Datenbank-Spektrum (2016) 16:39-48
DOI 10.1007/s13222-015-0208-z

SCHWERPUNKTBEITRAG

Scalable DB+IR Technology: Processing Probabilistic Datalog

with HySpirit

Ingo Frommbholz - Thomas Roelleke

Received: 5 November 2015 / Accepted: 16 December 2015 / Published online: 26 January 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Probabilistic Datalog (PDatalog, proposed in
1995) is a probabilistic variant of Datalog and a nice con-
ceptual idea to model Information Retrieval in a logical,
rule-based programming paradigm. Making PDatalog work
in real-world applications requires more than probabilistic
facts and rules, and the semantics associated with the eval-
uation of the programs. We report in this paper some of the
key features of the HySpirit system required to scale the ex-
ecution of PDatalog programs.

Firstly, there is the requirement to express probability es-
timation in PDatalog. Secondly, fuzzy-like predicates are re-
quired to model vague predicates (e.g. vague match of at-
tributes such as age or price). Thirdly, to handle large data
sets there are scalability issues to be addressed, and there-
fore, HySpirit provides probabilistic relational indexes and
parallel and distributed processing. The main contribution
of this paper is a consolidated view on the methods of the
HySpirit system to make PDatalog applicable in real-scale
applications that involve a wide range of requirements typical
for data (information) management and analysis.

Keywords DB+IR - Probabilistic Datalog - HySpirit -
Scalability

1. Frommholz (P<)

Institute for Research in Applicable Computing, University of
Bedfordshire, Luton, UK

e-mail: ingo.frommholz @beds.ac.uk

T. Roelleke
Queen Mary, University of London, London, England
e-mail: t.roelleke @qmul.ac.uk

1 Introduction

Contemporary retrieval applications have to handle large
amounts of structured and unstructured data in various ways
to provide the user with useful means to satisfy complex in-
formation needs. For instance, a system is supposed to give
the user the option to perform a quick simple search as well as
an advanced search. Users may want the system to perform
a deep analysis during retrieval time to increase the qual-
ity of the result set, for instance by flexibly incorporating
external knowledge sources like an ontology or synonyms
for query expansion. Search and retrieval may be performed
combining different kinds of structured data (e.g. attribute-
value pairs like ‘name’, ‘location’, ‘year’ with potential tex-
tual or numeric content) with semi-structured or unstructured
data (e.g. a ‘description’ field which contains textual data).
To support the creation of flexible information search ser-
vices that are able to handle complex information needs with
a different level of complexity, we need frameworks that are
able to handle structured and unstructured heterogeneous
content. These frameworks should offer knowledge engi-
neers the expressiveness to describe, implement and flex-
ibly adapt complex retrieval functions within a short time
to application. Providing different search strategies involv-
ing heterogeneous, structured and unstructured data, possibly
distributed across different network nodes is a tedious task
that requires sophisticated, efficient, effective and expressive
solutions. Existing enterprise search solutions like Lucene'
and its derivates like Solr, Elasticsearch and Nutch as well as
research prototypes like Terrier [11] or Indri? are tailored and
optimised to efficiently perform mainly fulltext search tasks.

Thttps://lucene.apache.org/
Zhttp://www.lemurproject.org/indri/

@ Springer

https://lucene.apache.org/
http://www.lemurproject.org/indri/

40

I. Frommbholz and T. Roelleke

The search functionality is usually embedded in the source
code written in the underlying imperative or object-oriented
programming language. However, similar to the separation
of data and code that motivated the development of database
management systems, we argue that the implementation of
search strategies should be as independent as possible from
the remaining code [5]. This way, new search strategies and
functionality can be provided and optimised as well as new
distributed data sources can be integrated without the larger
effort of reimplementing existing code, which also involves
deep programming knowledge not always available to do-
main experts. This finally leads us, given a sufficient and ef-
fectively implemented level of abstraction, to the separation
of the “what” from the “how” [2]. To this end, probabilis-
tic Datalog (PDatalog) has been proposed as a description-
oriented logic language combining information retrieval and
database features [4]. As a probabilistic extension of Data-
log and based on a probabilistic relational algebra (PRA),
PDatalog offers structured, ‘database-like’ elements (such
as relations and tuples) and combines them with concepts
known from information retrieval to handle uncertainty and
vagueness.

In this paper, we present a PDatalog implementation
called HySpirit that implements probabilistic logics and of-
fers specific probabilistic operators. The expressiveness of
the implemented PDatalog layer allows knowledge engineers
to swiftly describe complex retrieval strategies, which can be
executed efficiently. HySpirit was first discussed in [8], but
with a scope on introducing four-valued probabilistic Data-
log, a variant of PDatalog that can cope with additional truth
values and an open world assumption. In this paper, we will
focus on PDatalog and on some salient aspects of HySpirit
that have been in the centre of our work in the recent years: a
relational Bayes operator for efficient probabilistic inferenc-
ing; vague/fuzzy predicates for strict and vague reasoning;
a probabilistic relational index for fast access; distributed
parallel processing. These aspects will be discussed in the
next section. Afterwards we will present some application
examples in Section 3.

