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Creating accurate, analytic atom–atom potentials for small organic molecules from first principles can be
a time-consuming and computationally intensive task, particularly if we also require them to include explicit
polarization terms, which are essential in many systems. We describe how the CamCASP suite of programs
can be used to generate such potentials using some of the most accurate electronic structure methods currently
applicable. We derive the long-range terms from monomer properties, and determine the short-range anisotropy
parameters by a novel and robust method based on the iterated stockholder atom approach. Using these tech-
niques we develop distributed multipole models for the electrostatic, polarization and dispersion interactions in
the pyridine dimer, and develop a series of many-body potentials for the pyridine system. Even the simplest of
these potentials exhibits r.m.s. errors of only about 0.6kJ mol−1 for the low-energy pyridine dimers, significantly
surpassing the best empirical potentials. Our best model is shown to support eight stable minima, four of which
have not been reported in the literature before. Further, the functional form can be made systematically more
elaborate so as to improve the accuracy without a significant increase in the human-time spent in their gener-
ation. We investigate the effects of anisotropy, rank of multipoles, and choice of polarizability and dispersion
models.

PACS numbers:

I. INTRODUCTION

Electronic structure methods for the interaction energy have
come a long way since the mid-nineties, when the water dimer
represented the largest system for which accurate, ab ini-
tio intermolecular interaction energies could be calculated.
We can now calculate interaction energies for small organic
molecules like pyridine and benzene in hours on a single pro-
cessor [1–3], and medium sized molecules like cyclotrimethy-
lene trinitramine (RDX) [4], base pairs [5], and tetramers of
amino acids [6]. Part of the reason for this is the increase in
our computational resources, but more important are the new
developments in electronic structure methods. For the field
of intermolecular interactions, the development of symmetry-
adapted perturbation theory based on density-functional the-
ory, or SAPT(DFT), has done much to improve both the ac-
curacy and the range of applicability of theoretical methods.
[1, 2, 7–13]

However, such calculations cannot be used on the fly in
most molecular simulations, as the computational cost is too
high, and we need to represent the interaction energy by an
analytic potential. Such potentials are commonly expressed in
terms of the many-body expansion, where the interaction en-
ergy of a cluster of interacting molecules is partitioned into
two-body contributions plus corrections arising from triplets,
quartets and larger clusters of molecules. That is,

VABC... =
∑
X<Y

VXY +
∑

X<Y<Z

∆VXYZ + · · · , (1)

where VXY is the interaction energy between molecules X and
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Y in the absence of all other molecules, but in the geometry
found in the complete system, while ∆VXYZ is the three-body
correction, defined as

∆VXYZ = VXYZ − VXY − VXZ − VYZ

and VXYZ is the energy of the XYZ cluster in the absence of
all other molecules, but in the geometry found in the com-
plete system. Four-body, five-body and other many-body cor-
rections are defined in a similar manner.

The success of this expansion depends on its rapid conver-
gence. In any molecular system with distinct interacting units,
the two-body terms will dominate, but the many-body terms
can contribute as much as 30% of the interaction energy for
clusters of polar molecules [14–16], and can be essential for
getting the structure and properties correct. For example, three
and four-body effects have been shown to be responsible for
the tetrahedral structure of liquid water [17]. The many-body
polarization energy has also been shown to be an important
discriminator in the relative lattice energies of molecular crys-
tals when the structures differ considerably in their hydrogen-
bonding motifs [18].

A three-body implementation of SAPT(DFT) does exist
[19], but the computational cost makes on-the-fly methods
even more impractical, and although three-body non-additive
interactions make up the bulk of the many-body non-additivity
in systems like water, non-additive effects beyond this level
cannot be neglected [17]. If the constituent bodies in a cluster
are small enough, it would be possible to use an electronic
structure method like SAPT(DFT) or CCSD(T) (coupled-
cluster singles and doubles with non-iterated triples) for the
two and three-body terms in the many-body expansion, and an
appropriate approximation for the other terms. But more gen-
erally this approach would make formidable computational
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demands, and it is necessary to use analytic intermolecular
potentials in many applications.

