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Abstract

The development of dermal equivalents (DEs) for the treatment of burns has contributed

toward efficient wound closure. A collagen-glycosaminoglycan DE (C-GAG) grafted with

hair follicles converted a full-thickness wound to partial-thickness resulting in complete

wound closure and restored hair. In this study we compared the ability of both intact pilose-

baceous units (PSU) or truncated hair follicles (THF) to regenerate a multilayered epidermis

in vitro when implanted into de-epidermalized dermis (DED) or C-GAG with the epidermis

generated in vivo using C-CAG. Keratinocytes explanted from the outer root sheath of PSU

and THF in both DED and C-GAG but only formed a multilayered epidermis with PSU in

DED. PSU were more effective at forming multilayered epidermis in DED than THF. Both

DED and C-GAG skin expressed proliferation (PCNA), differentiation (K1, K10), hyperproli-

feration (K6, K16), basal (K14), putative stem cell (p63), extracellular matrix protein (Colla-

gen IV), mesenchymal (vimentin) and adherens junction (β-catenin) markers. These data

suggest DEs supported initial maintenance of the implanted hair follicles, in particular PSU,

and provide an excellent model with which to investigate the regulation of hair follicle pro-

genitor epithelial cells during epidermal regeneration. Although neither PSU nor THF formed

multilayered epidermis in C-CAG in vitro, hair follicles implanted into engrafted C-GAG on a

burns patient resulted in epithelial regeneration and expression of proliferation and differen-

tiation markers in a similar manner to that seen in vitro. However, the failure of C-GAG to

support epidermal regeneration in vitro suggests in vivo factors are essential for full epider-

mal regeneration using C-GAG.

Introduction

Early burn wounds excision followed by wound closure is the key to success for the treatment

of large burn injuries and subsequent increase in survival rates [1]. Split-thickness and allo-

genic skin grafts are typically used for the resurfacing of burn wounds. The former provides
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permanent cover but, availability can be restricted due to sparse donor sites which can lead to

pain and scar formation. The latter are temporary, subject to rejection, and pose a risk of viral

transmission. Utilisation of keratinocyte sheets in the treatment of burns has also been docu-

mented [2]. However, due to the flat dermo-epidermal junction, these sheets are fragile on

full-thickness wounds and are prone to blistering thus influencing take rates [3]. Poor take

rates can be improved by grafting these sheets in combination with a dermal component [4].

Dermal equivalents (DEs) can be cellular or acellular and can include biodegradable or

nonbiodegradable polymers. Acellular DE, de-epidermalised dermis (DED) is processed from

cadaveric skin by removal of the epidermis and cellular components leaving behind essential

extracellular matrix (ECM) and basement membrane proteins. DED is durable and has

reduced or no antigenicity and the structural properties are retained even after cryopreserva-

tion [5], glycerol preservation [6] and lyophilisation [7]. Successful uses of DED for the resur-

facing of full-thickness wounds have been described in detail [8]. DED has also been used in in
vitro skin models with the incorporation of fibroblasts and keratinocytes [9, 10].

Integra1 Artificial Skin DE (C-GAG), used in the treatment of full-thickness burns [11,

12], comprises a bilayered porous dermal component of bovine collagen cross-linked with

chondroitin-6-sulphate, attached to a silicone membrane which functions as a temporary

epidermis [11, 12]. C-GAG requires a two-stage grafting procedure. Once applied to a

freshly excised wound bed, completion of dermal regeneration takes up to 4 weeks, after

which, the silicone layer is replaced by a thin split-skin graft to achieve permanent epidermal

wound closure [13]. Cultured autologous keratinocytes [14], and cultured skin substitutes

[15] have been used as second-stage procedures with this C-GAG in full-thickness wounds

in humans.

Tissue engineered skin grafted onto full-thickness wounds provide complete wound closure

however, hair follicles do not regenerate. In partial-thickness wounds, where remnants of skin

appendages remain, wound closure can be achieved without the need for engraftment as the

epidermis is regenerated from the hair stem cells that reside in the hair follicle bulge region

[16].

We have previously investigated the clinical outcome of early implantation of whole hair

follicles into a reconstructed C-CAG in the scalp region and showed that this effectively con-

verted a full-thickness wound into a partial-thickness wound by creating a neo-dermis and

restoring viable hair follicles. One year after transplantation, the neo-epidermis showed nor-

mal keratin 1 (K1) and K10 expression and the lack of epithelial hyperproliferation markers

K6 and K16 [17].

In the present study we established in vitro skin models containing implanted hair follicles

based on C-GAG or DED seeded with hair follicle-derived dermal papilla cells and investi-

gated epithelial regeneration from outer root sheath (ORS) keratinocytes as well as follicular

differentiation in comparison with those obtained in vivo from C-GAG implanted with whole

hair follicles [17].

Materials and methods

Preparation of Integra® artificial skin (C-GAG) and de-epidermalized

dermis (DED)

Integra1 Artificial Skin DE (C-GAG) was commercially available from Integra1 (LifeSciences

Corporation, Plainsboro, NJ) and DED was prepared from glycerol preserved skin (Euro Skin

Bank, Beverwijk, The Netherlands). C-GAG and DED were prepared as described previously

[18].

Skin models to study epithelial regeneration from the hair follicle
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Isolation and cell culture of dermal papilla cells

Informed written consent was obtained from all individuals who donated skin biopsies and

collaborating dermatologists performed the biopsies at the Royal London Hospital (London,

U.K.). The East London and City Health Authority Research Ethics Committee approved the

use and protocols for obtaining patient skin biopsies (T/01/034). No minors were used for this

study.

Cultured dermal papilla (DP) cells were included in all skin equivalents. DP cells were iso-

lated from hair follicles from human scalp skin as previously described [19]. Two to four pas-

sage DP cells were used for experiments.

Microdissection of human hair follicles

Human hair follicles from redundant scalp skin were isolated as either whole pilosebaceous

units (PSU) comprising the hair follicle bulb, bulge region and sebaceous gland or, as trun-

cated hair follicles (THF) consisting of the lower, proximal portion of the hair follicle exclud-

ing the bulge region and sebaceous gland as previously described [20, 21].