2 Processing Probabilistic Datalog — The HySpirit
System

In this section we present some of the main features of the

probabilistic Datalog layer as implemented in HySpirit. We

start with a general description of PDatalog before we discuss

in more detail some salient features of HySpirit PDatalog.

2.1 PDatalog: Syntax and Semantics

Figure 1 shows an extract of the syntax of PDatalog.

@ Springer

program := | clause ’;’ program

clause := fact | rule | query

fact = proposition | prob proposition

proposition := relName (’ constList)’

rule := head -’ body | prob head ’:-’ body

head = goal

goal := atom

body := subgoalList

subgoalList := subgoal '&’ subgoalList | subgoal

subgoal = atom | '’ atom

query = 7 body

Atoms

atom := trad.atom | agg_atom |
cond_atom

trad_atom := extensional_atom |

intensional_atom
relName ’(’ paramList ")’
param ('<'|'<=’|...) param

extensional_atom
intensional_atom

agg_atom := relName assumption '(’ paramList ')’
cond_atom := trad._atom ’|’ evidence_key |

trad_atom ’|" assumption evidence_key
evidence key := (' paramList ’)’

assumption := ’'DISJOINT’ | INDEPENDENT" | ...

Specials (for scalability)
-tieToMDS(relName, file)
_tieToPRI(relName, key, file)
_tieToServer(relName, server)

Fig. 1 HySpirit PDatalog Syntax: Main Symbols. PDatalog is an ex-
tension of Datalog, and the extension is regarding probabilities in facts
and rules. Special to HySpirit PDatalog are (1) aggregation and con-
ditional atoms (to describe frequency-based and information-theoretic
probability estimations), and (2) a variety of special relations (names
start with and the engine interprets those special facts).

A program is a sequence of clauses. A clause is a fact, a
rule or a query. A fact assigns the probability of “true” to a
proposition. If no probability is given, then P(proposition is
true) = 1. In four-valued Datalog [8], the truth value “false”
can be specified by using “NOT proposition”, but for the
purpose of this paper we do not extend on this facility.

A rule comprises a probability (optional), a head and a
body. A head is a goal, and a body is a list of subgoals. A
goal is an atom, and a subgoal is an atom or a negated atom.
In four-valued Datalog, the goal (head) can be of the form
“NOT atom”.

For probabilistic facts, the probability reflects the proba-
bility of the truth value given the proposition:

P(proposition is true).

For probabilistic rules, the rule probability is interpreted as
a conditional probability:

P(body is true).

Specific to HySpirit PDatalog is the expansion of an atom
into various types of atoms. In this paper, we consider the
main three types:

Scalable DB+IR Technology: Processing Probabilistic Datalog with HySpirit 41

1. traditional atoms: relName(paramList); for example,
“isaSailor(Person)” is an atom.

2. aggregation atoms: relName assumption(paramList); for

example, “retrieve SUM(Document,Query)” is an aggre-
gation atom typically used in a rule head. Aggregation
atoms were introduced in 2002, to provide an extensional
way to specify the assumption; the intensional approach
(as proposed in [7]) is less scalable than the extensional
variant.
The main assumptions are: DISJOINT, INDEPENDENT
and SUBSUMED. They correspond to the usual assump-
tions applied in probability theory. SUM is a synonym
for DISJOINT, and MAX is a synonym of subsumed.
The HySpirit engine interprets the assumptions to decide
about the aggregation of tuple probabilities.

3. conditional atoms: for example, “nationality_job(Nation,
Job)|(Job)” is a conditional atom, where “(Job)” is the
evidence key. Essentially, the engine divides each tuple
probability by the evidence probability. This leads to the
conditional probability P(NationlJob).

Conditional atoms support the usual assumptions (DIS-
JOINT, INDEPENDENT and SUBSUMED), and in ad-
dition, there are information-theoretic assumptions such
as MAX_InvValueFreq and SUM_InvValueFreq. For the
case of IR, the synonyms are MAX_IDF and SUM_IDF.
These assumptions allow for the specification of idf-based
probabilities [12].

Note that for conditional atoms, if no assumption is spec-
ified, then DISJOINT (sum of the probabilities of the ev-
idence tuples) is the default.

The sections to follow focus on the particular aspects that
were added to HySpirit PDatalog in the period 2002 to 2010.

Section 2.2: Conditional Atoms: The Relational Bayes
Section 2.3: Vague (Fuzzy) Predicates

Section 2.4: Probabilistic Relational Indexes (PRIs)
Section 2.5: Parallel and Distributed Processing

2.2 Conditional Atoms: The Relational Bayes

One of the main short-comings of the 1st-generation PData-
log (1995-2000) is the need to explicitly specify probabilities
(rule or fact probabilities). Required are facilities that allow
for describing probability estimation. The following program
show-cases conditional atoms, which are a main concept in
HySpirit PDatalog.

While [16, 13] describes the relational Bayes and the
translation of probabilistic SQL (ProbSQL) to probabilistic
relational algebra (PRA) expressions, we provide here for
the first time the semantics for PDatalog.

