-Schnatter and Sögner (2009). Since
energy prices additionally exhibit jumps directly in their paths, MCMC has been applied to ex-
tensions of these models in which a diffusion process with stochastic volatility is superposed
with a jump process, see Green and Nossman (2008) in the context of electricity and Brix (2015)
for gas prices. Technically the latter two papers estimate a discrete approximation of the models
whereas in this study we pursue exact inference for continuous time models.

1.2. Contribution

From the modelling point of view a novelty of the present study is that the price is a super-
position of more than one jump component, each with its own sign, frequency, size distribution
and decay rate, along with a diffusion component. This approach acknowledges that the negative
price spikes attributable to rapid wind power fluctuations may, for example, have quicker decay
than the infrequent larger positive spikes due to major disturbances such as outages of a tradi-
tional generation plant. The inclusion of multiple jump components also addresses the following
problem identified in Green and Nossman (2008) and Brix (2015). In two-factor models jumps
of intermediate size must be accounted for either in the diffusion process (forcing unlikely spikes
in the Brownian motion path) or the jump process (implying additional jumps). While the for-
mer can lead to an overestimation of volatility in the diffusion process, the latter may result in
an overestimation of the intensity of the jump process, which is independent of the jump sizes.
The inclusion of a second jump process with its own mean jump size and rate of mean reversion
removes this dichotomy, offering an alternative to the inclusion of stochastic volatility in the
diffusion process.

Our first methodological contribution is an MCMC algorithm for exact Bayesian inference
on superposed OU models with diffusion and multiple jump components. We contrast exact
inference with a commonly used estimation procedure using a discrete time model which is an
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approximation to continuous dynamics. While this approximation is often used for practical rea-
sons including simplified and/or tractable implementation, it is not possible to assess a priori
the extent of the estimation error introduced by the approximation employed. Our MCMC pro-
cedure is not based on time discretisation of the model and the inference is therefore exact at
the level of distributions. This is in contrast with the work in the aforementioned papers (Seifert
and Uhrig-Homburg, 2007; Green and Nossman, 2008; Brix, 2015). Despite the relative sim-
plicity of our multi-factor model, the MCMC procedure involves a number of challenging issues
and in the electronic appendix we provide additional comments and details concerning efficient
implementation.

In addition we demonstrate that model adequacy may also be addressed by our MCMC
method. The complexity of electricity spot price models naturally gives rise to parsimony con-
siderations. While multi-factor models (potentially also including latent volatility processes)
offer great flexibility, the potential statistical pitfalls of overly flexible models, for example re-
lating to issues of identifiability and out-of-sample prediction, are well known. In this context,
the ability of MCMC to sample whole trajectories from the posterior distribution of the jump
processes means in particular that the adequacy of latent variable models may be addressed. We
exploit this fact by using the MCMC procedure to perform posterior predictive checks in the
sense of Rubin (1984). For two different electricity spot markets, over two different periods of
time, we determine in this way the minimum number of superposed processes required in the
model. We find that two or three factors are sufficient in each case. We also show that taking
either constant or periodic deterministic jump intensity rates can provide a relatively simple but
sufficiently flexible modelling palette. Since the jump processes influence the spot price directly
(additively) and have their own proper dynamics such models are also rather interpretable. More
generally, since multi-factor models have been considered for a range of commodities including
oil and gas (Schwartz and Smith, 2000; Brix, 2015) our algorithm is also potentially applicable
in these contexts although this is outside the scope of the present paper (see Gonzalez (2015,
Chapter 5) for an application to gas prices).

Section 2 describes the model and the data which animates our study, while Section 3 presents
our MCMC algorithm including the approach to assessing model adequacy through posterior
predictive checking. The data is analysed in Section 4. Section 5 contains discussion of results
and Section 6 concludes. Notes on the efficient implementation of the algorithm are provided
in the electronic appendix. Throughout we denote probability distributions as follows: N(a, b)
denotes the Normal distribution with mean a and variance b, Ga(a, b) the Gamma distribution
with mean a/b, IG(a, b) the Inverse-Gamma distribution with mean b(a− 1)−1 for a > 1, Ex(a)
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Figure 1: Deseasonalised APXUK (top panel) and EEX (bottom panel) daily average prices (excluding weekends)
over two periods. The first period starts on March 27, 2001 for APXUK and on June 16, 2000 for EEX and finishes
on November 21, 2006 for both markets. The second period is January 24, 2011 to February 16, 2015 for both
series. Details of the deseasonalisation procedure are given in the electronic appendix.

the Exponential distribution with mean a and U(a, b) the Uniform distribution on the interval
(a, b).

2. Model

2.1. Motivation

Figure 1 illustrates two electricity spot markets, the United Kingdom APXUK and European
EEX, with weekend prices excluded. The left side of the figure plots daily average prices for the
APXUK (March 2001 to November 2006) and the EEX (June 2000 to November 2006). This pe-
riod was one of general growth in Europe, both economically and in electricity demand, and spot
prices from this time have been studied by a number of authors including Green and Nossman
(2008), Meyer-Brandis and Tankov (2008) and Benth et al. (2012). The right hand side of the
figure plots daily average price data between 2011 and 2015, a period of decline in UK electricity
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demand, although the picture across Europe was mixed.3 In order to reveal the structure of these
price series more clearly the four time series have been separately deseasonalised (for details see
the electronic appendix).

Reversion to a constant level is strongly suggested in the EEX data (bottom panel) and also,
to a slightly lesser extent, in the APXUK series (top panel). Taking first the 2001–2006 APXUK
data, the presence of significant positive price spikes is clear. However visual inspection also
suggests that while some spikes decayed very quickly, a significant number showed more gradual
decay. In contrast the positive spikes in the 2000–2006 EEX data appear uniformly to decay
quickly and, in addition, the presence of smaller but rather frequent negative spikes is suggested.

While the 2011–2015 APXUK data also suggests regular positive spikes, their heights are
significantly smaller than those observed in 2001–2006. In the 2011–2015 EEX data the presence
of negative spikes is suggested perhaps more strongly than in 2000–2006. Further, once these
negative spikes are taken into account, visual inspection reveals apparently little evidence of
positive spikes.

For each series we apply the MCMC procedure described in Section 3 to verify the conclu-
sions of our visual analysis and to establish the smallest number of signed jump components for
which the posterior predictive check is favourable, in a sense made precise in Section 4.

In the following subsections we present in detail the class of spot price models to be cali-
brated.

2.2. Ornstein-Uhlenbeck processes

A process Y (t), 0 ≤ t ≤ T which is right continuous with left limits is called an Ornstein-
Uhlenbeck (OU) process if it is the unique strong solution to the stochastic differential equation
(SDE)

dY (t) = λ−1(µ− Y (t))dt+ σdL(t), Y (0−) = y0, (1)

where L(t) is a driving noise process with independent increments, ie., a Lévy process. The
initial state of the process Y is defined as the value at the left-hand limit Y (0−) due to the
possibility of a jump at time 0. In equation (1), µ ∈ R is the mean level to which the process
tends to revert, λ−1 > 0 denotes the speed of mean reversion and σ > 0 is the volatility of the

3Sources: European Commission Eurostat service; Digest of United Kingdom Energy Statistics (DUKES) 2015,
UK Department of Energy & Climate Change.
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OU process. The unique strong solution to the SDE (1) is given by

Y (t) = µ+ (y0 − µ)e−λ
−1t +

∫ t

0

σe−λ
−1(t−s)dL(s). (2)

We consider two different specifications for the Lévy process L(t) driving Y (t). On the one
hand we consider an OU process where L(t) = W (t) is a standard Wiener process. In this case
the conditional distribution of Y (t+ s) given Y (t), t ∈ [0, T ], s ∈ [0, T − t], is Normal with the
mean

E[Y (t+ s)|Y (t) = y] = µ+ (y − µ) e−λ
−1s,

and the variance
V ar[Y (t+ s)|Y (t) = y] = λσ2(1− e−2λ

−1s)/2.

Hence we call the process Y (t) a Gaussian OU process. On the other hand we consider the case
where L(t) is a compound Poisson process, with the interval representation

L(t) =
∞
∑

j=1

ξj1{t≥τj}, (3)

where the τj are the arrival times of a Poisson process and ξj represents the jump size at time
τj (these jump sizes are independent and identically distributed (i.i.d.) random variables). The
dynamics of Y (t) are explicitly given by

Y (t+ s) = µ+ (Y (t−)− µ)e−λ
−1s +

∑

j:t≤τj≤t+s

e−λ
−1(t+s−τj)ξj, s ≥ 0. (4)

Below we shall model the stochastic part of energy spot prices by superimposing a number of
OU processes.