Analytic intermolecular potentials have been in use for
many decades. (See ref. 20 for a review.) In the past, most
have been ‘pair potentials’, including only two-body terms. In
any molecular system with distinct interacting units, the two-
body terms will dominate, but the many-body terms can be
essential for getting the structure and properties correct. The
effects of many-body terms have often been included in an ap-
proximate ‘average’ manner through adjustment of the empir-
ical parameters. This is done in empirical potentials for water,
which typically feature an enhanced dipole moment to mimic
the increased average dipole of the water molecule in the con-
densed phase. While such pair potentials are still widely used,
it is increasingly recognised that it is necessary to take account
of the many-body effects explicitly, particularly to account for
the effects of electrostatic polarization [18, 21, 22], but also to
account for many-body dispersion effects [23–25], and, as we
shall see, to account for intermolecular charge delocalisation,
or charge transfer (CT).

Potentials with this level of complexity, accuracy and detail
cannot be obtained empirically. Instead we must turn to theo-
retical methods. Ab initio-derived potentials are by no means
new, and indeed there are a number of accurate potentials in
the published literature (see for example refs. 26–29). These
potentials have typically been obtained for small dimers, but
recently examples involving medium sized systems have be-
come available [4, 30–32]. There are a few common ideas
used in the creation of these and other ab initio potentials.
The first is that they are all based on a distributed model; that
is, the interaction energy between molecules is represented as
the sum of contributions between pairs of atoms. Secondly,
most are not polarizable, so many-body polarization terms are
missing (though polarization may be included at the two-body
level). Thirdly, in all cases, long-range parameters have been
derived from the unperturbed molecules, which can dramati-
cally simplify the number of free parameters in the fit. Finally,
the short-range parameters are usually then fitted to a set of
ab initio interaction energies calculated using a suitable elec-
tronic structure method.

The above procedure works reasonably well, but it has a
number of deficiencies. First and foremost is the usual lack of
many-body polarization effects. Second, there is much uncer-
tainty associated with fitting the short-range exponential terms
in a system of medium sized molecules. These uncertainties
are largely related to sampling: we are usually not sure that
we have enough data to define the terms in the potential. This
is particularly troublesome for the larger systems, which not
only have a larger number of free parameters to fit, but which
also incur considerable computational expense to calculate the
ab initio interaction energies needed for the fit. Additionally,
the short-range terms are usually exponential in form, and it is
very difficult to fit a sum of exponentials while also requiring
that the fit parameters remain physically sensible and transfer-
able. Some of these difficulties can be partially alleviated by
iterating the process and adding additional data at important
configurations [30], but on the whole this approach is unsatis-
factory and tedious, and an alternative is needed.

The alternative we describe in this paper is to compute di-
rectly most of the potential parameters, including those asso-
ciated with the short-range part of the potential, and keep the
fitting to a minimum. In many ways this is not a new strat-
egy; indeed, a similar technique has been implemented by
Schmidt and co-workers [33–35], who have used many of the
techniques we will describe in this paper to develop a family
of transferable potentials with a strong physical basis. How-
ever, so far these have been isotropic potentials of moderate
accuracy, with a strong focus on ease of creation and trans-
ferability. As we will demonstrate here, we bring a new level
of fidelity, accuracy and reliability to the procedure, using the
many tools we have developed in recent years and have imple-
mented in the CamCASP [36] program. We begin this paper
with a description of the overall strategy, then describe some
of the algorithms we have implemented in the CamCASP suite
of programs to implement the strategy. In particular, partition-
ing the electron density using the iterated stockholder atom
procedure is very effective in overcoming the difficulties in
fitting the short-range potential. We shall apply these methods
to the pyridine dimer and discuss the resulting potentials.

II. THE PROBLEM AND DEFINITIONS

The goal is to find an analytic potential Vint that accurately
models the two-body SAPT(DFT) interaction energy

E(1−∞)
int = E(1)

elst + E(1)
exch + E(2)

IND + E(2)
DISP + δHF

int . (2)

(We will use E throughout to denote the computed energy
terms and V to denote their analytic representations.) Here
E(1)

elst and E(1)
exch are the first-order electrostatic and exchange-

repulsion energies, E(2)
IND = E(2)

ind,pol + E(2)
ind,exch is the total

second-order induction energy, E(2)
DISP = E(2)

disp,pol + E(2)
disp,exch

is the total dispersion energy [37], and δHF
int is the estimate of

effects of third and higher order, primarily induction [38, 39].
The broad strategy we have adopted to determine Vint has been
described in some detail in a review article [40]. While many
of the details have changed, the essence of the method remains
as described there, so only a high-level description will be pro-
vided here.