The translation of a PDatalog (PD) conditional atom to
the respective PRA expression is indicated by the following
mappings between PD and PRA:

nationality_job{
(german, engineer);
(german, engineer);
(german, architect);
(german, chef);
(british, estate_agent);
(british, broker);
(british, chef);
(british, engineer);
10 (italian, artist);

11 {(italian, designer);
12 (italian, engineer);
13 (italian, chef);

14

e oW R e

© ® N ® @

16 p_nationality_given_job SUM(Nat, Job) :-
17 nationality_job(Nat, Job) | DISJOINT (Job);
18 ?— p_nationality_given_job (*);
0.500 (german, engineer)
0.250(british, engineer)
0.250(italian, engineer)
22 0.333 (german, chef)
0.333 (british, chef)
0.333(italian, chef)
1.000(british,estate_agent)

Fig. 2 Conditional Atoms (Relational Bayes). Example: For a
deterministic relation “nationality_job(Nation,JJob)” the rule for
“p_nationality_given_job” computes the conditional probability
P(Nation|Job). The conditional atom consists of the traditional part
and the evidence key, “(Job)”.

PD: reIName(paramListl) | assumption (paramList2)

PRA: Project[paramList1](
Bayes assumption[paramList2](relName))

To illustrate, consider an example where for a set of tuples
with nationality and job, we wish to compute the probability
P (nation|job).

PD: nationality_job(Nation,Job) | DISJOINT (Job)

PRA: Project[$Nation,$Job](
Bayes DISJOINT[$Job](nationality_job))

In addition to the usual assumptions already introduced
(DISJOINT, INDEPENDENT, SUBSUMED), there are ge-
ometric (EUCLIDEAN), logarithmic (MAX_LOG) and
information-theoretic (MAX_InvValueFreq, MAX_IDF) as-
sumptions to provide high-level facilities to implement re-
trieval models.

2.3 Vague (Fuzzy) Predicates

Another specific feature of HySpirit is the integration of
vague or fuzzy predicates [4] into PDatalog.

This is relevant for the retrieval of any object, let it be
cars, computers or persons. There is always the problem
that we over-specify the query. For example, we want cars

@ Springer

42

I. Frommbholz and T. Roelleke

age (peter, 20);
5 age (mary, 28) ;
s age (paul, 29);
age (john, 30) ;
8 age (james, 31);

11 young_strict (F) :.— age(P,Y) & <=(Y,29);
12 young_vague_le (P) :-
13 age(P,Y) & _lew(Y,29,5);

16 young_strict (P) :- age(P,Y) & <(Y,29);
17 young_vague_lt (P) :-
18 age(P,Y) & _1ltw(Y,29,5);

Fig. 3 Vague predicates: Example: Reasoning over age with strict and
vague predicates.

with mileage less than 60,000 and price less than 10,000,
and the retrieval engine fails to deliver that great value car
with 61,000 miles. Similar for recruitment, where human re-
sources want to employ someone young, but the candidate
a bit older could be relevant as well. Figure 3 illustrates the
usage of vague predicates (in HySpirit PDatalog, these are
special atoms starting with “_").

The program demonstrates the specification of rules for
strict and vague reasoning over the age of persons. For the re-
lation age, Peter, Paul and Mary would be considered young.
John and James will not be retrieved by the strict rules. The
vague rules will include them.

Vague predicates can be parametrised with a third param-
eter, the “width”. The example applies the width 5, which
means for _lew (less-equal-width) that ages <=29 4 5/2
will be considered with decreasing probability. For _ltw
(less-than-width), probabilities are generated for the interval
[29 — 5/2;29 + 5/2]. The effect of the width is illustrated
in Fig. 4.

For less-equal, persons with age up to 31 will still be re-
trieved. P(30 <=29)=1-2-(30—-29)/5 =3/5, and so
forth. For 32, the vague predicate function returns 1 — 2 -
(33 —29)/5, and the value is less than 0, since 33 is out-
side of the window. Therefore P(32 <= 29) = 0, and zero
probability tuples will be discarded.

The width controls the slope. The slope is the same for
less-equal and less-than, just the interval is different. Similar
procedures apply for greater-equal and less-than. The vague
equal is simply a triangle over the value to compare with. It is
recommended to define attribute-specific rules for comparing
values as shown for age, since the requirement for the slope
(the width) typically differ. For example, width=35 for age,
whereas width =2,000 for car prices, and width = 10,000 for
mileage. There are various parameters to customise fuzzy
predicates.

@ Springer

P(young)

1

P(young)

14

Fig. 4 Vague predicates: less equal (top) and less than (bottom): for
_lew (less equal, given width), the probability of the value to compare
with is P(29 <= 29) = 1.0; for values in between 29 to 29 + width/2,
the probability is in (1.0;0.0); for _ltw (less than, given width), the
probability of the value to compare withis P(29 < 29) = 0.5 (note ‘<’
is interpreted in a fuzzy way here; for the classical strict interpretation,
P(29 < 29) would of course be 0); for values in between 29 — width/2
to 29 + width/2, the probability is in (1.0; 0.0)

2.4 Probabilistic Relational Indexes (PRIs)

To store and efficiently access large amounts of data, scal-
able indexing mechanisms are required. In HySpirit, this is
provided by so-called probabilistic relational indexes (PRI).
Figure 5 shows how to tie the attributes of a relation to a
persistent index.