2.3. A multi-factor model for energy spot prices

Let us denote by X(t) the de-trended and deseasonalised spot price at time t ≥ 0 (presenta-
tion of the relation between X(t) and the electricity spot price S(t) is deferred until the end of
this section). We assume that the deseasonalised price X(t) is a sum of n+ 1 OU processes

X(t) =
n
∑

i=0

wiYi(t), (5)

8
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where Y0 is a Gaussian OU process

dY0(t) = λ−10 (µ− Y0(t))dt+ σdW (t), Y0(0) = y0, (6)

and each Yi, i ≥ 1 is a jump OU process

dYi(t) = −λ−1i Yi(t)dt+ dLi(t), Yi(0−) = yi, i = 1, . . . , n, (7)

each Li being a (possibly inhomogeneous) compound Poisson process with exponentially dis-
tributed jump sizes having mean βi. We will refer to this as the (n+1)-OU model. The constants
wi ∈ {1,−1} are used to indicate whether positive or negative jumps are being modelled. Notice
that each of the processes Yi(t), i ≥ 1, is non-negative since the Li are increasing processes.
Thus by setting wi = 1, we employ Yi(t) to capture positive price spikes, whereas by setting
wi = −1, Yi(t) is assumed to model negative price spikes. Throughout we assume that w0 is
equal to 1.

For each compound Poisson process Li, i ≥ 1, we consider one of two specifications of the
jump intensity rate. In the simpler specification we assume that the intensity rate is constant and
equal to ηi, and hence that jump frequency is independent of time. In the alternative specification
we take account of periodicity in the jump rate as in Geman and Roncoroni (2006) through the
deterministic periodic intensity function

Ii(ηi, θi, δi, t) = ηi

[

2

1 + | sin(π(t− θi)/ki)|
− 1
]δi

, (8)

which has period ki days, where ki ∈ (0,∞) (see Figure 2 for a graph of the fitted intensity func-
tion I1). The parameter ηi ∈ (0,∞) is the maximum jump rate whilst the exponent δi ∈ (0,∞)
controls the shape of the periodic function. In order to have a compact notation covering both the
above model specifications, the intensity function parameter vector associated with the process Yi

will simply be denoted ϑi. In the constant intensity model specification we therefore understand
that ϑi = ηi, while in the periodic intensity model it is understood that ϑi = (ηi, θi, δi).

We aim to show that using the sum of a number of such OU processes provides suitable
flexibility for modelling electricity spot prices. A diffusive Gaussian component is used to model
regular trading characterised by frequent small price variations. The jump components model the
arrival of temporary system disturbances of various kinds causing imbalance between supply and
demand. By specifying two jump components, say, such that λ1 > λ2, we can capture slowly
and quickly decaying price spikes. As discussed in Seifert and Uhrig-Homburg (2007), different

9
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Figure 2: Monthly average number of positive jumps on the EEX market during 2000-6, together with the intensity
function I1 with parameter values taken from Table 4 for the 3-OU-I1 model. As the jumps are not directly observ-
able in the spot price series, we report the numbers inferred from the latent jump processes sampled in the MCMC
procedure.

decay rates may correspond to different physical causes of spikes such as power plant outages
or extreme changes in weather. The possibility of incorporating negative price spikes by taking
wi = −1 is explored in Section 4.

In the empirical studies of Section 4 we assume that the relation between the spot price S(t)
and the deseasonalised price X(t) is of the following form:

S(t) = ef(t/260)X(t), (9)

where f : [0,∞) → R is a deterministic function that captures the long-term price trend and
seasonality typically observed in energy spot prices. In our analysis we take a day as the unit of
time and skip weekends due to their distinctly different price dynamics, resulting in a 260-day
year. The function f is specified in terms of years to capture weather-induced market patterns
linked to seasonal variations. The multiplicative seasonality in (9) is in line with the exponential
price trends standard in mathematical economics. We take

f(τ ; a1, . . . , a6) = a1 + a2τ + a3 sin(2πτ ) + a4 cos(2πτ ) + a5 sin(4πτ ) + a6 cos(4πτ ), (10)

although our methodology applies to any other specification of seasonality provided its effect
can be removed from the series of spot prices prior to statistical inference for X(t).

10
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3. Inference

In this section we present a Markov Chain Monte Carlo (MCMC) approach to Bayesian
inference in the superposition model (5). We construct a Markov chain whose stationary distri-
bution is the posterior distribution of the parameters in our model together with latent variables
introduced to make the inference computationally tractable, see Section 3.1. The application of
a Gibbs sampler allows single parameters or groups thereof to be updated conditioned on oth-
ers being fixed – a standard MCMC approach which aids computational tractability. Central to
the performance of MCMC and particularly the Gibbs sampler is the notion of mixing which is
linked to the speed of convergence of the chain to its stationary distribution. Intuitively the better
the mixing, the smaller the dependence between consecutive steps of the chain and, in effect, the
less the chain gets blocked in small areas of the state space for long stretches of time. Mixing
is negatively affected when the parameters which are updated at a given step of a Gibbs sampler
depend on those upon which they are conditioned. This will be of particular importance in the
choice of latent variables.

In Sections 3.1-3.3 we present techniques for Bayesian inference in the superposition model
(5) in the case of one jump OU component (n = 1). This is then extended in Section 3.4 to the
case of multiple jump components. For simplicity, when it does not lead to ambiguity, we drop
the subscript in the jump process L1 and its parameters, so that L = L1, β = β1 and ϑ = ϑ1.

3.1. Data augmentation

Let X = {x0, . . . , xN} denote observations of the process (5) at times 0 = t0, . . . , tN = T ,
and ∆i = ti − ti−1 > 0, i = 1, . . . , N , the time increments between consecutive observa-
tions. The likelihood ℓ(X | µ, λ0, σ, λ1, ϑ, β) of the data given parameters is neither analyti-
cally tractable nor amenable to numerical integration since it involves an infinite sum of inte-
grals over high dimensional spaces. However by augmenting the state space with observations
Y1 = {y1,0, . . . , y1,N} of the process Y1 at times ti, the likelihood of X given Y1 becomes inde-
pendent of λ1, ϑ and β. Thanks to the explicit form of the transition density of a Gaussian OU
process we have

ℓ(X | µ, λ0, σ,Y1) =
N
∏

i=1

1√
2πΣi

exp

{

− 1

2Σ2i

(

zi − µ− (zi−1 − µ) e−λ
−1

0
∆i
)2
}

, (11)

where Σ2i = λ0σ
2(1− e−2λ

−1

0
∆i)/2 and

zi = xi − y1,i, i = 0, . . . , N. (12)

11
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Space augmentation methods have been widely used in statistics to tackle computationally
infeasible problems. However the choice of latent variables or processes has a profound influence
on the properties of the resulting estimators, affecting in particular the mixing of a Markov
chain approximating the posterior distribution. From a mathematical point of view, the body of
work closest to the present inference problem is estimation in the context of stochastic volatility
models, where the volatility process is driven by a jump process. Among these are the state space
augmentations used in (Jacquier et al., 1994; Kim et al., 1998) and later criticised by Barndorff-
Nielsen and Shephard (2001, p. 188) for high posterior correlation of the parameter λ1 with the
input trajectory of the process Y1. This correlation could lead to MCMC samplers based on this
parametrisation performing poorly. Instead, Barndorff-Nielsen and Shephard (2001) propose an
alternative data augmentation scheme based on a series representation of integrals with respect
to a Poisson process L(t), known as the Rosiński or Ferguson-Klass representation. Bayesian
inference for a stochastic volatility model under this parametrisation was first explored in the
discussion section of Barndorff-Nielsen and Shephard (2001) and further developed in Griffin
and Steel (2006) and Frühwirth-Schnatter and Sögner (2009). In the present paper, however, we
opt for the following more direct parametrisation independently suggested by several researchers
(see, for example, Barndorff-Nielsen and Shephard (2001) and Roberts et al. (2004)).

Recall from Section 2.3 that the process L(t) driving Y1(t) is a compound Poisson process
with intensity function I(ϑ, t) and interval representation (3). Recall also that

Y1(t+ s) = Y1(t−)e−λ
−1

1
s +
∑

j:t≤τj≤t+s

e−λ
−1

1
(t+s−τj)ξj, s ≥ 0, (13)

which motivates a data augmentation methodology where the set of pairs {(τj, ξj)}, instead of
the process Y , is treated as the missing data. This has the benefit of introducing independence
between λ1 and the latent variables, thus improving the mixing in Gibbs samplers.

Let us denote by Φ the marked Poisson process on S = [0, T ] × (0,∞) with locations τi on
[0, T ] and marks ξi on (0,∞). The probability density of Φ is defined relative to a dominating
measure, namely that of a Poisson process with unit intensity on [0, T ] and exponential jump sizes
with parameter 1. Hence, thanks to the marking theorem (Kingman, 1992) and the likelihood
ratio formula in Kutoyants (1998), the density of Φ with respect to this dominating measure is

ℓ(Φ | ϑ, β) = L(ϑ; Φ) · β−NT exp
{

− (β−1 − 1)
NT
∑

j=1

ξj

}

, (14)

where NT is the number of points in S. Here L(ϑ; Φ) is the density, with respect to the Poisson
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process with unit intensity, of the Poisson process with intensity I(ϑ, t):

L(ϑ; Φ) = exp

{

NT
∑

j=1

log I(ϑ, τj)−
∫ T

0

I(ϑ, t)dt+ T

}

. (15)

When L is a homogeneous Poisson process with constant intensity η we obtain

L(ϑ; Φ) = exp
{

− (η − 1)T
}

ηNT . (16)

We will use a Gibbs sampler to simulate from the posterior distribution of the parameters and
the missing data Φ given the observed data X , using the factorisation

π(µ, λ0, σ, λ1, ϑ, β,Φ | X ) ∝ ℓ(X | µ, λ0, σ, λ1,Φ)ℓ(Φ | ϑ, β)π(µ, λ0, σ, λ1, ϑ, β), (17)

where π(µ, λ0, σ, λ1, ϑ, β) is the joint prior density of the parameters.