Production of C-GAG and DED skin equivalents

1.5 × 1.5 cm squares of C-GAG and DED were placed in 12-well-plates, with the silicone sur-

face (GAG) and the papillary dermal surface (DED) located at the bottom of the multiwell

plate. 1 cm stainless-steel rings were placed on the DEs into which DP cells were resuspended

in DP medium (2 × 105 per cm2 in 500 ml). Medium was added to top up the rings and to the

surrounding areas of the wells. After overnight incubation, the rings were removed and me-

dium refreshed and DEs were incubated for a further 4 days. Following incubation, medium

was removed and the DEs turned so that the silicone surface of the C-GAG and the papillary

surface of the DED were now uppermost. Small slits were created in the DEs into which either

6 PSU or THF were inserted vertically into each DE. DEs were prepared in duplicates and

experiments repeated three times (n = 6 per DE). The DEs were raised to air-liquid interface

by draping the skin equivalents over stainless-steel rings placed on top of stainless-steel grids,

allowing the hair follicles to remain in an upright position. The skin equivalents remained at

air-liquid interface for 14 days with medium refreshed every 3 days (see S1 Fig). The skin

equivalents were then cut into half embedded in 3% agar and fixed in 10% formalin and

embedding in paraffin. Haematoxylin and eosin (H&E) histology and immunohistochemistry

were performed according to standard laboratory procedures [18]. The primary antibodies

used and their dilutions are shown in Table 1.

Micrografting hair follicles into the engrafted C-GAG

The two-step procedure of engrafting the C-GAG onto the burn wound followed by micro-

grafting hair follicles into the engrafted C-GAG has previously been described [17]. Briefly,

autologous PSU were dissected from a section of the occipital scalp and micrografted through

the silicone sheet of C-GAG at intervals of 5 to 10 mm. Biopsy specimens were taken at 16

days, 37 days, 1 and 2 years post PSU micrografting fixed in 10% formalin and processed for

histology. The biopsy specimens had been obtained from our previously published study [17].

Normal scalp skin from a donor was used as control scalp skin with approval from the East

London and City Health Authority Research Ethics Committee as well as informed written

consent from the patient as previously mentioned.

Skin models to study epithelial regeneration from the hair follicle
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Results

Histology of engrafted C-GAG in vivo

We previously investigated the clinical outcome of early implantation of autologous PSU into

a vascularised C-GAG neo-dermis on a burns patient and examined the general histology of

the grafted site 16 and 37 days post grafting [17]. We now expanded this analysis and investi-

gated both histology of the grafted site in biopsies taken 1 and 2 years after grafting in compar-

ison to control scalp skin (Fig 1A and 1F).

At 16 days post micrografting, neo-epithelium originating from implanted hair was visible

(Fig 1B, and previously published [17]). A well vascularised neo-dermis was apparent with evi-

dence of C-GAG collagen fibres still present (Fig 1G -arrows). Biopsy taken at 37 days post

micrografting showed complete re-epithelialisation with a neo-epidermis 8 to 9 cell layers

thick (Fig 1C, and previously published [17]). The neo-dermis contained remnants of collagen

fibres of the C-GAG matrix (Fig 1H). Biopsies taken at 1 and 2 years post micrografting ex-

hibited a similar morphology and architecture to that of control scalp skin (Fig 1D, 1E, 1I and

1J). At 1 and 2 years post micrografting, a relatively flat dermo-epidermal junction was seen

(Fig 1D and 1E; arrows) and few collagen fibres of the C-GAG matrix were still present (Fig 1I

and 1J).

Table 1. Primary Antibodies used for Immunohistochemistry.

Antibody Target Dilution Source

LHK1 (mouse monoclonal) Keratin 1 (K1) Supernatant The Royal London School of Medicine & Dentistry [22]

LHK6 (mouse monoclonal) Keratin 6 (K6) Supernatant The Royal London School of Medicine & Dentistry [22]

LHP2 (mouse monoclonal) Keratin 10 (K10) Supernatant The Royal London School of Medicine & Dentistry [23]

LL002 (mouse monoclonal) Keratin 14 (K14) Supernatant The Royal London School of Medicine & Dentistry [24]

LL025 (mouse monoclonal) Keratin 16 (K16) Supernatant The Royal London School of Medicine & Dentistry [25]

Anti-Human β-catenin–Pan (C-14) (mouse monoclonal) Pan β-catenin 1:100 BD BioScience product no. 610153

Anti-human PCNA (PC10) (mouse monoclonal) PCNA 1:100 DAKO product no. M 0879

Anti-human p63 (mouse monoclonal) p63 1:100 Santa Cruz Biotechnology, Inc. product no. sc-8431

Anti-human collagen type-IV (rabbit polyclonal) Collagen IV 1:50 ICN Pharmaceuticals, Inc., product no. 10760

Anti-human vimentin (V9) (mouse monoclonal) Vimentin 1:100 DAKO product no. M 0725

https://doi.org/10.1371/journal.pone.0174389.t001

Fig 1. H&E histology of control scalp skin (A, F), biopsies at day 16 (B, G), day 37 (C, H), 1 year

(D, I) and 2 years (E, J) post PSU micrografting. The general histology of control scalp skin and biopsies

taken at different time-points are shown in the top panels (A-E). The bottom panels show the histology of the

dermis of control scalp skin and biopsies taken at different time-points (F-J). C-GAG fibres are present in the

dermis of all biopsies taken between day 16 (arrows) and 2 years post PSU micrografting (G-J). Scale bar

(A-J), 200μm. Abbreviations: E, epidermis; D, dermis, NE, neo-epidermis; PSU, pilosebaceous unit. Arrows

denote dermo-epidermal junctions. Fig 1B and 1C are reprinted from [17] under a CC BY license, with

permission from [Wolters Kluwer Health, Inc.], original copyright [2004]. Use of the material in print, digital or

mobile device format is prohibited without the permission from the publisher Wolters Kluwer. Please contact

healthpermissions@wolterskluwer.com for further information.

https://doi.org/10.1371/journal.pone.0174389.g001
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Histology of skin equivalents derived from PSU and THF

DED implanted with PSU after 14 days at the air-liquid interface showed a multilayered epi-

dermis on the papillary surface. The dermo-epidermal junction was relatively flat (Fig 2A;

arrow). Most DED also contained islands of cells within the dermis (Fig 2B -arrows). C-GAG

implanted with PSU did not generate a multilayered epidermis, instead, cells migrating from

the PSU formed islands within the matrix (Fig 2C). The sebaceous glands showed abnormal

differentiation including cell nuclei loss and a keratinised lumen (Fig 2D). PSU generally had a

thicker inner (IRS) and outer root sheath (ORS) (Fig 2E -arrows). Generally, PSU morphology

was maintained at proximal (lower) regions as identified by the absence of ORS explant and

presence of an intact connective tissue sheath (CTS) (Fig 2E -arrowheads) however, the latter

appeared thicker (Fig 2F). However, at the distal (upper) ends where there was sometimes a

small amount of epidermis attached to PSU, keratinocyte outgrowth was clearly seen (Fig 2G–

arrows).

H&E histology of DED implanted with THF was variable. Out of a total of 36 THF

implanted into 6 DEDs, 29 THF explanted to generate a multilayered epidermis on DED (Fig

2H) whereas 7 THF did not show any signs of epidermal regeneration despite their presence

in DED (Fig 2I). C-GAG implanted with THF did not generate an epidermis (Fig 2J).