The relation tf d sum(Term,Doc) is a probabilis-
tic relation reflecting a TF quantification. The special
_tie(RelName,AttributeSpec,PRI_File) ties the specified at-
tributes to the persistent index. The tied relation is used
in the rules for pidf and match. The usage of PRIs
means that the fetch of tuples in pidf has complexity O(1)

4 _tieToPRI(tf_d_sum,1, "KB/tf_d_sum.pri");
7 pidf(T) | MAX IDF() :- tf_d_sum(T,D);
10 gterm_idf (T,Q) :- gterm(T,Q) & pidf(T);

13 gterm_idf_norm SUM(T,Q) :-
14 gterm_id£(T,Q) | (Q);

17 match(T,D,Q) :-
18 gterm_idf norm(T,D) & tf_d_sum(T,D);

20 JgI I el 4 e
21 retrieve SUM(D,Q) :- match(T,D,Q);

Fig. 5 Probabilistic Relational Index (PRI): Example: Tie the first at-
tribute of a relation, here tf_d_sum[$1], to a persistent index.

Scalable DB+IR Technology: Processing Probabilistic Datalog with HySpirit 43

4 _tieToPRI (term,1, "KBl/term.pri");
5 _tieToPRI (term,1, "KB2/term.pri");

9 _tieToPRI (term_srcl, 1, "KBl/term.pri");

o _tieToPRI (term_src2,1, "KB2/term.pri");

¥ g : :

12 term (T, D)
13 term(T,D)

:— term_srcl(T,D);
:— term_srcZ2(T,D);

Fig. 6 Multi-PRI: Example: The relation “term” is tied to several PRI
files. Alternatively, one can use a relation name per index, and merge
in the PD program.

since the PRI delivers the respective term probability. The
join of qterm_idf norm and tf_d_sum is efficient since the
(term,doc) pairs are retrieved via the index over the terms
(first column in tf_d_sum).

2.4.1 Distributed PRIs

For scaling the application, HySpirit provides a mechanism
referred to as “multi-pri”, which is a facility to distribute
PRIs. Figure 6 illustrates that a relation key can be tied to
several PRIs. The example shown ties the index for “term[1]”
(first column of the term relation) to two PRI files in different
knowledge bases.

This facility allows for dealing with hundreds of millions
of tuples. The distribution of tuples over several PRI files is
recommended for various reasons. For example, most Unix
tools can be applied very efficiently to streams of ten up to
one hundred million tuples (corresponds to approximately
50 — 500 MB files, for an average tuple length of 50 char-
acters). Obviously, compression could be used, but this does
not change the overall argument, it just increases the data
volume sensible per file.

There are numerous challenges regarding multi-PRIs, as
for some algebra expressions (e.g. distinct projections or
Bayes operations) the aggregation over index elements is
required. [9] provides some details about methods for index
selection that are useful once a key is to be tied to more than
ten indexes. Overall, the facility of multi-PRIs allows for
probabilistic reasoning over millions of tuples. For a 4-core
8-GB machine, this distributed indexing strategy scales to
100 million tuples per relation.

2.5 Parallel and Distributed Processing

The next level of scalability is distributed processing. A client
engine connects to multiple server engines that serve proba-

5 _connect (term, "-port 50501");
6 _connect (term, "-port 50502");

11 15

12 _connect (term_srcl, "-port 50501");

13 _connect (term_src2, "-port 50502");
idlE i 3 s £ e

15 # I I Xar 1 =

16 term_all(T,D) :- term_srcl(T,D);

17 term_all(T,D) :- term_src2(T,D);
19 1

20 # i1 - ¥

21 1

22 ¥

28 _connect (retrieve_srcl, "-port 50501");
20 _connect (retrieve_src2, "-port 50502");
merge (D, Q, "srcl®) :-

az retrieve_srcl(D,Q) & p_relevant(srcl);
az merge(D,Q, ' src2’) :-

34 retrieve_src2(D,Q) & p_relevant(src2);

36 retrieve SUM(D,Q) :- merge(D,Q,Source);

Fig. 7 Distributed Processing: Example: The PD engine executing the
above program connects to various servers for fetching tuples of the
connected relations. The facility can be used to model probabilistic
source selection.

bilistic relations. Figure 7 illustrates a set-up where the rela-
tion “term” is connected to HySpirit servers listening on the
respective ports.

The client engine reads the PDatalog file with the special
_connect directives. Then, if a query involves access to con-
nected relations, the clients sends a request (usually in PRA
or PDatalog language, but eventually also in SQL or Prob-
SQL [16]) to the server engines, and the server returns the
respective tuples. [9] provides more details about the client-
server architecture to scale applications.

3 Application Examples
Having introduced PDatalog and some of its features en-

abling effective and efficient processing of large volumes of
data, we provide some examples of its potential application.

@ Springer

44

I. Frommbholz and T. Roelleke

We will first look at a full implementation of a full-text search
engine. Afterwards we will discuss a more complex exam-
ple that integrates factual (DB) knowledge with textual (IR)
knowledge to implement different retrieval strategies.