First of all, we represent the potential Vint as

Vint =
∑
a∈A

∑
b∈B

Vint[ab](rab,Ωab), (3)

where, a and b label sites (usually taken to be atomic sites) in
the interacting molecules A and B, rab is the inter-site separa-
tion, Ωab is a suitable set of angular coordinates that describes
the relative orientation of the local axis systems on these sites
(see ch. 12 in ref. 20), and Vint[ab] is the site–site potential
defined as

Vint[ab] = Vsr[ab] + Velst[ab] + Vdisp[ab] + Vpol[ab]. (4)

The terms in Vint[ab] model the corresponding terms in
E(1−∞)

int . Vsr[ab] is the short-range term, which mainly de-
scribes the exchange–repulsion energy, but also includes some
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other short-range effects, discussed in §VI:

Vsr[ab] = G exp [−αab(Ωab)(rab − ρab(Ωab))], (5)

where ρab(Ωab) is the shape function for this pair of sites,
which depends on their relative orientation Ωab, and αab is
the hardness parameter which may also be a function of ori-
entation. G is a constant energy which we will take to be 10−3

hartree. Velst[ab] is the expanded electrostatic energy:

Velst[ab] = Velst[ab]
(
rab,Ωab,Qa

t ,Q
b
u, β

ab
elst

)
; (6)

Qa
t is the multipole moment of rank t for site a, where, using

the compact notation of ref. 20, t = 00, 10, 11c, 11s, · · · , and
βab

elst is a damping parameter. The dispersion energy Vdisp[ab]
depends on the anisotropic dispersion coefficients Cab

n (Ωab)
for the pair of sites, and on a damping function fn that we will
take to be the Tang–Toennies [41] incomplete gamma func-
tions of order n + 1:

Vdisp[ab] = −

12∑
n=6

fn
(
βab

disprab

)
Cab

n (Ωab)r−n
ab (7)

The final term Vpol[ab] is the polarization energy, which is the
long-range part of the induction energy [42]. Vpol[ab] depends
on the multipole moments and the polarizabilities αa

tu, which
are indexed by pairs of multipole components tu (for details
see refs.20, 43):

Vpol[ab] = Vpol[ab]
(
Qa

t ,Q
b
u, α

a
tu, α

b
tu, β

ab
pol

)
. (8)

There are a few points to note about the particular form
of the potential Vpol[ab]. Although formally written in the
form of a two-body potential, many-body polarization effects
are included through the classical polarization expansion [20].
Also, we will normally define the multipole moments and po-
larizabilities to include intramolecular many-body effects im-
plicitly, that is, we use the multipoles and polarizabilities of
atoms-in-a-molecule, localized appropriately. To this form of
the potential we could add a three-body dispersion model, but
this is not addressed in this paper.

III. STRATEGY

There are many parameters in such a potential and our goal
is to compute as many of these parameters as possible, and
keep the fitting of the remainder to a minimum. Additionally,
we will adopt a hierarchical approach to the fitting process that
helps to guarantee confidence in the parameter values. There
are three main parts to the process, and these involve the fol-
lowing:

• Long-range terms: The electrostatic, polarization and
dispersion interaction energy components possess ex-
pansions in powers of 1/R, where R is the centre-of-
mass separation (for small systems) or, more generally,
the inter-site distance in a distributed expansion. Multi-
pole moments are functions of the unperturbed molecu-
lar densities and may be derived using a variety of meth-
ods, the most common being the distributed multipole

analysis (DMA) technique [44, 45]. But, using a basis-
space algorithm of the iterated stockholder atom (ISA)
procedure[46] termed the BS-ISA algorithm [47], we
have demonstrated that the ISA/BS-ISA-based distribu-
tion yields a more rapidly convergent multipole expan-
sion with properties that make it ideal for modelling.
The distributed polarizabilities and dispersion coeffi-
cients are obtained using the Williams–Stone–Misquitta
(WSM) technique [43, 48–50]. With this approach we
may consider the long range parameters in the potential
Vint as fixed, though, we may optionally tune them if
appropriate.