Fewer cell islands were observed in the interstices of C-GAG implanted with THF com-

pared to those implanted with PSU (Fig 2J versus Fig 2C). Histology of THF inside DED and

C-GAG was variable. In DED, the majority of THF exhibited a similar morphology to that

described for PSU (Fig 2K). However, a few THF appeared to have undergone abnormal dif-

ferentiation resulting in cell death as demonstrated by loss of cell nuclei (Fig 2L). These were

not investigated further. In C-GAG scaffold, THF analysed showed an abnormal morphology

as a result of cells explanting from the ORS but did not form cell islands (Fig 2J).

Hyperproliferation and differentiation profile of skin equivalents and neo-

epidermis in vivo

K6 a marker for hyperproliferation and K14 a basal marker for stratified squamous epithelia

are expressed in a similar fashion in in vitro skin models as they are in wound healing and

hyperproliferative skin diseases [18, 26]. As expected, K6 and K14 expression was found in

both DED and C-GAG skin equivalents. Strong K6 expression was mainly in the suprabasal

layers of the regenerative epithelium in DED implanted with PSU and THF similar to wound

healing skin (Fig 3A and 3J). Both PSU and THF expressed K6 in the suprabasal ORS (Fig 3A

and 3J -insets). PSU implanted into C-GAG displayed K6 staining in the inner C-GAG matrix

and in the suprabasal ORS (Fig 3F). Clusters of K6 positive cells were found in the C-GAG

matrix implanted with THF (Fig 3N). These THF also expressed K6 (not shown). K14 was

expressed throughout the epidermis of DED implanted with PSU and THF and in both basal

and suprabasal layers of the ORS (Fig 3B, 3C and 3K- insert). In C-GAG, K14 positive ORS

keratinocytes were observed explanting from PSU and THF (Fig 3G and 3O) and in both PSU

and THF (Fig 3G and 3O).

In vivo, K6 and K16 were not present in any of the layers of the epidermis in control scalp

skin but were observed throughout the suprabasal layers of the ORS and sebaceous duct (K6)

(Fig 4A and 4F). In contrast, at day 16 post micrografting, the suprabasal layers of the neo-

epithelium including the leading edge and ORS stained strongly for K6 (Fig 4B) and weakly

for K16 (Fig 4G). A similar pattern of distribution for K6 and K16 was seen at day 37 post

micrografting (Fig 4C and 4H). The expression patterns for K6 and K16 at 1 and 2 years post

micrografting were similar to those seen for control scalp skin (Fig 4D, 4E, 4I and 4J). K14

expression was restricted to the basal and 1 or 2 suprabasal layers in control scalp skin and in

Skin models to study epithelial regeneration from the hair follicle
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both basal and suprabasal layers of the ORS and in the sebaceous gland (Fig 4K). At days 16

and 37 post micrografting, K14 staining increased in intensity and also extended throughout

all the suprabasal layers of the neo-epidermis. Expression was also found in the basal and

suprabasal layers of the ORS (Fig 4L and 4M). Staining for K14 at 1 and 2 years post micro-

grafting resembled that of control scalp skin (Fig 4N and 4O).

K10 a marker of differentiation was detected in the suprabasal layers of the epidermis in

DED implanted with PSU (Fig 3D) and similar expression profile was observed in DED

implanted with THF (Fig 3L). PSU and THF within the DED expressed K10 in the suprabasal

Fig 2. H&E histology of skin equivalents implanted with PSU (A-G) or THF (H-L). Epidermis originating

from ORS cells from implanted PSU in DED (A). Islands of cells present inside DED (B; arrows). Large cluster

of cells present in C-GAG matrix (C; arrow). Abnormal sebaceous gland (D; arrow). Lower region of PSU

showing thick IRS (thick arrow), thick ORS (thin arrow) and intact CTS (arrowheads) (E). Cross-section of

implanted PSU showing maintained morphology and thicker CTS (F; arrowheads). ORS cell outgrowth from

PSU (arrows) (G). Epidermis present in DED implanted with THF (H). DED showing a lack of epidermis on

papillary DED (thin arrow) despite presence of hair follicle (thick arrow) (I). Smaller clusters of cells present in

the C-GAG matrix (J; arrow). Cross-section of healthy THF after implantation into DED (K). Cross-section of

unhealthy THF after implantation into DED (L). Scale bar for (A), (D), (F) and (H), 50 μm; (B), (C), (E), (G) and

(I-L), 100 μm. Abbreviations: E, epidermis; PSU, pilosebaceous unit, THF, truncated hair follicle. Arrows

denote dermo-epidermal junctions.

https://doi.org/10.1371/journal.pone.0174389.g002

Fig 3. Expression of K6 (A, F, J, N), K14 (B, C, G, K, O), K10 (D, H, L, P) and β-catenin (E, I, M, Q) in

DEs implanted with PSU (A-I) or THF (J-Q). K6 expression seen in suprabasal epidermal layers in DED

implanted with PSU (A) and THF (J). PSU in DED exhibit suprabasal ORS staining (A -inset). Similar staining

seen for THF in DED (J -inset). Groups of positive K6 ORS cells found in C-GAG matrix implanted with PSU

(F). K6 positive PSU implanted into C-GAG matrix is denoted by arrow (F). Staining also observed with THF

C-GAG skin equivalents (N). K14 staining found in epidermis of DED implanted with PSU (B) and THF (K).

PSU exhibit basal and suprabasal ORS staining in DED (C). The same is true for THF in DED (K -inset). In

C-GAG, islands of K14 positive ORS cells seen inside matrix implanted with PSU (G) or THF (O). These hair

follicles are also K14 positive (G, O; denoted by arrows). K10 staining seen in epidermis of DED implanted

with PSU (D) and THF (L). K10 staining seen in the suprabasal ORS of PSU (D -inset) and THF (L–inset)

implanted into DED. K10 positive ORS cells found in C-GAG scaffold implanted with PSU (H) or THF (P). THF

implanted into C-GAG matrix is denoted by arrow (P). Membranous β-catenin staining found in the epidermis

of DED implanted with PSU (E) and THF (M). In DED, implanted PSU (E -inset) and THF (M -inset) exhibit

membranous ORS staining. In C-GAG scaffold, islands of ORS cells show membranous staining inside the

matrix implanted with PSU (I) or THF (Q). Implanted PSU are positive for β-catenin (I, arrow). Scale bar for

(A-Q), 100 μm. Arrowheads denote epidermis.

https://doi.org/10.1371/journal.pone.0174389.g003
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layers of ORS (Fig 3D -inset and 3L -insert). In C-GAG, K10 was expressed in clusters of ORS

cells that had migrated from PSU or THF (Fig 3H and 3P). K10 localisation in PSU implanted

into C-GAG was similar to those found in DED (not shown). However, most THF implanted

into C-GAG exhibited K10 staining throughout the ORS (Fig 3P).