3.1 Full-text Search

A potential application of the Bayes operator is a probabilistic
variant of the famous TF-IDF ranking formula widely used
in information retrieval. Here we are interested in estimating
the within-document term frequency tf(¢,d) of a term ¢ in
a document d. There are several variants of computing this
value [14]. One way is using the probability P(¢|d) as
occ(t,d)

tf(t,d) = P(t|d) = m (1)
with occ(t, d) being the number of occurrences (or locations)
of term ¢ in a document d. In a similar way we could also
compute the probability P(¢|q) for a query g. The inverse
document frequency idf(z) of a term ¢ is calculated as the
negative logarithm of the number of documents a term ap-
pears in. In a probabilistic scenario, a normalised idf value
like

idf(¢)
maxidf

Pr(1) = (2)
can be used (with maxidf as the maximal idf(¢) over all
terms). The score for each document d w.r.t. a query ¢ is
then computed as

score(d,q) = Z P(tlq) - P(t|d) - Pis(t). 3

Figure 8 shows an example PDatalog program to create a
TF-IDF-based ranking of documents using the Bayes oper-
ator. Lines 4—11 show a toy database that defines the term
relation. Here we record each occurrence of a term in a spe-
cific document, which may be the result of some tokenisa-
tion process — the term ‘sailing’ appears 3 times in document
docl, 2 times in document doc2, etc. Lines 14—15 show the
relation gterm that show an example query (labelled ql)
for ‘sailing motor’. Line 18 shows how the Bayes operator
is applied to compute the probability P(¢|d). Here, the 2nd
column of the term relation is the evidence key. Tuples in
the term relation are grouped by the evidence (in this case
documents). The SUM keyword instructs the PDatalog en-
gine to compute P(¢|d) based on the sum of the probabilities
for each evidence key, thus implementing Eqn. 1 along with
line 21. Line 24 shows the implementation of Eqn. 2 using the
MAX_IDF operator. Alternatively, the SUM_IDF operator
offered by HySpirit would compute Eqn. 2 based on the sum
of all idf values and not the maximum one. Line 28 combines
tf and idf values. The evaluation of the join operator ‘&’ takes

@ Springer

term(sailing,docl);
term(sailing,docl);
term(sailing,docl);
term(boats,docl);
term(sailing,doc2);
term(sailing,doc2);
term(motor,doc2) ;
11 term(motor, doc3);

w w9 o@ w»

L=

14 gterm(sailing, gl);
15 gterm(motor, gl);

18 p_t_d SUM(Term,Doc) :-

19 term(Term,Doc) | (Doc);

20 1 t } It ! t ()

21 tf_d(Term,Doc) :- p_t_d(Term,Doc);

23 1

24 pidf (Term) | MAX IDF() :- term(Term,Doc);

25

28 tf_idf (Term, Doc) :-
20 tf_d(Term, Doc) & pidf (Term);

33 score_tf idf SUM(D,Q) :-
3¢ qterm(T,Q) | (Q) & tf_idf (T,D);

as score_tf SUM(D,Q) :-
as gterm(T,Q)|(Q) & tf_d(T,D);

Fig. 8 TF-IDF-based full-text search using Relational Bayes utilising
frequency-based within-document probability P(¢|d) and max_idf.

places according to the rules of probability theory. Given
that the involved events are independent, the join computes
the product of the single probabilities, i.e. P(t|d) - Piqr(t)
in this example, and assigns the resulting joint probability
to the tuple resulting from the corresponding valuation. Fi-
nally, the rule in line 33 combines all evidence to compute
the score as in Eqn. 3. Note the integrated Bayes operator
in the ‘qterm(T,D)|(Q)’ conditional atom in line 34 and 39,
respectively.

Line 38 contains a rule that provides an alternative imple-
mentation of the scoring function, which is only based on tf.
Applications could instantly decide which retrieval function
is the most suitable one, for instance if the more costly idf
computation may not be feasible (for instance in real-time
streams like Twitter).

Scalable DB+IR Technology: Processing Probabilistic Datalog with HySpirit 45

Besides TF-IDF, many other prominent retrieval functions
(like BM25 and Language Models) can be expressed in a
similar fashion [15].

3.2 Complex Factual and Textual Search

We turn to a more complex example now to explain some
of the advanced DB+IR concepts in HySpirit. The scenario
is a search engine for used cars. Consider the following toy
database:

attribute {
(colour, carl, red);
(type, carl, "wvauxhall astra");
(price, carl, 8000);
(location, carl, luton);
}

termcar {
(good, carl);

10 (condition, carl);

11 (good, carl);

12 (condition, carl);

=T I - T A

16 attribute(

17 (colour, car2, "highland green");
18 (type, car2, "toyota prius");
19 (price, car2, 10500);

20 (location, car2, glasgow);

21 '}

22 termcar {

23 (hybrid, car2);

24 (hybrid, car2);

25 (hybrid, car?);

26 (good, car2);

27 (condition, car2);

30 # I
31 attribute(

32 (colour, car3, blue);

33 (type, car3, "gmc yukon");
34 (price, car3, 9000);

a5 (location, car3, carlisle);

36 }

37 termcar {

38 (hybrid, car3);

3o (hybrid, car3);

40 (good, car3);

41 (condition, car3);
42 (heated, car3);

43 (seats, car3);

There are three cars with IDs carl, car2 and car3. The sys-
tem offers different attributes (like colour, type, price, loca-
tion), which are stored in the at t ribute relation and also
a full-text description of the respective car, with extracted

terms and their context (car descriptions) in the termcar
relation. For instance, the term ‘hybrid’ appears 3 times in
the car2 description, twice in the car3 description, etc. This
implements the idea of a generic object-relational content
model as proposed in [1].