• Damping: All three multipole expansions need to be
damped at short range, when overlap effects become
appreciable and the 1/R terms start to exhibit mathe-
matical divergences. Damping will not be applied to the
electrostatic expansion as it is not usually needed, but it
can be applied if necessary [51]. It is crucial to damp
the polarization and dispersion expansions as the math-
ematical divergence of these expansions is usually man-
ifest at accessible separations, and must be controlled if
sensible expansions are needed. For the dispersion ex-
pansion we use a single damping coefficient based on
the vertical ionization potentials IA and IB (measured in
atomic units) of the interacting molecules [50]:

βab
disp ≡ β

AB
disp =

√
2IA +

√
2IB. (9)

This single-parameter damping is almost certainly not
ideal, and we should rather use damping parameters that
depend on the atomic types, and optionally, on their rel-
ative orientation. We will propose such a more elabo-
rate, but still non-empirical model in a forthcoming pa-
per [52].

The damping of the polarization expansion is less
straightforward and will be discussed in detail below.

• Short-range energies: If the damped multipole (DM)
expanded energies are removed from the interaction en-
ergy E(1−∞)

int , we obtain the remainder which is the short-
range energy:

E(1−∞)
sr = E(1)

exch + (E(1)
elst − V (1)

elst[DM])

+ (E(2)
IND + δHF

int − V (2−∞)
pol [DM])

+ (E(2)
DISP − V (2)

disp[DM])

= E(1)
sr + E(2−∞)

sr . (10)

Here we have partitioned the short-range energy into
a first-order contribution E(1)

sr which will be domi-
nant, and the second- to infinite-order contribution
E(2−∞)

sr which will be primarily the infinite-order charge-
transfer energy. In the above expression, V (1)

elst[DM] and
V (2)

disp[DM] are the multipole expanded forms of the elec-

trostatic and dispersion energies, and V (2−∞)
pol [DM] is

the infinite-order (iterated) multipole-expanded polar-
ization energy. In principle, the various contributions
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to E(1−∞)
sr are not expected to depend on dimer geom-

etry in the same way and they should be modelled
separately. However, we have previously showed that
the dominant contributions to E(1)

sr —the first-order ex-
change and penetration energies—are proportional to
each other,[47] and here we will show that the charge-
transfer contribution is also nearly proportional, so we
shall model all parts of E(1−∞)

sr together as a single sum
of exponential terms:

Vsr =
∑
a∈A

∑
b∈B

Vsr[ab] (11)

where each Vsr[ab] has the form of eq. (5).

• Sampling dimer configuration space: In order to ensure
a balanced fit, it is important to ensure that we sam-
ple the six dimensional dimer configuration space ad-
equately. For such a high dimensional space the sam-
pling needs to be (quasi) random, and in earlier work
[31, 32, 40] we have described how this can be done
using a quasi random Sobol sequence and Shoemake’s
algorithm [53] (see the supplementary information for
a brief description of this algorithm). This algorithm
has been implemented in the CamCASP program and
ensures that we cover orientation space randomly, but
uniformly. Unless otherwise indicated, dimer configu-
rations will be obtained using this algorithm.

• Fitting the short-range terms: first-order energies: A
direct fit to the terms in Vsr usually leads to unphysi-
cal parameters and therefore should be avoided. Addi-
tionally, it is difficult to sample the high-dimensional
configuration space densely enough to define the shape
anisotropy of the interacting sites. This is particularly
true for the larger molecular systems, for which the
computational cost of calculating the second to infinite
order SAPT(DFT) interaction energies can be appre-
ciable, thus precluding the possibility of adequate sam-
pling. One possibility in this case is to reduce the com-
plexity of Vsr by, for example, keeping only isotropic
terms in the expansions for the hardness parameter and
the shape functions, but this may not be appropriate
when high accuracies are needed.

In previous work [31] we addressed this problem us-
ing the density-overlap model [54–56] to partition the
first-order short-range energies, E(1)

sr , into contributions
from pairs of atoms. This partitioning allows us to fit the
terms for each pair of sites ab and obtain a first guess at
V (1)

sr [ab], while avoiding fitting the sum of exponential
terms directly. In §VI B we provide more detail on how
this is done, and show how the parameters in eq. (11)
can be determined with a high degree of confidence
if we use a density partitioning method based on the
ISA method. As we shall see, this procedure effectively
eliminates the basis-set limitations seen in our earlier at-
tempts. Moreover, this step uses the first-order energies
only, and these energies are not only computationally
inexpensive, but may be calculated using a monomer

basis set, so a dense coverage of configuration space
may be used to determine good initial guesses for the
parameters in V (1)

sr . In this manner, atomic shape func-
tions may be determined easily and reliably.