In comparison, in vivo, K1 was moderately expressed and K10 was weakly expressed in the

suprabasal layers of the epidermis in control scalp skin. Expression was also found in the

upper part of the ORS just above the sebaceous glands (Fig 4P and 4U). At day 16 post micro-

grafting, K1 and K10 were localised to the suprabasal layers of the neo-epithelium except at the

leading edge where keratinocyte cells were negative suggesting that the cells were undifferenti-

ated. Suprabasal cells of the ORS also stained positive for K1 and K10 (Fig 4Q and 4V). Similar

expressions of both these keratins were found in all suprabasal layers indicating the presence

of differentiated keratinocytes at day 37 post micrografting (Fig 4R and 4W). As previously

published for 1 year post micrografting [44], K1 and K10 expression was identical to control

scalp skin indicating a return to the normal differentiation state (Fig 4S and 4X). Results

obtained for 2 years post micrografting were similar (Fig 4T and 4Y).

Presence of adherens junctions in skin equivalents

Membranous β-catenin was seen along intercellular junctions of the epidermis, reducing in

intensity in the basal layers of DED implanted with PSU and THF (Fig 3E and 3M). Implanted

PSU and THF (Fig 3E–inset and 3M -inset) also showed membranous staining in the ORS.

Keratinocyte clusters within the C-GAG matrix implanted with PSU and THF (Fig 3I and 3Q)

Fig 4. Hyperproliferation (K6 and K16), basal epidermal (K14) and differentiation (K1 and K10)

profiles in control scalp skin (A, F, K, P, U), biopsies taken at day 16 (B, G, L, Q, V), day 37 (C, H, M, R,

W), 1 year (D, I, N, S, X) and 2 years (E, J, O, T, Y) post PSU micrografting. Immunohistochemistry was

performed using antibodies directed against human K6, K16, K14, K1 and K10 as seen in Table 1. Expression

of these markers was found to be similar to control skin by 1 and 2 years post micrografting. Scale bar (A-Y),

200 μm. Abbreviations: E, epidermis; ORS, outer root sheath; SD, sebaceous duct; NE, neo-epidermis. Fig

4S and 4X are reprinted from [17] under a CC BY license, with permission from [Wolters Kluwer Health, Inc.],

original copyright [2004]. Use of the material in print, digital or mobile device format is prohibited without the

permission from the publisher Wolters Kluwer. Please contact healthpermissions@wolterskluwer.com for

further information.

https://doi.org/10.1371/journal.pone.0174389.g004
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exhibited membranous staining. Staining for β-catenin in these hair follicles was similar to

those implanted in DED.

Keratinocyte proliferation in the skin equivalents and in vivo

To investigate keratinocyte proliferation in the skin equivalents, proliferating cell nuclear anti-

gen (PCNA) and p63 expression was assessed. p63 was also used as a putative stem cell marker

to determine the presence of epithelial progenitor cells. PCNA and p63 staining were found in

nuclei of cells predominantly in the basal layer of the epidermis in DED implanted with PSU

(Fig 5A and 5I) and THF (Fig 5E and 5M). Both hair follicle types expressed PCNA (Fig 5B

and 5F) and p63 in the ORS (Fig 5J and 5N). C-GAG displayed PCNA and p63 staining for

some keratinocytes situated in clusters inside the matrix when implanted with PSU (Fig 5C

and 5K) and THF (Fig 5G and 5O). Both types of hair follicles implanted into the C-GAG

matrix expressed PCNA (Fig 5D and 5H) and p63 (Fig 5L and 5P).

In control scalp skin, p63 expression was seen in the basal layer of the epidermis (Fig 6A).

Expression of p63 at day 37 was found mainly in the basal layer (Fig 6B). By 1 and 2 years post

micrografting, staining was again restricted mainly to the basal layers of the epidermis like that

of control scalp skin (Fig 6C and 6D). No further sections could be obtained for day 16 sample

as all clinical material had been used up.

Expression of ECM component and mesenchymal marker in skin

equivalents and in vivo

Collagen type-IV stained the dermo-epidermal junction and areas previously colonised by

blood vessels in DED implanted with PSU (Fig 7A) and THF (Fig 7E). Collagen type-IV also

stained the basement membranes surrounding PSU (Fig 7A–inset) and THF (Fig 7E). Dense

collagen type-IV staining was also seen in association with the CTS (Fig 7A–inset and 7E

Fig 5. PCNA (A-H) and p63 (I-P) staining in DED and C-GAG skin equivalents implanted with PSU

(A-D, I-L) or THF (E-H, M-P). PCNA staining seen in the epidermis of DED implanted with PSU (A) and THF

(E). PSU (B) and THF (F) implanted into DED are also positive for PCNA. C-GAG skin equivalents derived

from PSU (C) and THF (G) exhibit PCNA staining. PSU (D) and THF (H) implanted into C-GAG contain PCNA

positive cells. p63 staining seen in the epidermis of DED implanted with PSU (I) and THF (M). PSU (J) and

THF (N) implanted into DED are positive for p63. C-GAG skin equivalents derived from PSU (K) and THF (O)

display p63 staining. PSU (L) and THF (P) implanted into C-GAG contain p63 positive cells. Scale bar for

(A-P), 100 μm. Abbreviations: E, epidermis. Arrows denote ORS of hair follicles.

https://doi.org/10.1371/journal.pone.0174389.g005
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-arrow). Collagen type-IV was found in association with some ORS cell clusters within the

C-GAG matrix implanted with THF and PSU as well as around hair follicle basement mem-

branes (Fig 7C and 7G).

In vivo, collagen-type-IV was found in conjunction with the basement membrane along the

dermo-epidermal junction, the ORS, the sebaceous glands and the sweat glands in control

scalp skin and blood vessels (Fig 6E). At day 37 post micrografting, Collagen type-IV was

observed in association with blood vessels. No expression was observed at the dermo-epider-

mal junction of the neo-epidermis (Fig 6F). At 1 and 2 years post micrografting, Collagen

type-IV was distributed in a similar manner to that of control scalp skin (Fig 6G and 6H).

Strong vimentin staining was found in association with CTS surrounding both PSU and

THF implanted into DED (Fig 7B and 7F). Vimentin positive cells were also found inside the

DED, presumably seeded DP cells and explanted CTS cells (Fig 7B and 7F). C-GAG implanted

with PSU and THF showed positive staining of CTS surrounding the hair follicles and vimen-

tin positive cells within the matrix (Fig 7D and 7H).

Discussion

In this paper, we have established in vitro organotypical skin models containing hair follicles

based on DED or C-GAG DEs to mimic the natural topography of hair bearing skin [27, 28].