3.2. Classes of prior distributions

To complete our Bayesian model we now specify classes of prior distributions for the param-
eters, which are assumed to be mutually independent4. For computational efficiency the classes
chosen correspond to conjugate priors where possible. In the empirical studies presented in Sec-
tion 4 the prior distributions are chosen with a large spread (for example variance, where this
exists) in order to let the data speak for itself. Prior expectations are based on existing results in
the literature, combined with further exploratory analysis of historical data as necessary. For de-
tails see the electronic appendix. Of course users of our methodology may also have prior beliefs
about the model parameters, and in our Bayesian context the prior distributions may alternatively
be chosen to reflect these beliefs where appropriate.

We specify a N(aµ, b2µ) prior distribution for the mean level µ of the Gaussian OU component,
an IG(aσ, bσ) for its volatility σ2, an IG(aβ, bβ) for the jump size parameter β and an IG(aλi , bλi)
for the mean reversion parameter λi, i = 0, 1. For the intensity function a Ga(aη, bη) prior
is chosen for η. Further when the intensity is periodic, a Ga(aδ, bδ) prior is taken for δ and a
U(aθ, bθ) prior for θ (cf. (8)).

4In Section 3.4 and following, where more than one jump OU component is considered, the only statistical
dependence we assume is a strict ordering of the mean reversion parameters λj , j = 1, . . . , n when this is needed
for identifiability.
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3.3. MCMC algorithm

In the algorithm below the Gibbs step for updating the λi employs a random-walkMetropolis-
Hastings procedure. To ensure that the mixing is of the same order for small and large values of
λi the step of the proposal should be state dependent; equivalently an appropriate transformation
of λi may be applied. For computational convenience we opt for the latter, swapping λi in the
inference procedure with ρi = e−λ

−1

i .
After setting the initial state of the chain, the MCMC algorithm applied below cycles through

the following steps:

MCMC algorithm for the 2-OU model
Step 1: update µ ∼ π(µ | ρ0, σ, ρ1,X ,Φ)
Step 2: update σ2 ∼ π(σ2 | ρ0, ρ1,X ,Φ)
Step 3: update ρ0, ρ1 ∼ π(ρ0, ρ1 | µ, σ,X ,Φ)
Step 4: update ϑ ∼ π(ϑ | Φ)
Step 5: update β ∼ π(β | Φ)
Step 6: update Φ ∼ π(Φ | µ, ρ0, σ, ρ1, ϑ, β,X )
Step 7: Go to step 1.

Below we provide more details about each of these steps.

Step 1. Update µ
Recalling (11), the likelihood of the observed data conditional on the augmented state (µ, λ0,

σ, ρ1,Φ) is

ℓ(X | µ, λ0, σ, ρ1,Φ) ∝
1

∏N
i=1Σi

exp

{

−1
2

N
∑

i=1

1

Σ2i

(

zi − zi−1e
−λ−1

0
∆i + µ

(

e−λ
−1

0
∆i − 1

))2
}

,

where Σ2i = λ0σ
2(1− e−2λ

−1

0
∆i)/2 and the zi are computed as the difference between the obser-

vations ofX and the trajectory of Y implied by the realisation Φ of the marked Poisson process.
Using the conjugate prior for µ specified in the previous section it can be easily shown that the
conditional distribution π(µ | ρ0, σ, ρ1,X ,Φ) is

N







∑N
i=1

(

1− e−λ
−1

0
∆i

)

Σ−2i

(

zi − zi−1e
−λ−1

0
∆i

)

+ aµ
σ2

0

∑N
i=1

(

1− e−λ
−1

0
∆i

)2

Σ−2i + 1
b2µ

,
1

∑N
i=1

(

1− e−λ
−1

0
∆i

)2

Σ−2i + 1
b2µ






.
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Step 2. Update σ2

Due to the choice of prior, the conditional distribution π(σ2 | ρ0, ρ1,X ,Φ) has the closed
form

IG

(

N

2
+ aσ,

1

λ0

N
∑

i=1

si

(1− e−2λ
−1

0
∆i)

+ bσ

)

,

where
si =

(

zi − zi−1e
−λ−1

0
∆i + µ

(

e−λ
−1

0
∆i − 1

))2

.

Step 3. Update ρ0 and ρ1
Explicit conditional distributions for ρ0 and ρ1 are not available and the density is only known

up to a multiplicative constant:

π(ρ0 | µ, σ, ρ1,X ,Φ) ∝ ℓ(X | µ, ρ0, σ, ρ1,Φ)π(ρ0),
π(ρ1 | µ, σ, ρ0,X ,Φ) ∝ ℓ(X | µ, ρ0, σ, ρ1,Φ)π(ρ1).

Hence we use a random-walk Metropolis-Hastings within Gibbs procedure to update ρ0 and ρ1.
The variance of the proposal distribution is tuned after pilot runs in order to achieve an acceptance
rate between 20% and 50%.

Step 4. Update ϑ
In the case of constant intensity function, the conjugate prior for η yields an explicit condi-

tional distribution

η | Φ ∼ Ga (aη +NT , T + bη) .

When the intensity function is time dependent we employ a random-walk Metropolis-Hastings
within Gibbs procedure to update η, θ and δ:

π(η, θ, δ | Φ) ∝ ℓ(Φ | η, θ, δ)π(η)π(θ)π(δ).

Here the non-explicit function L(ϑ|Φ) of (15) is numerically calculated by a quadrature method.
The variance of the proposal distribution is tuned after pilot runs as above.
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Step 5. Update β
The conditional distribution of β given Φ has the closed form

β | Φ ∼ IG

(

aβ +NT ,

NT
∑

i=1

ξi + bβ

)

.

Step 6. Update the latent process Φ
The Metropolis-Hastings step we use to update the process Φ draws from the work of Geyer

and Møller (1994), Roberts et al. (2004) and Frühwirth-Schnatter and Sögner (2009) on MCMC
techniques for simulating point processes, extending it where appropriate to the case of inhomo-
geneous Poisson processes.

Let us assume that the current state of the Markov chain is

Φ = {(τ1, ξ1), . . . , (τNT , ξNT )},

that is, there are NT points on the set S with jump times given by τj and the corresponding jump
sizes by ξj . We choose randomly, with equal probability, one of the following three proposals.

Birth-and-death step
In the birth-and-death step we choose one of two moves. With probability p ∈ (0, 1) we choose
a birth move whereby a new-born point (τ, ξ) is added to the current configuration of Poisson
points. The proposed new state is then Φ∪ {(τ, ξ)}. The point τ is drawn uniformly from [0, T ],
whilst ξ is drawn from the jump size distribution Ex(β). For this move the proposal transition
kernel q(Φ,Φ ∪ {(τ, ξ)}) has the following density with respect to the product of Lebesgue
measure on [0, T ] and Ex(1) measure on (0,∞):

q(Φ,Φ ∪ {(τ, ξ)}) = β−1 exp
(

−(β−1 − 1)ξ
)

.

With probability 1− p a death move is selected, a randomly chosen point (τi, ξi) being removed
from Φ (provided that Φ is not empty). The proposal transition kernel (with respect to the count-
ing measure) is

q(Φ,Φ \ {(τi, ξi)}) =
1

NT

,

where NT is the number of points in Φ before the death move. Then the Metropolis-Hastings
acceptance ratio for a birth move from Φ to Φ ∪ {(τ, ξ)} is

α(Φ,Φ ∪ {(τ, ξ)}) = min {1, r(Φ, (τ, ξ))} ,

16



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

while the acceptance ratio for a death move from Φ to Φ \ {(τi, ξi)} is

α(Φ,Φ \ {(τi, ξi)}) = min
{

1,
1

r
(

Φ \ {(τi, ξi)}, (τi, ξi)
)

}

,

where

r(Φ̃, (τ, ξ)) =
ℓ(X | µ, ρ0, σ, ρ1, Φ̃ ∪ {(τ, ξ)})

ℓ(X | µ, ρ0, σ, ρ1, Φ̃)
π(Φ̃ ∪ {(τ, ξ)} | ϑ, β)

π(Φ̃ | ϑ, β)
1− p

p

× 1

(NT + 1)q(Φ,Φ ∪ {(τ, ξ)})

=
ℓ(X | µ, ρ0, σ, ρ1, Φ̃ ∪ {(τ, ξ)})

ℓ(X | µ, ρ0, σ, ρ1, Φ̃)
1− p

p

T

ÑT + 1
I(ϑ, τ ),

where ÑT is the number of points of Φ̃, cf. (14).