Note that we provide the toy database directly here; in
a productive environment, the termcar and attribute
relations would be in one or several PRI’s and, in case for
instance of distributed IR on a cluster, connected via the
_connect statement as discussed in the previous section. For
dealing with a potentially very large relation termcar, rules
involving the relation will be materialised, and the rule head
will be indexed. For example, the t £ sumrule (see the pro-
gram below, line 60) will be evaluated by HySpirit taking
into account existing indexes in the knowledge bases.

Let us consider two queries, one asking for all cars of-
fered in Scotland, one looking for a Toyota Prius in a good
condition for up to £ 10,000.

46 1.0 gLocation(scotland,gql);
48 7

.25 gPrice(10000,g92);

.25 gTerm(good, g2);

.25 gTerm(condition,g2);

.25 gAttribute(type, "toyota prius",qg2);

oo oo

Query 2 (q2) is a simple example of querying factual knowl-
edge (attribute and price) and (textual) content [1]. The single
query facts are normalised so that their weight sums to 1. In-
stead of a uniform value 0.25 we may have provided different
values, for instance to emphasise the importance of some of
the query aspects. Another option would be to compute these
weights from raw data using the Bayes operator in a similar
way as described in Section 2.2.

In our example we want to give price and location at-
tributes an extra treatment, so we apply a technique called
semantic lifting [1] to create corresponding rules. Further-
more we compute the tf as in the previous section.

]

location(LOC,X) :-
attribute(location, X,LOC) ;
price (PRICE,X) :-
attribute (price, X,PRICE);

-

@

- -
&

3

59 #

6o tf_sum SUM(Term,X) :- termcar (Term,X) | (X);

@ Springer

46

I. Frommbholz and T. Roelleke

We now create some rules that allow us to collect the match-
ing evidence which can be useful for instance to explain to
the user why an item was retrieved. In our example, there are
4 different kinds of such evidence — for locations, prices, text
and any other attribute. This can be expressed as follows.

81 T

62 #

83 #

64 evidence_term (TERM, X, Q)
tf_sum(TERM, X) ;

:— gTerm(TERM, Q) &

60 evidence_location(LOC, X,Q) :-
70 gLocation(LOC,Q) & location(LOC,X);

75 evidence_price_strict (PRICE_WANTED, X,Q) :-
76 gPrice (PRICE_WANTED,Q) &
77 price (PRICE,X) & >(PRICE_WANTED,PRICE);

s2 evidence_attribute (ATTRIBUTE, X, VALUE, Q) :-
83 gAttribute (ATTRIBUTE, VALUE, Q) &
84 attribute (ATTRIBUTE, X, VALUE) ;

To compute the price match we use a strict operator, which
means only items below the price indicated by the user will
match. Finally, we have to combine the evidence. We will see
later there are several ways to do so, each of them may be
implemented as its own retrieval strategy. We therefore intro-
duce arule defining retrieval strategyl along with
the retrieve relation that sums the evidence to compute
the final score.

B85 € 2V a - ; - 3

86 retrieve_strategyl (X,Q) :-

s7 evidence_location(LOC, X, Q);
88 retrieve_strategyl (X,Q) :-

ss evidence_price_strict (PRICE_WANTED, X, Q) ;
o0 retrieve_strategyl (X,Q) :-

91 evidence_term(TERM, X, Q) ;

o2 retrieve_strategyl (X,Q) :-

93 evidence_attribute (ATTRIBUTE, X, VALUE, Q) ;

95 retrieve SUM(X,Q) :-
96 retrieve_strategyl (X,Q);

Aggregating the evidence this way implements a best match
strategy in contrast to the exact match strategy prominent
in typical databases. Best match means all items (cars here)
that match the whole query would be ranked ahead of those
matching the query only partially. In exact match, only items
fully satisfying the query would be retrieved. A query

@ Springer

?- retrieve(X,qg2);

would return the following ranked list of all Toyota Prius in
a good condition for up to £ 10,000.

0.500000 (carl)
0.350000 (car2)
0.333333(car3)

In a similar way we can now query the evidence relations
(line 64—82). This would reveal that carl and car3 matched
mainly due to the textual description as well as the price,
whereas car2 was retrieved mainly because it is a Toyota
Prius.

However, we may argue car2 should be first in the ranking
as it is only a near miss regarding price. We can fix this by
allowing for vague predicates as discussed in the previous
section:

97 evidence_price_le (PRICE_WANTED, X, Q) :-
o8 gPrice (PRICE_WANTED, Q) &

98 price (PRICE,X) &

100 _gew (PRICE_WANTED, PRICE, 5000) ;

Furthermore, if we look at our query ql about cars on offer in
Scotland, this query would not retrieve anything in the cur-
rent setting, although car3 with location Glasgow should be
retrieved. We therefore introduce a simple location ontology
and integrate it into our retrieval strategy.