PSU implanted into DED gave rise to a multilayered epidermis that expressed markers sim-

ilar to mature epidermis and those of wound healing skin as confirmed by K6, K10, K14 and

β-catenin staining [29, 30]. The epidermis was separated from the dermis by the basement

membrane, confirmed by collagen type-IV expression at this location, which assisted in the

attachment, proliferation and differentiation of the keratinocytes confirming other studies [10,

18]. Islands of ORS cells were frequently found inside the DED skin equivalents probably due

to ORS keratinocytes invading the spaces previously colonised by the appendageal structures

inherent to DED.

In contrast, the formation of an organised epidermis with C-GAG was not observed. This

may be attributed to the lack of a proper basement membrane zone and the presence of large

pores of the C-GAG matrix permitting the infiltration and proliferation of cells, one of its

main functions in vivo [31]. Thus, arrangement of ORS keratinocytes in the C-GAG matrix

was disorganised and although expression of differentiation and hyperproliferation markers

was observed, their localisation was abnormal. The failure of C-GAG to support epidermal

regeneration in vitro suggests in vivo factors are essential for full epidermal regeneration using

Fig 6. Expression of p63 and Collagen type-IV in control scalp skin (A, E), biopsies taken at day 37 (B,

F), 1 year (C, G), and 2 years (D, H) post PSU micrografting. Immunohistochemistry was performed using

antibodies directed against human p63 and collagen type-IV as seen in Table 1. At 1 and 2 years post PSU

micrografting, p63 and collagen type-IV expression were similar to control skin. Scale bar (A-H), 200 μm.

Arrows showing p63 positive cells in the basal layer of the epidermis.

https://doi.org/10.1371/journal.pone.0174389.g006
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C-GAG. In support of this, we previously reported that implanting hair follicle micrografts

into the same C-GAG neo-dermis on a full-thickness scalp burn wound gave rise to a normal

multilayered, differentiated epidermis which was derived from ORS cells [17]. At the early

time points days 16 and 37 post micrografting, K6, K10, K14 and p63 expression was very sim-

ilar to those obtained with DED implanted with PSU confirming that this is a useful in vitro
model to study wound healing skin. The novel technique of implanting PSU into vascularised

Fig 7. Collagen type-IV and vimentin staining in DED and C-GAG skin equivalents implanted with

PSU (A-D) or THF (E-H). Collagen type-IV staining was found at basement membrane zones in DED

implanted with PSU (A) and around PSU (A -inset). This was also true for DED skin equivalents implanted

with THF (E). C-GAG matrix implanted with PSU show positive staining at basement membranes around hair

follicle and amongst cell clusters in the matrix (C). C-GAG matrix implanted with THF show positive staining

along basement membrane zones of hair follicles and in association with some cells inside the matrix (G). In

DED, vimentin positive cells were found in the CTS of implanted PSU (B) and THF (F). Positive cells were

also seen within DED, away from hair follicles (B, F). Vimentin positive cells were observed within C-GAG

matrix and around implanted PSU (D) and THF (H). Arrows denote implanted PSU and THF. Scale bar for

(A-H), 100 μm.

https://doi.org/10.1371/journal.pone.0174389.g007
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C-GAG effectively converted a full-thickness wound to deep partial-thickness thus obviating

the need for split-skin grafts. These results are in alignment with previous studies that have

also shown epidermal regeneration from appendages in partial-thickness wounds [32, 33].

29 out of 36 THF implanted into DED led to the formation of an epidermis. The reason

for the lack of epithelial regeneration in some of the THF implants may be due to extensive

cell death in some hair follicles, demonstrated by absence of ORS cell nuclei. It was also noted

that some ‘healthy’ THF moved underneath the papillary surface of the DED during culture

making it difficult for the ORS cells to migrate onto the papillary surface. In this case, islands

of cells were seen in the slits created in the DED where hair follicles were inserted. THF

implanted into C-GAG failed to form an epidermis.

Histology revealed that the integrity of the IRS, ORS, CTS and basement membrane com-

partments of the implanted PSU appeared to be maintained although some morphological

changes were observed at regions proximal to the infundibulum including thicker CTS, ORS

and IRS. Thicker IRS has also been observed in hair follicles that have been in culture for 9

days [34]. At the distal end of the hair follicles however, the hair follicle structure, in particular

the ORS compartment, was not maintained. ORS cell explantation was expected due to the

presence of serum in the culture medium which promotes cell attachment, proliferation and

differentiation. In DED, ORS cells migrated laterally along the papillary surface of the dermis

only invading the dermis at openings of old appendageal structures. Indeed, other studies have

shown the upwards and lateral migration of ORS cells to regenerate the epidermis in a murine

wound repair model [35], in a chimeric vibrissal follicle-transplantation study [36], and in par-

tial-thickness burn wounds in humans [37]. With C-GAG, it is likely that these cells migrated

upwards and out of the infundibulum and then back down inside the matrix due to the lack of

basement membrane zone.

Further confirmation that the ORS compartments and basement membrane zones were

maintained in PSU, at least in the lower regions, was achieved by immunostaining for K6,

K10, K14, β-catenin and collagen type-IV that are normally expressed in the hair follicles. The

expression patterns of these markers in these hair follicles were similar to their counterparts in
vivo. These results are in keeping with another study that reported maintenance of hair follicle

structure using their skin equivalent system comprising of PSU implanted into fibroblast

sheets seeded with keratinocytes [38].

C-GAG implanted with PSU generally contained more ORS cells within the matrix com-

pared to those implanted with THF. This may be due to PSU being larger in size compared to

THF or the fact that more ORS keratinocytes were generated from PSU compared to THF

could be an indication that the highly proliferative cells originated from the upper part of the

hair follicle. Our results are consistent with clonal assays that have demonstrated that cells

with higher proliferative potential, and prolonged viability are found in the upper region

including the bulge of human hair follicles compared to lower regions [36, 39]. Most THF also

gave rise to proliferative ORS cells that were able to generate an epidermis on DED. This is in

line with previous work [40]. On the whole, our study demonstrated that PSU are the follicles

of choice to use in these skin models as they are whole hair follicles and contain cells of all

varying proliferative capacities both at the upper and lower ends of the hair follicle.

The importance of the dermal papilla and cultured DP cells in the induction of hair follicle

activity and maintenance is well established [41, 42]. For this reason, hair follicles containing

intact bulbs and cultured DP cells were also included in our system. Positive vimentin staining

seen throughout the DED and C-GAG matrix indicated the presence of mesenchymal cells

presumably, seeded DP cells and explanted CTS cells originating from the hair follicles. Other

studies indeed have demonstrated fibroblast outgrowth from dermal sheath of hair follicles in

the presence of serum [43]. As expected therefore, we observed increased collagen type-IV
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staining found in association with mesenchymal cells in our study. Very little information on

hair follicle bulb morphology was obtained in this study because of the difficulty in obtaining

longitudinal sections of the implanted hair follicles, however it was not the aim of this study to

investigate hair growth as we included FCS in our culture medium.