Local displacement move

Without loss of generality let us assume that the jump times of the Poisson process are ordered, so
that τ1 < · · · < τNT . In the local displacement move we choose randomly one of the jump times,
say τj , and generate a new jump time τ uniformly on [τj−1, τj+1], putting τ0 = 0 and τNT+1 = T .
The point (τj, ξj) is then displaced and re-sized to (τ, ξ), where ξ = e−λ

−1

1
(τ−τj)ξj . Formally

we choose uniformly one of NT transition kernels, with the j-th one preserving the conditional
distribution π(τ, ξ|X , µ, ρ0, σ, ρ1, ϑ, β,Φ\{(τj, ξj)}). The proposal for the j-th kernel has the
Uniform distribution over (τj−1, τj+1) for the first variable with the second variable being then a
deterministic transformation given by a 1-1 mapping T (ξ, τ, τ ′) = (ξe−λ−1

1
(τ ′−τ), τ ′, τ ) such that

T = T −1. Following Tierney (1998, Section 2), the contribution of this deterministic transition
to the Metropolis-Hastings acceptance ratio is | det∇T (ξj, τj, τ )|, where τ is the new proposed
location of the jump. Hence the complete Metropolis-Hastings acceptance ratio is

r(Φ,Φnew) =
ℓ(X|µ, ρ0, σ, ρ1,Φnew)
ℓ(X|µ, ρ0, σ, ρ1,Φ)

π(τ, ξ|ϑ, β)
π(τj, ξj|ϑ, β)

q̃(τ, τj)

q̃(τj, τ )
| det∇T (ξj, τj , τ )|

=
ℓ(X|µ, ρ0, σ, ρ1,Φnew)
ℓ(X|µ, ρ0, σ, ρ1,Φ)

I(ϑ, τ )

I(ϑ, τj)

e−β−1ξ

e−β−1ξj
e−λ−1

1
(τ−τj),

where q̃(τ, τ ′) = (τj+1 − τj−1)
−1 is the transition density for the jump location with respect to

Lebesgue measure on (τj−1, τj+1).

Multiplicative jump size update
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In this step the sizes of all jumps are independently updated. Specifically, for each jump (τj, ξj)
we propose a new jump size ξ′

j = ξjφj , where log(φj) ∼ N(0, c2) are i.i.d. random variables. The
variance c2 is chosen inversely proportional to the current number of jumps, and the performance
of this update step appears rather insensitive to the constant of proportionality. Denoting by Φnew
the Poisson point process with updated jump sizes, the Metropolis-Hastings acceptance ratio for
this move is

α(Φ,Φnew) = min

{

1,
ℓ(X | µ, ρ0, σ, ρ1, ϑ, β,Φnew)
ℓ(X | µ, ρ0, σ, ρ1, ϑ, β,Φ)

exp

{

−(β−1 − 1)
NT
∑

i=1

(ξ′
i − ξi)

}

NT
∏

i=1

ξ
′

i

ξi

}

.

Note that the product
∏NT

i=1
ξ
′

i

ξi
is equivalent to

∏NT
i=1 φi.

3.4. Bayesian inference for a sum of three OU processes

As discussed in Section 2.3 we may believe a priori that the price spikes observed in the
market are of a certain number of types, corresponding to their differing possible physical causes.
Accordingly we now describe the extension of the 2-OU model by the addition of a further
independent jump OU component Y2(t), henceforth referring to the first jump component as
Y1(t) and using appropriate subscripts to distinguish their parameters; further jump components
are incorporated similarly. The new jump component Y2 may either have a positive contribution
to the price process (ie. the sign w2 in (5) is 1) with a rate of decay differing from that of the first
component, or alternatively it may have a negative contribution (ie. w2 = −1). For concreteness
here we choose w1 = w2 = 1, so that:

X(t) = Y0(t) + Y1(t) + Y2(t), (18)

and we specify that λ1 > λ2 for identification purposes, ie. the jumps of Y1(t) have slower decay
than those of Y2(t). When w1 = 1, w2 = −1 this constraint is not required.

We now have two marked Poisson processes Φ1 and Φ2, corresponding to L1(t) and L2(t)
respectively, which are conditionally independent given their parameters. The augmented likeli-
hood ℓ(X | µ, λ0, σ,Y1,Y2) is given by equation (11) with zj = xj − y1,j − y2,j . The likelihood
of Φ = (Φ1,Φ2)with respect to the dominating measure of a pair of independent marked Poisson
process with unit intensity and jump sizes with a Ex(1) distribution is given by

π(Φ | ϑ1, ϑ2, β1, β2) = π(Φ1 | ϑ1, β1)π(Φ2 | ϑ2, β2),
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where for i = 1, 2,

π(Φi | ϑi, βi) = exp







N i
T

∑

j=1

log Ii(ϑi, τi,j)−
∫ T

0

Ii(ϑi, t)dt+ T







β
N i
T

i exp







−(β−1
i − 1)

N i
T

∑

j=1

ξi,j







.

Here N i
T denotes the number of points of Φi in the set S and

Φi = {(τi,1, ξi,1), . . . , (τi,N i
T
, ξi,N i

T
)}.

We impose the condition λ1 > λ2 by defining the prior distribution for ρ2 as

ρ2|ρ1 ∼ ρ1U(0, 1),

where ρi = e−1/λi , i ≥ 1, as before (see the electronic appendix for properties of ρ2). Since all
other parameters are a priori mutually independent, their update steps are identical to those for
the 2-OU model.

Updates of ρ1 and ρ2 are made using a random-walk Metropolis-Hastings algorithm (with
independent proposals for each variable). The proposal distribution is Normal with the variance
tuned as before after pilot runs.

3.5. Posterior predictive check

Our approach to assessing model adequacy is the following. Since Y0 is a Gaussian OU
process, its transition density specified in Section 2.2 implies that εj , j = 1, . . . , N, defined
implicitly by

Y0(tj) = µ+ (Y0(tj−1)− µ)e−λ−1

0
∆j +

(

σ2λ0
2
(1− e−2λ−1

0
∆j)

)1/2

εj, (19)

are independent and distributed as N(0, 1). Given observations of Y0 at sampling times t0, . . . , tN
the distribution of {ε1, . . . , εN} may then be tested, and this test may be repeated across MCMC
iterations. At each iteration k of the MCMC algorithm (assuming the Markov chain has reached
stationarity) we use the current state of parameters Θ(k) = {µ(k), λ(k)i , σ(k), ϑ

(k)
i , β

(k)
i } and miss-

ing data Φ(k) to recover the path of each jump process y(k)i,j , j = 0, . . . , N . The path of Y (k)0 at
times t0, . . . , tN is then computed as

z
(k)
j = xj −

n
∑

i=1

wiy
(k)
i,j , j = 0, . . . , N, (20)
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where xi is the deseasonalised price at time ti and wi is the sign of the i-th jump component.
From this the noise data {ε(k)j }j=1,...,N for each MCMC iteration k is obtained and subjected to
a Kolmogorov-Smirnov (KS) test for the standard Normal distribution, yielding a p-value p(k).
Following Rubin (1984) we call the distribution of p(k) the posterior predictive check distribution.
We refer to its mean as the posterior predictive p-value and interpret it accordingly, cf. Gelman
(2003) and references therein.

Similarly we perform diagnostics on the jump processes sampled from our Markov chain.
For each jump process Li at iteration k of the Markov chain, the set of jump sizes and the set
of inter-arrival times are both subjected to KS tests. The former set undergoes a KS test for
the Exponential distribution with mean β(k)i . In the homogeneous Poisson process model, the
latter set undergoes a KS test for the Exponential distribution with mean (η(k)i )−1; otherwise an
independent sample is taken from the inter-arrival times of an inhomogeneous Poisson process
with time varying intensity Ii(ϑ(k)i , t) and its distribution compared with the latter set in a two-
sample KS test. Posterior predictive p-values are reported.

3.6. Implementation

The parameter-dependent balance between jumps and diffusion in the spot price model (5)
raises a number of potential issues regarding the implementation of the MCMC procedure de-
scribed above. Extensive testing was carried out with simulated data in order to probe these
issues, and details are given in the electronic appendix.

Our MCMC algorithms were implemented by combining Matlab and C++ MEX code (pro-
vided as an electronic supplement), and were run on a 2.5GHz Intel Xeon E5 processor. For the
2-OU model with 1500 observations the computation time for completing 1000 MCMC itera-
tions using a single core was approximately 1.9 seconds. The corresponding figure for the 3-OU
model was about 3.6 seconds with a single update of the latent process Φ, and 8.8 seconds with
5 updates of Φ per MCMC iteration. In the numerical examples of Section 4, a burn-in period of
500 000 iterations was allocated. The following 1.5 million were thinned by taking one sample
every 100 iterations and used to establish the posterior distribution. This corresponds to around
1 hour running time for the 2-OU model and below 5 hours for the 3-OU model with the fivefold
update of the latent process Φ.