• Constrained relaxation: At various stages in the fitting
process we will relax a fit with constraints applied. The
idea here is to obtain a good guess for the parameters
in the fit in a manner that ensures that they are well-
defined. Subsequently, these parameters may be relaxed
while pinning them to the predetermined values. Con-
sider a fitting function g(p0, p1, · · · , pn), where pi are
the free parameters in the fit. If our initial guess for
these are p0

i , then in a constrained relaxation we would
optimize the function

G(p0, p1, · · · , pn) = g(p0, p1, · · · , pn)

+

n∑
i=0

ci(pi − p0
i )2, (12)

where ci are suitable constraint strength parameters that
should be associated with our confidence in the initial
parameter guesses p0

i . In a Bayesian sense, the p0
i are

our prior values and the ci will be related to the prior
distribution. As data is included, the parameters pi may
deviate from their initial values. In this manner, a fit
may be performed with very little data and we ensure
that no parameter attains an unphysical value.

• Relaxing V (1)
sr to E(1)

sr : Having obtained the first guess
for V (1)

sr , we may now perform a constrained relaxation
of the parameters in V (1)

sr to fit E(1)
sr better. Symmetry

constraints to the shape-function parameters may also
be imposed at this stage.

• Relaxing V (1)
sr to include higher-order energies: The pa-

rameters in V (1)
sr may now be further relaxed to ac-

count for the higher order short-range energies, E(2−∞)
sr ,

thereby obtaining the full short-range potential Vsr. The
higher-order short-range energies will normally be eval-
uated on a much sparser set of points, so the constraints
used in this relaxation step usually need to be fairly
tight, and the anisotropy terms should probably be kept
fixed at this stage unless enough data can be made avail-
able.

• Overall relaxation and iterations: The relaxation steps
may be repeated as additional data is added. This is a
common strategy, but here we do the relaxation with
fairly tight constraints. Additional dimer energies are
best calculated at special configurations on the potential
energy surface. These would include stable minima and
regions of configuration space near minima. A suitably
converged fit is one which is stable with respect to the
inclusion of additional data.

Some of these steps have already been used to create ac-
curate ab initio potentials [31, 32], and indeed, some of these
ideas have been used and developed by other research groups
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(see for example, Refs. 30, 56, 57). What is unique to this
work is the manner in which these steps have been combined
with advanced density-partitioning methods, distribution tech-
niques and a hierarchical calculation of intermolecular inter-
action energies, so as to obtain intermolecular interaction po-
tentials easily and reliably and with high accuracy. We de-
scribe most of these steps in detail below.

IV. NUMERICAL DETAILS

The geometry of the pyridine molecule was optimized us-
ing the Gaussian03 program[58] using the PBE0 functional
[59] and the cc-pVTZ Dunning basis set [60]. The C2v point
group symmetry was imposed during the optimization.

A. Comments on the kinds of basis sets

We use several kinds of basis sets to calculate the various
data needed for the intermolecular potential of pyridine. The
SAPT(DFT) interaction energies require diffuse monomer ba-
sis sets augmented with mid-bond basis functions to converge
the dispersion energy, and additionally basis functions located
on the partner monomer – the so called far-bond functions —
to converge the charge-transfer component of the induction
energy. The resulting basis is referred to as the MC+ basis
type [61]. The δHF

int term requires a calculation of the super-
molecular interaction energy at the Hartree–Fock level, and
therefore needs to be calculated using a dimer-centered ba-
sis. In both cases the density-fitting needed for the SAPT and
SAPT(DFT) energies is done in a dimer-centered auxiliary ba-
sis, possibly augmented with a suitable mid-bond set. For high
accuracies the Cartesian form of the auxiliary basis is used.

We compute the large set of first-order energies in a
monomer-centered basis and subsequently rotate all quantities
to the required dimer orientation. However, for accurate first-
order interaction energies, the auxiliary basis used in these
calculations must still be the dimer-centered type. Addition-
ally, in this case we use the spherical form of the basis func-
tions as the CamCASP programme is, as yet, unable to rotate
objects calculated using Cartesian functions.