Conclusions

Skin models are useful tools to study various aspects of skin biology, physiology, renewal,

wound repair and regeneration and skin diseases. However, it should be noted that they do

not mimic every element of native skin nor do they replace all of its functions. These models

are deprived of essential communication with the rest of the body including neuroendocrine

communications that play an integral role as central regulators of body homeostasis [44, 45].

They also lack functional immune system and regulation and, blood flow important for cellu-

lar nutrition and metabolism [46]. The development of an ideal, fully functional skin model

has therefore not been attained yet. However, over the years, ongoing research into the cellular

and molecular mechanisms which govern the various processes during skin development,

repair, renewal and regeneration has led to major advancements in the construction of these

skin models that more closely resemble native skin by the incorporation of a variety of cell

types including neuronal cells [47], immune cells, melanocytes, endothelial cells, and hair folli-

cle-like structures [48, 49].

In this study, we have established an in vitro skin model that mimics the conditions in vivo
to study epithelial/mesenchymal interactions and epithelial regeneration from hair follicles.

Both DEs supported the initial maintenance of implanted hair follicles, in particular PSU.

These follicles provided progenitor epithelial cells that generated epidermis only in DED skin

equivalents similar to in vivo. The skin equivalents implanted with PSU were our model of

choice. A superior morphology was associated with DED skin equivalent implanted with PSU

in vitro. Based on our in vitro and in vivo studies, we conclude that micrografting of PSU into

tissue engineered skin may highlight an alternative method to skin grafting of full-thickness

wounds. This could be the way forward for the treatment of wounds, potentially saving time

and split-skin donor sites.

Supporting information

S1 Fig. Production of C-GAG and DED Skin Equivalents.

(JPG)

Acknowledgments

We would like to dedicate this paper to the memory of Prof. Harshad A. Navsaria, who passed

away.

Author Contributions

Conceptualization: HN MP.

Formal analysis: NO HN MP.

Investigation: NO MP HN.

Methodology: NO.

Project administration: HN.

Skin models to study epithelial regeneration from the hair follicle

PLOS ONE | https://doi.org/10.1371/journal.pone.0174389 March 28, 2017 13 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0174389.s001
https://doi.org/10.1371/journal.pone.0174389


Supervision: HN.

Validation: HN MP NO.

Visualization: HN NO.

Writing – original draft: NO BA MTC MP HN.

Writing – review & editing: NO BA MTC MP HN.

References
1. Church D, Elsayed S, Reid O, Winston B, Lindsay R. Burn wound infections. Clin Microbiol Rev. 2006;

19(2):403–34. https://doi.org/10.1128/CMR.19.2.403-434.2006 PMID: 16614255

2. Navsaria HA, Myers SR, Leigh IM, McKay IA. Culturing skin in vitro for wound therapy. Trends Biotech-

nol. 1995; 13(3):91–100. https://doi.org/10.1016/S0167-7799(00)88913-1 PMID: 7766223

3. Fredriksson C, Kratz G, Huss F. Transplantation of cultured human keratinocytes in single cell suspen-

sion: a comparative in vitro study of different application techniques. Burns. 2008; 34(2):212–9. https://

doi.org/10.1016/j.burns.2007.03.008 PMID: 17689016

4. Navsaria HA, Kangesu T, Manek S, Green CJ, Leigh IM. An animal model to study the significance of

dermis for grafting cultured keratinocytes on full thickness wounds. Burns. 1994; 20(Suppl 1):S57–60.

5. Heck EL, Bergstresser PR, Baxter CR. Composite skin graft: frozen dermal allografts support the

engraftment and expansion of autologous epidermis. J Trauma. 1985; 25(2):106–12. PMID: 3882973

6. McKay I, Woodward B, Wood K, Navsaria HA, Hoekstra H, Green C. Reconstruction of human skin

from glycerol-preserved allodermis and cultured keratinocyte sheets. Burns. 1994; 20(Suppl 1):S19–

22.

7. Krejci NC, Cuono CB, Langdon RC, McGuire J. In vitro reconstitution of skin: fibroblasts facilitate kerati-

nocyte growth and differentiation on acellular reticular dermis. J Invest Dermatol. 1991; 97(5):843–8.

PMID: 1717611

8. Gustafson CJ, Kratz G. Cultured autologous keratinocytes on a cell-free dermis in the treatment of full-

thickness wounds. Burns. 1999; 25(4):331–5. PMID: 10431981

9. Ghosh MM, Boyce S, Layton C, Freedlander E, Mac Neil S. A comparison of methodologies for the

preparation of human epidermal- dermal composites. Annals of plastic surgery. 1997; 39(4):390–404.

PMID: 9339282

10. Ralston DR, Layton C, Dalley AJ, Boyce SG, Freedlander E, Mac Neil S. The requirement for basement

membrane antigens in the production of human epidermal/dermal composites in vitro. Br J Dermatol.

1999; 140(4):605–15. PMID: 10233309

11. Yannas IV, Burke JF, Gordon PL, Huang C, Rubenstein RH. Design of an artificial skin. II. Control of

chemical composition. J Biomed Mater Res. 1980; 14(2):107–32. https://doi.org/10.1002/jbm.

820140203 PMID: 7358747

12. Yannas IV, Lee E, Orgill DP, Skrabut EM, Murphy GF. Synthesis and characterization of a model extra-

cellular matrix that induces partial regeneration of adult mammalian skin. Proc Natl Acad Sci U S A.

1989; 86(3):933–7. PMID: 2915988

13. Heimbach DM, Warden GD, Luterman A, Jordan MH, Ozobia N, Ryan CM, et al. Multicenter post-

approval clinical trial of Integra dermal regeneration template for burn treatment. J Burn Care Rehabil.