4. Case study application to the APXUK and EEX markets

In this section we apply the inference procedure described in Section 3 to daily average elec-
tricity prices corresponding to the APX Power UK spot base index (APXUK hereafter, quoted in
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£/MWh)5 and the European Energy Exchange Phelix day base index (EEX, quoted in e/MWh)6.
The data were retrieved from Thompson Reuters Datastream. Weekends (which tend to differ
statistically from weekdays due to a reduction in trading) are removed in both cases. Hence we
assume a calendar year of 260 days and take ∆j = 1 so that parameters are reported in daily
units. We consider two time periods, namely 2000–2006 and 2011–2015. Figure 1 displays de-
seasonalised versions of this data. The pattern of positive and negative spikes appears to differ
across the two markets and time periods and correspondingly we perform four separate analyses.

A step-by-step guide to the practical application of our techniques is first presented in Section
4.1, followed in Section 4.2 by an economics-oriented discussion of the models fitted to the above
datasets. The steps involved in fitting are collected in Sections 4.3–4.6, together with related
econometric discussion.

4.1. Step-by-step guide

This section contains a subjective guide to estimation for the above multi-factor price model
using discrete observations. The analytical procedure is summarised in an algorithm below and
later exemplified in Sections 4.3-4.6.

1. Deseasonalise time series
2. Set n = 1
3. Fit all combinations of (n + 1)-OU models (by a combination we mean the number of

positive and negative jump components)
4. For each combination in step 3:

(a) compute posterior predictive p-values for the increments of the residual Gaussian OU
process,

(b) for each latent Poisson process, compute posterior predictive p-values for the jump
arrival rates and the jump sizes

5. Accept a model if all p-values are above a selected threshold (we have used 10%)
6. If no model has been accepted then, for each combination in step 3: introduce time-varying

intensities for every subset of the jump components (see Eq.(8)); repeat model estimation,
compute predictive p-values and accept / reject model as in step 5.

7. If no model has been accepted then set n := n+ 1 and go back to step 3.

5https://www.apxgroup.com/market-results/apx-power-uk/

ukpx-rpd-index-methodology/
6http://www.epexspot.com/en/
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The above procedure suffers from the classical problem of multiple testing (Benjamini and
Hochberg, 1995), ie., if sufficiently many models are tested one of them will prove statistically
significant purely due to randomness. However, for the sake of simplicity we decided not to
include this aspect of model selection in the above procedure. Instead we suggest verifying the
selected model on a subset of the data, or on another dataset with similar characteristics, in order
to confirm that the model choice is robust. This involves estimating the selected model on the
new dataset and checking that all predictive p-values remain above the threshold applied.

The appropriate modelling of the seasonal component, in order to remove it from the data,
depends heavily on the market under study (Weron, 2007). Electricity spot markets experience
significant yearly variations and the specification (10) of the seasonality function takes these into
account. We used a minimum least-squares fit for the log price, which corresponds to a linear
regression of the natural logarithm of price on each of the terms of the seasonality function f .

According to the algorithm above, the data is first deseasonalised. It is then checked whether
the simplest model with just one jump component provides a suitable statistical description of
the data, as follows. The MCMC procedure is applied both to the model with one positive jump
component and to the model with one negative jump component. For each model assessed this
generates a sequence of posterior samples of: the latent Poisson process driving the price spikes;
the spike sizes; and the implied discrete increments of the latent Gaussian Ornstein-Uhlenbeck
process. These are used to compute posterior predictive p-values for the jump times, jump sizes
and the increments of the Gaussian OU process as in Section 3.5. If all computed p-values lie
above a predetermined threshold (we have used 10%) the model may be deemed statistically
valid. If neither of the simple models is statistically valid, we suggest relaxing the assumption
of constant jump intensity and repeating the estimation procedure. If those models also fail the
statistical validity test, the number of jump components may be increased by one and the above
estimation and verification procedure repeated. Since the inclusion of further jump components
clearly improves the model fit, this motivates the acceptance of the simplest model satisfying the
above criterion.

4.2. Summary of empirical results

Our first hypothesis in this work is that, over time, disturbances in the different drivers in-
volved in electricity spot price formation give rise to spikes with statistically distinguishable
directions, frequencies, height distributions and rates of decay. Our results provide evidence for
this hypothesis in data from the period 2000–2006. For the 2001–2006 APXUK data we find
that the model with a single positive jump component has posterior predictive p-values which
are too low to be judged adequate. In contrast when two independent positive jump components
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are included in the model, the MCMC procedure is able to distinguish these two factors statis-
tically. This is evidenced by posterior predictive p-values for each fitted component which are
statistically acceptable.

Similarly in the 2000–2006 EEX data our calibration procedure is able to statistically dis-
tinguish two independent jump components. In this case it is the signed combination of one
positive and one negative jump component which has empirical support (that is, acceptable pos-
terior predictive p-values for each fitted component). Both the model with a single positive jump
component, and the model specifying two positive jump components, have posterior predictive
p-values which are too low to be judged adequate.

Our second hypothesis is that the composition of these statistical models evolves in paral-
lel with changes in underlying economic factors. This hypothesis is supported by comparing
the above models for 2000–2006 with models for the same markets over the period 2011–2015.
In both cases statistical changes are detected and, further, the nature of the change is consis-
tent across the two markets. In this later period a single positive jump component provides an
adequate fit to the APXUK data. There is also an apparent decrease in the frequency of price
spikes: on average the total number of jumps (of any size) per unit time is less than a third for the
2011–2015 series compared to 2001–2006. The 2011–2015 EEX data also has one fewer posi-
tive jump component relative to the period 2000–2006. Thus in the later period a single negative
jump component is adequate.

4.3. Deseasonalisation of the time series

In this paper we perform inference on deseasonalised data, treating the seasonal trend func-
tion f(t) as a known characteristic of the particular energy market under study. For the purposes
of the numerical illustration in this section we assume the form (10) and solve a least squares
problem

N
∑

i=0

(log Sobs(ti)− f(ti/260))
2 → min,

where Sobs(t) denotes the observed spot price at time t. Table A.3 in the electronic appendix
presents estimated parameters for the trend functions and Figure 1 displays the resulting desea-
sonalised time series X(t) = Sobs(t)e

−f(t/260).

4.4. 2001–2006 APXUK data

4.4.1. One jump component
We take the priors specified in Table 1 as input to the 2-OU model with a single, positive

jump component and constant intensity rate. The Markov chain was initialised with the state
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Prior properties Posterior properties
Parameter Prior Mean SD Mean SD

µ N(1, 202) 1 20 0.9592 0.0308
σ2 IG(1.5, 0.005) 0.01 - - 0.0096 0.0008

e−1/λ0 U(0, 1) 0.5 0.2887 0.9170 0.0116
(λ0) (IG(1,1)) (- -) (- -) (11.7936) (1.8298)
e−1/λ1 U(0, 1) 0.5 0.2887 0.1570 0.0189
(λ1) (IG(1,1)) (- -) (- -) (0.5403) (0.0352)
η Ga(1, 10) 0.1 0.1 0.2499 0.0297
β IG(1, 1) - - - - 0.7159 0.0738

Table 1: Prior distributions and posterior moments obtained when calibrating the 2-OU model to the 2001–2006
APXUK data. The posteriors for the ‘indirect’ parameters λi were obtained by transformation of the parameters
e−1/λi of the Markov chain at each step and their entries are given in brackets.

(µ, λ0, σ, λ1, η, β,Φ) = (1, 5, 0.1, 2, 0.1, 0.5,0) where 0 denotes the absence of jumps, and the
birth-and-death parameter p was set equal to 0.5 (ie. equal probability for the birth or death
of a jump). Table 1 presents summary statistics for the prior and posterior distributions of the
univariate parameters. For those priors with a second moment, it may be observed that the
standard deviation of the posterior is typically at least an order of magnitude smaller.

4.4.2. Two jump components
We also calibrate a 3-OU model with constant jump intensity and two positive jump compo-

nents with the condition λ1 > λ2 introduced for identifiability (through the use of an appropriate
prior as specified in Subsection 3.4), ie. the jumps of Y2 decay faster than those of Y1. The initial
state of the chain was set to

(µ, λ0, σ, λ1, η1, β1, λ2, η2, β2,Φ) = (1, 5, 0.2, 5, 0.001, 0.5, 1, 0.001, 0.5,0).

Summary statistics for the prior and posterior distributions of the univariate parameters are given
in Table 2. For each of the jump component parameters λi, ηi and βi the posterior distributions for
the two jump components i = 1, 2 are well separated. In particular the ‘new’ jump component Y2
suggests that the quickly decaying price shocks are both less frequent and larger on average than
the more slowly decaying jumps given by Y1. As may be anticipated, the posterior distribution of
the volatility σ of the diffusion component Y0 is correspondingly shifted lower with the inclusion
of Y2. However the posterior moments of the speed of mean reversion λ0 remained virtually
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unchanged.