104 location_ex (bedfordshire, X) :-—
105 location (luton, X);

106 location_ex (cumbria, X) :-

107 location(carlisle, X);

18 location_ex (england, X) :-

109 location_ex (bedfordshire, X);
110 location_ex (scotland,X) :-

111 location(glasgow, X);

112 location_ex (england,X) :-

113 location_ex (cumbria, X);

116 0.4 location_ex(scotland,X) :-
117 location_ex (cumbria, X);

119 # Extended tion (includir
120 location_extended (LOC,X) :-

121 location {LOC,X) ;
12z location_extended (LOC,X) :-
123 location_ex (LOC, X);

The definitions of extended locations in location ex
state that every item in Luton is in also one in Bedfordshire,

Scalable DB+IR Technology: Processing Probabilistic Datalog with HySpirit 47

every item (car) in Glasgow is also in Scotland, etc. Line 116
is interesting in that respect. Here we state that a customer
interested in cars in Scotland might to a lesser degree (hence
the 0.43) also be interested in cars in Cumbria, which shares a
border with Scotland. The location extendedrelation
combines the 1location and the derived location ext
attributes.

Finally, we define our second retrieval strategy which
utilises our location ontology as well as the vague price com-
parison:

124 7

126 retrieve_strategy2(X,Q) :-

127 evidence_location_ext (LOC, X, Q) ;
128 retrieve_strategy?2 (¥,Q) :-
129 evidence_price_le (PRICE_WANTED, X, Q) ;

130 retrieve_strategy2(X,Q) :-
131 evidence_term (TERM, X, Q) ;
132 retrieve_strategy2 (X,Q) :-
133 evidence_attribute (ATTRIBUTE, X, VALUE, Q) ;

We modify the retrieve rule in line 93 to make retrieval
strategy 2 our default strategy.

93 retrieve SUM(X,Q) :-
94 retrieve_strategy2 (X, Q);

Now, processing the first query (cars on offer in Scotland)
would yield the following result:

?—- retrieve(X,ql);
1.000000(car2)
0.400000 (car3)

car2 is retrieved as it is located in Glasgow and the system
infers this is in Scotland. car3 is also retrieved (to a lesser
degree) as it is located in Carlisle, Cumbria, not too far from
the Scottish border. We can also see how the ranking for the
second query changes due to the vague predicate:

?- retrieve(X,ql);
0.550000 (car2)
0.500000 (carl)
0.333333 (car3)

?- evidence_price_le(+);
0.250000(10000,car3,qg92)
0.250000(10000,carl,g2)
0.200000(10000,car2, g2)

3There are automatic ways to compute the rule probability (using the
Bayes operator), which would require a reformulation of this example
that goes beyond the scope of this paper.

The price evidence shows us that car2 now matches
the price query, albeit to a lesser degree. The
0.2=0.25-0.8 value for car2, with 0.8 coming
from the valuation gew(10000,10500,5000) in
evidence price le and 0.25 coming from 0.25
gPrice (10000,g2) (both are regarded as independent
probabilistic events).

4 Summary and Conclusion

We have presented in this paper various challenges and
techniques to process PDatalog programs. As a description-
oriented approach, PDatalog is an excellent technique to en-
able the formulation and separation of complex search strate-
gies from the remaining code in a similar fashion like the sep-
aration from data and code drove the development of high-
performing database technologies. Therefore the focus of this
paper was on presenting the methods that were required to
make PDatalog applicable in real-world scenarios with very
large volumes of data.

The main contributions of this paper are as follows. Firstly,
the paper reports some of the key developments in PDatalog
in the last decade, in particular regarding scalability and ef-
ficiency, which are crucial to cope with the large volumes of
data we are facing nowadays. Secondly, this paper reports
for the first time insights of vague predicates and conditional
atoms (the PDatalog level of the relational Bayes). Thirdly,
the paper discusses extensive examples regarding the appli-
cation and integration of factual and textual knowledge. This
requires methods to describe the estimation of probabilities
and methods to scale the probabilistic reasoning process to
millions of tuples.

Section 2 has introduced and discussed selected features
of the HySpirit system that are central to achieve an ap-
plicable PDatalog with respect to expressiveness, effective-
ness and efficiency. In particular, we considered conditional
atoms (the relational Bayes), vague predicates, probabilistic
relational indexes, and parallel and distributed processing.
Then, Section 3 focussed on applications. First, it demon-
strated how to model text-based search. This was followed
by the discussion of a more complex example combining fac-
tual and textual knowledge, vague predicates, an ontology,
several retrieval strategies, and a functionality to explain the
results.

The PDatalog implementation in HySpirit is capable of
providing scalable and expressive means to create and pro-
cess sophisticated retrieval strategies. The PDatalog layer in
HySpirit itself is embedded in an abstraction hierarchy sim-
ilar to programming languages. A probabilistic relational al-
gebra (PRA) [16] is the ‘machine layer’ of the HySpirit stack
on which PDatalog is built upon. PRA offers typical rela-
tional operations like SELECT, PROJECT, UNION, JOIN

@ Springer

48

I. Frommbholz and T. Roelleke

and SUBTRACTION in a probabilistic fashion. The HySpirit
PRA operator BAYES estimates probabilities.

On top of PDatalog there are higher abstraction layers
like the aforementioned four-valued probabilistic Datalog
(FVPD) [8, 10]. On top of these relational layers several
object-relational abstraction layers are built which are tai-
lored to a specific class of tasks, for instance structured mul-
timedia document retrieval (POOL [6]) or retrieval incorpo-
rating (user) annotations (POLAR [3]). HySpirit is available
on request by contacting the authors.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.