2003; 24(1):42–8. https://doi.org/10.1097/01.BCR.0000045659.08820.00 PMID: 12543990

14. Jones I, James SE, Rubin P, Martin R. Upward migration of cultured autologous keratinocytes in Integra

artificial skin: a preliminary report. Wound Repair Regen. 2003; 11(2):132–8. PMID: 12631301

15. Boyce ST, Kagan RJ, Yakuboff KP, Meyer NA, Rieman MT, Greenhalgh DG, et al. Cultured skin substi-

tutes reduce donor skin harvesting for closure of excised, full-thickness burns. Ann Surg. 2002; 235

(2):269–79. PMID: 11807368

16. Ito M, Liu Y, Yang Z, Nguyen J, Liang F, Morris RJ, et al. Stem cells in the hair follicle bulge contribute to

wound repair but not to homeostasis of the epidermis. Nat Med. 2005; 11(12):1351–4. https://doi.org/

10.1038/nm1328 PMID: 16288281

17. Navsaria HA, Ojeh NO, Moiemen N, Griffiths MA, Frame JD. Reepithelialization of a full-thickness burn

from stem cells of hair follicles micrografted into a tissue-engineered dermal template (Integra). Plast

Reconstr Surg. 2004; 113(3):978–81. PMID: 15108893

18. Ojeh NO, Frame JD, Navsaria HA. In vitro characterization of an artificial dermal scaffold. Tissue Eng.

2001; 7(4):457–72. https://doi.org/10.1089/10763270152436508 PMID: 11506734

Skin models to study epithelial regeneration from the hair follicle

PLOS ONE | https://doi.org/10.1371/journal.pone.0174389 March 28, 2017 14 / 16

https://doi.org/10.1128/CMR.19.2.403-434.2006
http://www.ncbi.nlm.nih.gov/pubmed/16614255
https://doi.org/10.1016/S0167-7799(00)88913-1
http://www.ncbi.nlm.nih.gov/pubmed/7766223
https://doi.org/10.1016/j.burns.2007.03.008
https://doi.org/10.1016/j.burns.2007.03.008
http://www.ncbi.nlm.nih.gov/pubmed/17689016
http://www.ncbi.nlm.nih.gov/pubmed/3882973
http://www.ncbi.nlm.nih.gov/pubmed/1717611
http://www.ncbi.nlm.nih.gov/pubmed/10431981
http://www.ncbi.nlm.nih.gov/pubmed/9339282
http://www.ncbi.nlm.nih.gov/pubmed/10233309
https://doi.org/10.1002/jbm.820140203
https://doi.org/10.1002/jbm.820140203
http://www.ncbi.nlm.nih.gov/pubmed/7358747
http://www.ncbi.nlm.nih.gov/pubmed/2915988
https://doi.org/10.1097/01.BCR.0000045659.08820.00
http://www.ncbi.nlm.nih.gov/pubmed/12543990
http://www.ncbi.nlm.nih.gov/pubmed/12631301
http://www.ncbi.nlm.nih.gov/pubmed/11807368
https://doi.org/10.1038/nm1328
https://doi.org/10.1038/nm1328
http://www.ncbi.nlm.nih.gov/pubmed/16288281
http://www.ncbi.nlm.nih.gov/pubmed/15108893
https://doi.org/10.1089/10763270152436508
http://www.ncbi.nlm.nih.gov/pubmed/11506734
https://doi.org/10.1371/journal.pone.0174389


19. Messenger AG. The culture of dermal papilla cells from human hair follicles. Br J Dermatol. 1984; 110

(6):685–9. PMID: 6375713

20. Philpott MP, Green MR, Kealey T. Human hair growth in vitro. J Cell Sci. 1990; 97(Pt 3):463–71.

21. Philpott MP, Sanders DA, Kealey T. Whole hair follicle culture. Dermatol Clin. 1996; 14(4):595–607.

PMID: 9238319

22. Machesney M, Tidman N, Waseem A, Kirby L, Leigh I. Activated keratinocytes in the epidermis of

hypertrophic scars. Am J Pathol. 1998; 152(5):1133–41. PMID: 9588880

23. Leigh IM, Purkis PE, Whitehead P, Lane EB. Monospecific monoclonal antibodies to keratin 1 carboxy

terminal (synthetic peptide) and to keratin 10 as markers of epidermal differentiation. Br J Dermatol.

1993; 129(2):110–9. PMID: 7544603

24. Purkis PE, Steel JB, Mackenzie IC, Nathrath WB, Leigh IM, Lane EB. Antibody markers of basal cells in

complex epithelia. J Cell Sci. 1990; 97(Pt 1):39–50.

25. Lane EB, Wilson CA, Hughes BR, Leigh IM. Stem cells in hair follicles. Cytoskeletal studies. Ann N Y

Acad Sci. 1991; 642:197–213. PMID: 1725580

26. Waseem A, Dogan B, Tidman N, Alam Y, Purkis P, Jackson S, et al. Keratin 15 expression in stratified

epithelia: downregulation in activated keratinocytes. J Invest Dermatol. 1999; 112(3):362–9. https://doi.

org/10.1046/j.1523-1747.1999.00535.x PMID: 10084315

27. Prunieras M, Regnier M, Woodley D. Methods for cultivation of keratinocytes with an air-liquid interface.

J Invest Dermatol. 1983; 81(1 Suppl):28s–33s.

28. Boyce ST, Hansbrough JF. Biologic attachment, growth, and differentiation of cultured human epider-

mal keratinocytes on a graftable collagen and chondroitin-6- sulfate substrate. Surgery. 1988; 103

(4):421–31. PMID: 2451303

29. Leigh IM, Navsaria H, Purkis PE, McKay IA, Bowden PE, Riddle PN. Keratins (K16 and K17) as mark-

ers of keratinocyte hyperproliferation in psoriasis in vivo and in vitro. Br J Dermatol. 1995; 133(4):501–

11. PMID: 7577575

30. Hassanein AM, Glanz SM. Beta-catenin expression in benign and malignant pilomatrix neoplasms. Br J

Dermatol. 2004; 150(3):511–6. https://doi.org/10.1046/j.1365-2133.2004.05811.x PMID: 15030335

31. Dagalakis N, Flink J, Stasikelis P, Burke JF, Yannas IV. Design of an artificial skin. Part III. Control of

pore structure. J Biomed Mater Res. 1980; 14(4):511–28. https://doi.org/10.1002/jbm.820140417

PMID: 7400201

32. Argyris T. Kinetics of epidermal production during epidermal regeneration following abrasion in mice.

Am J Pathol. 1976; 83(2):329–40. PMID: 1266945

33. Spector JA, Glat PM. Hair-bearing scalp reconstruction using a dermal regeneration template and

micrograft hair transplantation. Annals of plastic surgery. 2007; 59(1):63–6. Epub 2007/06/26. https://

doi.org/10.1097/01.sap.0000263323.65563.e7 PMID: 17589263

34. Westgate GE, Gibson WT, Kealey T, Philpott MP. Prolonged maintenance of human hair follicles in

vitro in a serum-free medium. Br J Dermatol. 1993; 129(4):372–9. PMID: 7692925

35. Taylor G, Lehrer MS, Jensen PJ, Sun TT, Lavker RM. Involvement of follicular stem cells in forming not

only the follicle but also the epidermis. Cell. 2000; 102(4):451–61. PMID: 10966107

36. Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y. Morphogenesis and renewal of hair follicles

from adult multipotent stem cells. Cell. 2001; 104(2):233–45. PMID: 11207364

37. Nanney LB, Caldwell RL, Pollins AC, Cardwell NL, Opalenik SR, Davidson JM. Novel approaches for

understanding the mechanisms of wound repair. J Investig Dermatol Symp Proc. 2006; 11(1):132–9.