Prior properties Posterior properties
Parameter Prior Mean SD Mean SD

µ N(1, 202) 1 20 0.8693 0.0284
σ2 IG(1.5, 0.005) 0.01 - - 0.0057 0.0006

e−1/λ0 U(0, 1) 0.5 0.2887 0.9176 0.0128
(λ0) (IG(1, 1)) (- -) (- -) (11.9352) (1.9892)
e−1/λ1 U(0, 1) 0.5 0.2887 0.6605 0.0342
(λ1) (IG(1, 1)) (- -) (- -) (2.4408) (0.3075)
e−1/λ2 - - 0.25 0.2205 0.0742 0.0148
(λ2) (- -) (- -) (- -) (0.3839) (0.0297)
η1 Ga(1, 10) 0.1 0.1 0.2412 0.0487
η2 Ga(1, 10) 0.1 0.1 0.1698 0.0250
β1 IG(1, 1) - - - - 0.2243 0.0291
β2 IG(1, 1) - - - - 0.8544 0.1047

Table 2: Prior distributions and posterior properties obtained when calibrating the 3-OU model to the 2001–2006
APXUK data. The indirect parameters λi are treated as described in the caption to Table 1. The distribution and
moments of ρ2 = e−1/λ2 are calculated in the elecronic appendix.

4.4.3. Augmentation of the state space
In order to illustrate the role of the latent variables introduced in the augmented state space

of our Markov chain, and to show how these may vary between the 2-OU and 3-OU models,
Figure 3 gives a representation of one posterior sample for each model via their respective latent
processes Yi. For clarity of the plot a restricted period of 200 days is shown, giving the paths of
the jump processes, plus the deseasonalised APXUK price superimposed on the implied diffusion
Y0 = X −∑n

i=1 Yi. (For both models these samples are in fact the last state of the simulated
Markov chain.)

From Table 1 the jumps of Y1 are relatively large (their distributional mean size β has pos-
terior expected value 0.72) and the decay rate λ1 has posterior mean 0.54. The 3-OU model
identifies both slowly decaying small jumps and rapidly decaying large jumps. Inspecting the
plots in Figure 3 for the 2-OU model around day 600, it is therefore apparent that in this illus-
trative example runs of consecutive quickly decaying jumps combine to produce an apparently
larger and more slowly decaying disturbance, while some single jumps such as that around day

25



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Time (days)
450 500 550 600 650

£/
M

W
h

0

1

2

3

4

5

6
Estimated paths of the 2-OU model for the APXUK index

Deseasonalised APXUK
Path of Y0

Time (days)
450 500 550 600 650

£/
M

W
h

0

1

2

3

4

5

6
Path of Y1

Time (days)
450 500 550 600 650

£/
M

W
h

0

1

2

3

4

5

6
Estimated paths of the 3-OU model for the APXUK time series

Deseasonalised APXUK
Path of Y0

Time (days)
450 500 550 600 650

£/
M

W
h

0

1

2

3

4

5

6
Path of Y1
Path of Y2

Figure 3: Samples from the final state of the Markov chain for the jump processes, plus a section of the desea-
sonalised 2001–2006 APXUK time series superimposed on the implied diffusion process Y0. Top: 2-OU model,
bottom: 3-OU model.
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630 yield quickly decaying large spikes. In contrast the runs of overlapping spikes are much
reduced in the plots for the 3-OU model.

4.4.4. Diagnostics
The posterior predictive p-values for the diffusion process Y0 are 0.0617 and 0.335 for the

2-OU and 3-OU model respectively. Taking a posterior predictive p-value in excess of 0.1 to be
acceptable, two jump components are therefore required in order to give the diffusion process an
acceptable fit on the basis of this diagnostic.

We also test the modelling assumption of Poisson jump arrivals with a constant intensity
using the diagnostic described in Section 3.5. The constant jump intensity model is acceptable
for the APXUK data with a posterior predictive p-value for the distribution of spike inter-arrival
times of approximately 0.4, see Table 3. We note finally that the exponential model for jump
sizes is acceptable in all cases (with the posterior predictive p-value exceeding 0.3).

APXUK (2001-6) EEX (2000-6)
Jump times of 2-OU 3-OU 2-OU 3-OU 3-OU-I1

Φ1 0.0525 0.4003 0.0099 0.0185 0.1643
Φ2 - - 0.3089 - - 0.4681 0.4738

Table 3: Posterior predictive p-values for the model of jump times for processes Φi.

4.5. 2000–2006 EEX data

We also calibrate 2-OU and 3-OU models to the 2000–2006 EEX data. Since exploratory
analysis of the EEX dataset suggests the presence of frequent negative price spikes, our 3-OU
model for the EEX series will differ from that for the APXUK dataset by specifying a negative
sign for the second jump component Y2. Indeed, calibration of the 3-OU model with two positive
jump components yields a posterior predictive p-value for the increments of the process Y0 less
than 0.005 and the posterior distributions for the parameters of the two positive jump components
are not well separated (data not shown), indicating that the positive price spikes in the EEX
market tend to be driven by one jump component. In the 3-OU model of (5) we therefore set
w0 = w1 = 1 and w2 = −1.

Further, taking into account the experience of past studies we consider both constant and
periodic jump rates for the positive jump process L1(t), taking the periodic intensity function
I1(ϑ1, t) given in (8) with k = 130 days (which corresponds to a period of one half-year). We
refer to the latter model as the 3-OU-I1 model. We take the same priors as in the APXUK studies
above, now removing the restriction on the decay rates so that the prior for ρ2 (or equivalently for
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λ2) is independent and distributed as that for ρ1 (or λ1), since with jumps of opposite direction
there should be no issue of identifiability. Further, for the 3-OU-I1 model the priors for η1 and
δ1 are both Ga(1, 10), while for θ1 a U(65, 195) prior is taken.

4.5.1. Number of jump components
Table 4 presents summary statistics for the posterior distributions of the parameters for both

the 2-OU model and the 3-OU models applied to the 2000–2006 EEX data. The posterior diag-
nostic for the diffusion component Y0 is acceptable for both three-component models while, as
in the APXUK case, the two-component model does not appear to be satisfactory: the posterior
p-value for Y0 is equal to 0.0021 for the 2-OU model and equal to 0.192 and 0.26 for the 3-OU
and 3-OU-I1 models respectively. This is explained by the fact that negative price jumps are not
accounted for with the 2-OU model, frequently resulting in large residuals for Y0.

There is agreement across the first two moments of the posterior distributions for all pa-
rameters common to the 3-OU and 3-OU-I1 models. In contrast with the 2001–2006 APXUK
dataset, however, the results for EEX support the presence of seasonality in the occurrence of
price spikes, see Table 3. The constant jump intensity model appears to be unsatisfactory for the
first jump component Φ1, with a corresponding p-value of 0.0185 in the 3-OU model, while the
3-OU-I1 returns a p-value of 0.1643. Figure 2 displays the number of positive jumps on the EEX
market by month, averaged over our posterior samples of the process Φ1 in the 3-OU-I1 model.

4.6. 2011 - 2015 data
Motivated by visual inspection of the price data in Figure 1, as discussed in Section 2, we

wish to examine whether the statistical structure of the price data differs in periods before and
after the global financial crises of 2007-8 and 2009. The models given by (5) were therefore
calibrated to the APXUK and EEX indices over the sample period ranging from January 24,
2011 to February 16, 2015, and the simplest acceptable models were identified on the basis of
posterior predictive p-values (again taking 0.1 as the minimum acceptable level). It may be seen
from Table 5 that the 2011-2015 APXUK data supports the 2-OU model with one positive jump
component. In order to discuss the statistics of the jump processes we will refer to the posterior
mean values presented in Table 2 as ‘Old’ and in Table 6 as ‘New’. Although both the ‘New’
values lie between the corresponding ‘Old’ values, βOld

1 < βNew
1 < βOld

2 and λOld
1 < λNew

1 < λOld
2 ,

the new jump process cannot be interpreted as simply a statistical mixture of the two old jump
processes since its intensity is lower than both of the old jump intensities.7 Indeed, on average

7Also, the sum of two jumpOU processes with different mean reversion rates is statistically significantly different
from one jump OU process and cannot, therefore, be successfully approximated by the latter.