References

1. Azzam H, Yahyaei S, Bonzanini M, Roelleke T (2012) A
schema-driven approach for knowledge-oriented retrieval and
query formulation. In: Proceedings of the Third International
Workshop on Keyword Search on Structured Data — KEYS ’12.
ACM, Scottsdale, AZ, USA. doi:10.1145/2254736.2254746. URL
http://dl.acm.org/citation.cfm?doid=2254736.2254746

2. CornacchiaR, KampsJ, Alink W, de Vries AP (2013) Searching po-
litical data by strategy. In: Lupu M, Salampasis M, Fuhr N, Hanbury
A, Larsen B, Strindberg H (eds) Proceedings of the Integrating IR
technologies for Professional Search Workshop. CEUR-WS.org,
Moscow, pp 88-91. http://ceur-ws.org/Vol-968/irps_15.pdf

3. Frommbholz I, Fuhr N (2006) Probabilistic, object-oriented logics
for annotation-based retrieval in digital libraries. In: Nelson M,
Marshall C, Marchionini G (eds) Proc. of the 6th ACM/IEEE Joint
Conference on Digital Libraries (JCDL 2006). ACM, New York,
pp 55-64

4. Fuhr N (2000) Probabilistic datalog: implementing logical infor-
mation retrieval for advanced applications. J Am Soc Inf Sci 51:95-
110

5. Fuhr N (2014) Bridging information retrieval and databases.
In: Ferro N (ed) Bridging between information retrieval and
databases. Springer, Berlin, pp 97-115. doi:10.1007/978-3-642-
54798-0fn_g5

@ Springer

10.

11.

12.

13.

14.

15.

16.

Fuhr N, Govert N, Rolleke T (1998) DOLORES: a system for logic-
based retrieval of multimedia objects. In: Croft WB, Moffat A, van
Rijsbergen C, Wilkinson R, Zobel J (eds) Proceedings of the 21st
Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp 257-265. ACM, New
York (1998)

Fuhr N, Rolleke T (1997) A probabilistic relational algebra for the
Integration of information retrieval and database systems. ACM
Transactions on Information Systems 14, 32-66

Fuhr N, Roélleke T (1998) HySpirit — a probabilistic inference en-
gine for hypermedia retrieval in large databases. In: Proceedings
of the 6th International Conference on Extending Database Tech-
nology (EDBT), pp 24-38. Springer, Heidelberg et al.
Klampanos I, Azzam H, Roelleke T (2009) A case for probabilistic
logic for scalable patent retrieval. In: CIKM Workshop on Patent
Retrieval

Lalmas M, Rolleke T (2003) Four-valued knowledge augmenta-
tion for structured document retrieval. Int J Uncertain Fuzziness
Knowledge- Based Syst 11:67-85

Ounis I, Amati G, Plachouras V, He B, Macdonald C, Lioma C
(2006) Terrier: A High Performance and Scalable Information Re-
trieval Platform. In: Proceedings of ACM SIGIR’06 Workshop on
Open Source Information Retrieval (OSIR 2006)

Roelleke T (2003) A frequency-based and a Poisson-based proba-
bility of being informative. In: ACM SIGIR. Toronto, pp 227-234
Roelleke T (2003) The relational Bayes for frequency-based and
information-theoretic probability estimation in a probabilistic re-
lational algebra. Patent application 0322328.6

Roelleke T (2013) Information retrieval models: founda-
tions and relationships. Morgan & Claypool. doi:10.2200/
S00494ED1V01Y201304ICR027

Roelleke T, Bonzanini M, Martinez-Alvarez M (2013) On the mod-
elling of ranking algorithms in probabilistic datalog categories and
subject descriptors. In: Proceedings of the 7th International Work-
shop on Ranking in Databases, 1, pp 4-9. Riva del Garda, Italy.
doi:10.1145/2524828.2524832

Roelleke T, Wu H, Wang J, Azzam H (2008) Modelling retrieval
models in a probabilistic relational algebra with a new operator:
the relational Bayes. The VLDB Journal - The International Journal
on Very Large Data Bases, Special Issue on DB & IR 17(1):5-37.
http://portal.acm.org/citation.cfm?id=1325167

http://dl.acm.org/citation.cfm?doid=2254736.2254746
http://ceur-ws.org/Vol-968/irps_15.pdf

	Scalable DB+IR Technology: Processing Probabilistic Datalog with HySpirit
	1 Introduction
	2 Processing Probabilistic Datalog -- The HySpirit System
	2.1 PDatalog: Syntax and Semantics
	2.2 Conditional Atoms: The Relational Bayes
	2.3 Vague (Fuzzy) Predicates
	2.4 Probabilistic Relational Indexes (PRIs)
	2.4.1 Distributed PRIs

	2.5 Parallel and Distributed Processing

	3 Application Examples
	3.1 Full-text Search
	3.2 Complex Factual and Textual Search

	4 Summary and Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /PDFXOutputConditionIdentifier (FOGRA27)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[SpringerOnline_1003_Acro8]'] Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (Coated FOGRA27 \(ISO 12647-2:2004\))
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