PMID: 17069021

38. Michel M, L’Heureux N, Pouliot R, Xu W, Auger FA, Germain L. Characterization of a new tissue-engi-

neered human skin equivalent with hair. In Vitro Cell Dev Biol Anim. 1999; 35(6):318–26. https://doi.org/

10.1007/s11626-999-0081-x PMID: 10476918

39. Yang JS, Lavker RM, Sun TT. Upper human hair follicle contains a subpopulation of keratinocytes with

superior in vitro proliferative potential. J Invest Dermatol. 1993; 101(5):652–9. PMID: 8228324

40. Lenoir MC, Bernard BA, Pautrat G, Darmon M, Shroot B. Outer root sheath cells of human hair follicle

are able to regenerate a fully differentiated epidermis in vitro. Dev Biol. 1988; 130(2):610–20. PMID:

2461885

41. Millar SE. Molecular mechanisms regulating hair follicle development. J Invest Dermatol. 2002; 118

(2):216–25. https://doi.org/10.1046/j.0022-202x.2001.01670.x PMID: 11841536

42. Fuchs E. Scratching the surface of skin development. Nature. 2007; 445(7130):834–42. https://doi.org/

10.1038/nature05659 PMID: 17314969

43. Arase S, Sadamoto Y, Katoh S, Urano Y, Takeda K. Co-culture of human hair follicles and dermal papil-

lae in a collagen matrix. J Dermatol. 1990; 17(11):667–76. PMID: 2094744

Skin models to study epithelial regeneration from the hair follicle

PLOS ONE | https://doi.org/10.1371/journal.pone.0174389 March 28, 2017 15 / 16

http://www.ncbi.nlm.nih.gov/pubmed/6375713
http://www.ncbi.nlm.nih.gov/pubmed/9238319
http://www.ncbi.nlm.nih.gov/pubmed/9588880
http://www.ncbi.nlm.nih.gov/pubmed/7544603
http://www.ncbi.nlm.nih.gov/pubmed/1725580
https://doi.org/10.1046/j.1523-1747.1999.00535.x
https://doi.org/10.1046/j.1523-1747.1999.00535.x
http://www.ncbi.nlm.nih.gov/pubmed/10084315
http://www.ncbi.nlm.nih.gov/pubmed/2451303
http://www.ncbi.nlm.nih.gov/pubmed/7577575
https://doi.org/10.1046/j.1365-2133.2004.05811.x
http://www.ncbi.nlm.nih.gov/pubmed/15030335
https://doi.org/10.1002/jbm.820140417
http://www.ncbi.nlm.nih.gov/pubmed/7400201
http://www.ncbi.nlm.nih.gov/pubmed/1266945
https://doi.org/10.1097/01.sap.0000263323.65563.e7
https://doi.org/10.1097/01.sap.0000263323.65563.e7
http://www.ncbi.nlm.nih.gov/pubmed/17589263
http://www.ncbi.nlm.nih.gov/pubmed/7692925
http://www.ncbi.nlm.nih.gov/pubmed/10966107
http://www.ncbi.nlm.nih.gov/pubmed/11207364
http://www.ncbi.nlm.nih.gov/pubmed/17069021
https://doi.org/10.1007/s11626-999-0081-x
https://doi.org/10.1007/s11626-999-0081-x
http://www.ncbi.nlm.nih.gov/pubmed/10476918
http://www.ncbi.nlm.nih.gov/pubmed/8228324
http://www.ncbi.nlm.nih.gov/pubmed/2461885
https://doi.org/10.1046/j.0022-202x.2001.01670.x
http://www.ncbi.nlm.nih.gov/pubmed/11841536
https://doi.org/10.1038/nature05659
https://doi.org/10.1038/nature05659
http://www.ncbi.nlm.nih.gov/pubmed/17314969
http://www.ncbi.nlm.nih.gov/pubmed/2094744
https://doi.org/10.1371/journal.pone.0174389


44. Slominski AT, Zmijewski MA, Skobowiat C, Zbytek B, Slominski RM, Steketee JD. Sensing the environ-

ment: regulation of local and global homeostasis by the skin’s neuroendocrine system. Adv Anat

Embryol Cell Biol. 2012; 212:1–115.

45. Slominski AT, Zmijewski MA, Zbytek B, Tobin DJ, Theoharides TC, Rivier J. Key role of CRF in the skin

stress response system. Endocr Rev. 2013; 34(6):827–84. https://doi.org/10.1210/er.2012-1092 PMID:

23939821

46. Ali N, Hosseini M, Vainio S, Taieb A, Cario-Andre M, rezvani HR. Skin equivalents: Skin from recon-

structions as models to study skin development and diseases. Br J Dermatol. 2015; 173(2):391–403.

https://doi.org/10.1111/bjd.13886 PMID: 25939812

47. Martorina F, Casale C, Urciuolo F, Netti PA, Imparato G. In vitro activation of the neuro-transduction

mechanism in sensitive organotypic human skin model. Biomaterials. 2017; 113:217–29. https://doi.

org/10.1016/j.biomaterials.2016.10.051 PMID: 27821307

48. Auxenfans C, Fradette J, Lequeux C, Germain L, Kinikoglu B, Bechetoille N, et al. Evolution of three

dimensional skin equivalent models reconstructed in vitro by tissue engineering. Eur J Dermatol. 2009;

19(2):107–13. https://doi.org/10.1684/ejd.2008.0573 PMID: 19106039

49. Casale C, Imparato G, Urciuolo F, Netti PA. Endogenous human skin equivalent promotes in vitro mor-

phogenesis of follicle-like structures. Biomaterials. 2016; 101:86–95. https://doi.org/10.1016/j.

biomaterials.2016.05.047 PMID: 27267630

Skin models to study epithelial regeneration from the hair follicle

PLOS ONE | https://doi.org/10.1371/journal.pone.0174389 March 28, 2017 16 / 16

https://doi.org/10.1210/er.2012-1092
http://www.ncbi.nlm.nih.gov/pubmed/23939821
https://doi.org/10.1111/bjd.13886
http://www.ncbi.nlm.nih.gov/pubmed/25939812
https://doi.org/10.1016/j.biomaterials.2016.10.051
https://doi.org/10.1016/j.biomaterials.2016.10.051
http://www.ncbi.nlm.nih.gov/pubmed/27821307
https://doi.org/10.1684/ejd.2008.0573
http://www.ncbi.nlm.nih.gov/pubmed/19106039
https://doi.org/10.1016/j.biomaterials.2016.05.047
https://doi.org/10.1016/j.biomaterials.2016.05.047
http://www.ncbi.nlm.nih.gov/pubmed/27267630
https://doi.org/10.1371/journal.pone.0174389