28



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Pa
ra
m
et
er

Pr
io
rp

ro
pe
rti
es

2-
O
U

2-
O
U
-I
1

3-
O
U

3-
O
U
-I
1

Pr
io
r

M
ea
n

SD
M
ea
n

SD
M
ea
n

SD
M
ea
n

SD
M
ea
n

SD
µ

N
(1
,2
02
)

1
20

0.
99

78
0.
01

82
0.
99

54
(0
.0
18
4)

1.
01
71

0.
02
30

1.
01
46

0.
02
26

σ
2

IG
(1
.5
,0
.0
05
)

0.
01

- -
0.
02

71
0.
00

14
0.
02

69
(0
.0
01
4)

0.
01
22

0.
00
13

0.
01
19

0.
00
12

e−
1
/
λ
0

U
(0
,1
)

0.
5

0.
28

87
0.
79

78
0.
01

66
0.
79

80
(0
.0
16
2)

0.
88
21

0.
01
51

0.
88
35

0.
01
50

(λ
0
)

(IG
(1
,1
))

(-
-)

(-
-)

(4
.4
61

2)
(0
.4
20

3)
(4
.4
63

5)
(0
.4
07
1)

(8
.1
13
0)

(1
.1
43
8)

(8
.2
19
3)

(1
.1
69
8)

e−
1
/
λ
1

U
(0
,1
)

0.
5

0.
28

87
0.
10

57
0.
02

67
0.
11

42
(0
.0
24
6)

0.
19
15

0.
03
13

0.
18
09

0.
03
44

(λ
1
)

(IG
(1
,1
))

(-
-)

(-
-)

(0
.4
44

1)
(0
.0
51

2)
(0
.4
60

3)
(0
.0
46
5)

(0
.6
06
0)

(0
.0
60
1)

(0
.5
85
9)

(0
.0
65
7)

e−
1
/
λ
2

U
(0
,1
)

0.
5

0.
28

87
--

--
--

--
0.
22
95

0.
03
48

0.
22
30

0.
03
84

(λ
2
)

(IG
(1
,1
))

(-
-)

(-
-)

--
--

--
--

(0
.6
81
4)

(0
.0
70
9)

(0
.6
68
7)

(0
.0
77
5)

η
1

G
a(
1,
10
)

0.
1

0.
1

0.
10

49
0.
01

85
--

--
0.
12
74

0.
01
92

--
--

η
∗ 1

G
a(
1,
10
)

0.
1

0.
1

--
--

0.
28

81
(0
.0
61
9)

--
--

0.
25
15

0.
04
28

η
2

G
a(
1,
10
)

0.
1

0.
1

--
--

--
--

0.
14
38

0.
03
35

0.
14
22

0.
03
20

β
1

IG
(1
,1
)

--
--

1.
09

71
0.
14

35
1.
07

37
(0
.1
40
1)

0.
90
45

0.
10
88

0.
89
98

0.
10
52

β
2

IG
(1
,1
)

--
--

--
--

--
--

0.
41
76

0.
07
34

0.
43
08

0.
07
93

θ 1
U
(6
5,
19
5)

13
0

37
.5
27

8
--

--
13

5.
00

48
(2
.8
47
4)

--
--

14
1.
37
25

3.
50
71

δ 1
G
a(
1,
10
)

0.
1

0.
1

--
--

0.
62

71
(0
.1
28
1)

--
--

0.
34
08

0.
08
84

Ta
bl
e4

:P
rio

rd
ist
rib

ut
io
ns

an
d
po

ste
rio

rp
ro
pe
rti
es

w
he
n
fit
tin

g
th
e2

-a
nd

3-
O
U
m
od
el
st
o
th
e2

00
0–
20

06
EE

X
da
ta
.∗

In
th
e2

-O
U
-I

1
an
d
3-
O
U
-I

1
m
od

el
s

th
e
pa
ra
m
et
er

η
1
in
di
ca
te
st
he

m
ax
im

um
ju
m
p
ra
te

of
th
e
pe
rio

di
c
in
te
ns
ity

fu
nc
tio

n
I 1
.T

he
th
ird

O
U

co
m
po

ne
nt

Y
2
of

th
e
m
od

el
s3

-O
U

an
d
3-
O
U
-I

1
is

ne
ga
tiv

e.
Th

e
in
di
re
ct
pa
ra
m
et
er
sλ

i
ar
e
tre

at
ed

as
de
sc
rib

ed
in

th
e
ca
pt
io
n
to

Ta
bl
e
1.

29



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

APXUK (2011-15) EEX (2011-15)
2-OU 2-OU 2-OU-I1 2-OU−

Y0 0.2167 0.0001 0.0012 0.1502
Jump times of Φ1 0.3521 0.4219 0.3207 0.4452
Jump sizes of Φ1 0.4574 0.5121 0.4554 0.4998

Table 5: Posterior predictive p-values for a range of models for the APXUK and EEX indices over the sample period
January 24, 2011 to February 2, 2015.

the total number of jumps (of any size) per unit time is less than a third for the 2011-2015 data
compared to 2001–2006.

From Table 5, the 2011-2015 EEX data in fact supports the 2-OU− model which has a single,
negative jump component (motivating the superscript minus in the notation). In this model the
small number of larger upward price movements above the mean level in Figure 1 must therefore
be accounted for by correspondingly large residuals in the diffusion component Y0, and this
explains the relatively low predictive p-value (0.1502) for Y0. With regard to the statistics of
the negative jump component, the values λ1, η1, β1 in Table 6 should be compared to the values
of λ2, η2, β2 in Table 4. Since negative prices were introduced in this market on September 1,
2008 (Genoese et al., 2010), in general larger negative jumps were possible in the 2011-2015
data. Indeed the most significant downward jump in 2011-2015 was to a large negative price,
and our finding 0.593 = βNew

1 > βOld
2 = 0.4308 is consistent with this change to the EEX

market structure. For the diffusion component, the coefficient λ0 decreases from 11.9 and 8.22
for the APXUK and EEX markets respectively to approximately 3.6, a value which happens to
be consistent across both markets.

5. Discussion

5.1. Scope of contribution

We have shown that multiple components can be required to obtain statistically adequate
mean-reverting models of electricity spot prices and, further, that the required combination of
components can change over time. To clarify the value of this contribution we note that spot
price models have two principal areas of application in the literature. Firstly, price forecasting is
concerned with the prediction of prices over future time points or periods given the current and
past values of relevant variables (see for example Weron (2007)). As such it is not concerned
with the detailed statistical properties of spot price trajectories such as the long-run statistical
patterns in price spikes, which are the object of our work. Instead studies (such as ours) of spot
price dynamics are suitable both for derivative pricing (Hull, 2009) and operational analyses in
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APXUK (2011-15) EEX (2011-15)
2-OU model 2-OU− model

Parameter Mean SD Mean SD
µ 0.9865 0.0095 1.0480 0.0149
σ2 0.0071 0.0006 0.0170 0.0016

e−1/λ0 0.7537 0.0232 0.7590 0.0251
(λ0) (3.5727) (0.3976) (3.6736) (0.4526)
e−1/λ1 0.2104 0.0394 0.1941 0.0381
(λ1) (0.6435) (0.0781) (0.6115) (0.0741)
η1 0.1172 0.0324 0.1105 0.0310
β1 0.3981 0.0921 0.5930 0.1325

Table 6: Posterior properties obtained when calibrating the 2-OU (one positive jump component) and 2-OU− (one
negative jump component) models to the APXUK and EEX datasets respectively. The sample period is January 24,
2011 to February 16, 2015.

the real options framework (see for example Kitapbayev et al. (2015); Moriarty and Palczewski
(2017)). In derivative pricing a main goal is to combine the latter models with observed derivative
prices to construct so-called risk-neutral or martingale probability measures. Thus while model
parameters are inferred from derivative prices it is important to identify the right class of price
models, and our work provides an approach to this question via posterior predictive checking.
In contrast, in real options analyses the fact that real projects are not traded means that the
physical or historic probability measure is often the one used. In this context our work provides
an approach both to model specification and to the calibration of model parameters to historic
data.

The methodological advantages of our approach to calibration, which aims to make mini-
mal assumptions about the spike processes, are confirmed by the 2000–2006 APXUK analysis.
In mean-reverting models jumps do not immediately vanish but instead decay over time. This
means that jump components, particularly those having the same direction, can interact when
superposed. Inference on the individual spike components is then more challenging and simple
signal processing approaches (c.f. Meyer-Brandis and Tankov (2008)), such as the use of thresh-
olds to identify jumps, are rendered unsuitable. Nevertheless we have shown that a statistically
adequate model can be extracted. The ability of our MCMC procedure to distinguish spikes in
the same direction is confirmed in the electronic appendix using simulated price data. There,
Figure A.2 plots the simulated jumps (in red) and a visual representation of the posterior distri-
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bution of the latent jump processes (blue, see Section A.3 for details) so that the agreement can
be assessed.

5.2. Fundamental drivers

In this section we attempt to relate our empirical results to their underlying physical and eco-
nomic drivers. Negative price spikes are associated with the priority given to wind energy in the
spot market (Benth, 2013). A glut in wind power production can lead to a corresponding decrease
in demand for other sources of generation. It can be impossible for conventional generators to
reduce production sufficiently so they may temporarily accept low (or even negative) prices.
In support of this analysis, we observed that the inclusion of a negative jump component was
necessary for adequate modelling of the EEX data in both periods. Further the negative jumps
had higher mean size in the later period, a change consistent with the increasing penetration of
renewable generation.

While preprocessing the data we removed a deterministic seasonal component from the spot
prices. However in some electricity markets (particularly in the US and Europe) seasonality
has also been observed in the frequency of price spikes (Geman and Roncoroni, 2006; Benth
et al., 2012). A priori this may be explained by greater levels of stress in the power system
during the extremes of seasonal variation in weather due, for example, to heating load during
cold snaps. The presence of jump seasonality was suggested in the 2000–2006 EEX data as
illustrated in Figure 2, which displays the number of positive jumps on the EEX market by
month, averaged over samples from our MCMC procedure. (It should be noted that Figure 2 is
indicative and does not represent direct statistical estimates of jump frequency in spot prices.)
Indeed for the latter series it was necessary to incorporate seasonality in the arrival rate of the
positive jump component in order to obtain a statistically adequate model. In contrast seasonal
jump components were not statistically necessary for the APXUK data in either period, which
may be related to the less severe extremes of UK winter weather.

As presented in Section 4.2, there is statistical evidence for a reduction across both markets
in both the number of positive jump components and the frequency of positive price spikes after
the global financial crises of 2007-8 and 2009. It is true that in both the UK and Germany,
electricity consumption generally increased in the period 2000–2006 and was generally level or
decreased during 2011–2015.8 It follows that the power systems under study faced less stress
from constraints in either production or transmission capacity during the latter period, and this
is consistent with the observed reduction in positive price spikes. It must be noted however that

8http://data.worldbank.org
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the outlook for the future is somewhat different, with changes on the supply side including the
decommissioning of ageing and carbon-intensive conventional generation and increased reliance
on intermittent generation (see, for example, National Grid plc (2016)), suggesting that positive
spikes may return to the electricity spot market.

6. Conclusions

By modelling mean-reverting deseasonalised electricity spot prices as the sum of a diffusion
process and multiple signed jump processes of deterministic intensity, and applying a Bayesian
calibration procedure and posterior diagnostics, we have identified a class of multi-factor models
suitable for modelling empirical prices across two different markets and two different time peri-
ods. In contrast with several recent studies using stochastic volatility models we have employed
multiple signed jump components, albeit with simpler deterministic volatilities (either constant,
or deterministic and periodic). This approach allows straightforward comparison of the statis-
tical structure of prices across different markets and time periods: each model has a number of
signed jump components with distinguished jump intensities, decay rates and size distributions.
In both the APXUK and EEX markets it was found that the statistical structure of the price series
differs before and after the period 2007-2010 and, in particular, that the number of positive jump
components decreased (from 2 to 1 and 1 to 0 respectively), with the mean reversion speed of
the diffusive price component increasing in both markets. Seasonality in the jump intensity was
found to be necessary only in the earlier (2000–2006) EEX data and only for its positive jump
component.

Acknowledgements

JM was supported by grants EP/K00557X/1 and EP/K00557X/2 and JG was supported by
grant EP/I031650/1 from the UK Engineering and Physical Sciences Research Council. JP was
supported in part by MNiSzW grant UMO-2012/07/B/ST1/03298.

References

Barndorff-Nielsen, O. E. and Shephard, N. (2001). Non-Gaussian Ornstein–Uhlenbeck-based
models and some of their uses in financial economics. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 63(2):167–241.

33



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and
powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Sta-
tistical Methodology), 57(1):289–300.

Benth, F. E. (2013). Stochastic volatility and dependency in energy markets: Multi-factor mod-
elling. In Henderson, V. and Sircar, R., editors, Paris-Princeton Lectures on Mathematical
Finance 2013. Springer.

Benth, F. E., Kallsen, J., and Meyer-Brandis, T. (2007). A non-Gaussian Ornstein-Uhlenbeck
process for electricity spot price modeling and derivatives pricing. Applied Mathematical
Finance, 14(2):153–169.

Benth, F. E., Kiesel, R., and Nazarova, A. (2012). A critical empirical study of three electricity
spot price models. Energy Economics, 34(5):1589–1616.

Benth, F. E. and Meyer-Brandis, T. (2009). The information premium for non-storable commodi-
ties. Journal of Energy Markets, 2(3):111–140.

Brix, A. F. (2015). Estimation of Continuous Time Models Driven by Lévy Processes. PhD thesis,
Aarhus University, School of Business and Social Sciences.

Brunner, C. (2014). Changes in electricity spot price formation in Germany caused by a high
share of renewable energies. Energy Systems, 5(1):45–64.

Clewlow, L. and Strickland, C. (2000). Energy Derivatives: Pricing and Risk Management.
Lacima Publications.

Fanone, E., Gamba, A., and Prokopczuk, M. (2013). The case of negative day-ahead electricity
prices. Energy Economics, 35:22–34.

Frühwirth-Schnatter, S. and Sögner, L. (2009). Bayesian estimation of stochastic volatility mod-
els based on OU processes with marginal Gamma law. Annals of the Institute of Statistical
Mathematics, 61(1):159–179.

Gelman, A. (2003). A Bayesian formulation of exploratory data analysis and goodness-of-fit
testing. International Statistical Review, 71(2):369–382.

Geman, H. and Roncoroni, A. (2006). Understanding the fine structure of electricity prices. The
Journal of Business, 79(3):1225–1261.

34



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Genoese, F., Genoese, M., and Wietschel, M. (2010). Occurrence of negative prices on the
German spot market for electricity and their influence on balancing power markets. In 7th
International Conference on the European Energy Market (EEM), pages 1–6. IEEE.

Geyer, C. J. and Møller, J. (1994). Simulation procedures and likelihood inference for spatial
point processes. Scandinavian Journal of Statistics, 21(4):359–373.

Gonzalez, J. (2015). Modelling and controlling risk in energy systems. PhD thesis, The Univer-
sity of Manchester, Manchester, UK.

Green, R. and Nossman, M. (2008). Markov chain Monte Carlo estimation of a multi-factor
jump diffusion model for power prices. The Journal of Energy Markets, 1(4):65–90.

Griffin, J. E. and Steel, M. F. J. (2006). Inference with non-Gaussian Ornstein-Uhlenbeck pro-
cesses for stochastic volatility. Journal of Econometrics, 134(2):605–644.

Hull, J. (2009). Options, Futures and Other Derivatives. Pearson/Prentice Hall, 7th edition.

Jacquier, E., Polson, N. G., and Rossi, P. E. (1994). Bayesian Analysis of Stochastic Volatility
Models. Journal of Business & Economic Statistics, 12(4):371–389.

Kim, S., Shephard, N., and Chib, S. (1998). Stochastic volatility: Likelihood inference and
comparison with ARCH models. Review of Economic Studies, 65(3):361–393.

Kingman, J. F. C. (1992). Poisson processes. Oxford University Press.

Kitapbayev, Y., Moriarty, J., and Mancarella, P. (2015). Stochastic control and real options
valuation of thermal storage-enabled demand response from flexible district energy systems.
Applied Energy, 137:823–831.

Kutoyants, Y. A. (1998). Statistical Inference for Spatial Poisson Processes. Lecture Notes in
Statistics. Springer, New York.

Lucia, J. J. and Schwartz, E. S. (2002). Electricity prices and power derivatives: Evidence from
the Nordic Power Exchange. Review of Derivatives Research, 5(1):5–50.

Meyer-Brandis, T. and Tankov, P. (2008). Multi-factor jump-diffusion models of electricity
prices. International Journal of Theoretical and Applied Finance, 11(05):503–528.

Moriarty, J. and Palczewski, J. (2017). Real option valuation for reserve capacity. European
Journal of Operational Research, 257(1):251–260.

35



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

National Grid plc (2016). Electricity ten year statement. http://www2.

nationalgrid.com/UK/Industry-information/Future-of-Energy/

Electricity-Ten-Year-Statement/. Accessed: 2017-04-10.

Roberts, G. O., Papaspiliopoulos, O., and Dellaportas, P. (2004). Bayesian inference for non-
Gaussian Ornstein-Uhlenbeck stochastic volatility processes. Journal of the Royal Statistical
Society. Series B (Statistical Methodology), 66(2):369–393.

Rubin, D. B. (1984). Bayesianly justifiable and relevant frequency calculations for the applied
statistician. The Annals of Statistics, 12(4):1151–1172.

Rydén, T. et al. (2008). EM versus Markov chain Monte Carlo for estimation of hidden Markov
models: A computational perspective. Bayesian Analysis, 3(4):659–688.

Schwartz, E. and Smith, J. E. (2000). Short-term variations and long-term dynamics in commod-
ity prices. Management Science, 46(7):893–911.

Seifert, J. and Uhrig-Homburg, M. (2007). Modelling jumps in electricity prices: theory and
empirical evidence. Review of Derivatives Research, 10(1):59–85.

Stephenson, P. and Paun, M. (2001). Electricity market trading. Power Engineering Journal,
15(6):277–288.

Tierney, L. (1998). A note on Metropolis-Hastings kernels for general state spaces. The Annals
of Applied Probability, 8(1):1–9.

Weron, R. (2007). Modeling and Forecasting Electricity Loads and Prices: A Statistical Ap-
proach. John Wiley & Sons.

Würzburg, K., Labandeira, X., and Linares, P. (2013). Renewable generation and electricity
prices: Taking stock and new evidence for germany and austria. Energy Economics, 40:S159–
S171.

36



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Highlights

• We perform Bayesian calibration of multifactor electricity spot price models via MCMC.

• Two or three signed jump components are sufficient for EEX and APXUK markets.

• Fewer positive jump components are found in recent data.

• Seasonal jump intensity is needed only in earlier EEX data.
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