Monomer properties are normally calculated in a monomer-
centered basis that is taken to be the monomer part of the
basis set used for the SAPT(DFT) energies. However this is
not optimal as the additional off-atomic basis functions used
in the MC+ basis form have the effect of increasing the size
of the equivalent monomer-centered basis set. Consequently,
it is advantageous to calculate the monomer properties in a
larger, more diffuse monomer basis as this would better match
the multipole expanded energies with those from the non-
expanded SAPT(DFT) calculations.

B. Basis set details

The distributed molecular properties were calculated using
asymptotically corrected PBE0 (PBE0/AC) with the d-aug-cc-

pVTZ Dunning basis [62]. The density-functional calculation
was performed using a modified version of the DALTON 2.0
program [63] with modifications made using a patch provided
as part of the Sapt2008 suite of programs [64]. The asymptotic
correction was performed using the Fermi–Amaldi long-range
form of the exchange potential with the Tozer–Handy splic-
ing function [65] and a vertical ionization potential of 0.3488
a.u., calculated using a ∆-DFT procedure with the PBE0 func-
tional and an aug-cc-pVTZ basis set. The CamCASP program
[36] was used to evaluate the distributed multipole moments
using both DMA and ISA algorithms, and distributed static
and frequency-dependent polarizabilities and dispersion coef-
ficients using the WSM algorithm [43, 48–50]. For the ISA
calculation the auxiliary basis was constructed from the RI-
MP2 aug-cc-pVQZ fitting basis [66, 67] with s-functions re-
placed with those from ISA-set2 supplied with the CamCASP
program [47].

Interaction energy calculations using SAPT(DFT) were
performed using the CamCASP program with molecular or-
bitals and eigenvalues calculated with the DALTON 2.0 pro-
gram using the PBE0/AC functional described above. Second-
order SAPT(DFT) interaction energy calculations were per-
formed using the Sadlej-pVTZ basis in the MC+ format
(monomer basis plus mid-bond functions) with a 3s2p1d
mid-bond set [23] placed on a site determined using a
dispersion-weighted algorithm [68]. The DC+ form of the
RI-MP2 aug-cc-pVTZ auxiliary basis [66, 67] with Cartesian
GTOs was used for density-fitting with a 3s3p3d2 f 1g fit-
ting mid-bond set with exponents s: (1.1061,0.5017,0.2342),
p: (0.94,0.5,0.25), d: (0.9,0.6,0.3), f : (0.7,0.4), g: (0.65). The
hybrid ALDA+CHF kernel was used in all SAPT(DFT) cal-
culations. Kernel integrals were calculated initially within the
DALTON 2.0 program, but subsequently they were computed
internally in CamCASP with the ALDA part of the kernel con-
structed from Slater exchange components and PW91 corre-
lation kernel [69]. The δHF

int correction was evaluated using
the DC+ form of the Sadlej pVTZ basis with a correspond-
ing DC+ auxiliary basis set formed from the RI-MP2 aug-cc-
pVTZ fitting basis and 3s3p3d2 f 1g fitting mid-bond set.

Additionally, first-order SAPT(DFT) interaction energies
used in the initial stage of the fit were calculated using a
monomer-centered (MC) Sadlej-pVTZ basis [70] and a dimer-
centered (DC) RI-MP2 aug-cc-pVTZ fitting basis [66, 67].
The density-functional calculations on the monomers were
performed once using the PBE0/AC functional, and the
molecular orbitals were suitably rotated within CamCASP for
subsequent first-order interaction energy calculations. For this
purpose, due to current requirements within CamCASP, the
spherical form of the Gaussian-type orbitals (GTOs) was used
for the auxiliary basis set.

C. Data sets

In §III we have described how intermolecular interaction
potentials may be developed in multiple stages, with more
accurate, but less extensive data sets used in each successive
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stage. The pyridine dimer potentials we describe below have
been developed using three data sets:

• Dataset(0): First-order energies calculated on a set of
3515 pseudo-random dimer geometries obtained using
Shoemake’s algorithm as described above. This data set
was used in the first stage of the fitting process to obtain
the initial short-range parameters using the distributed
density-overlap model.

• Dataset(1): Infinite-order SAPT(DFT) interaction ener-
gies calculated on a set of 500 pseudo-random dimers
also obtained using Shoemake’s algorithm. This data
set was used in refining the dispersion model, in fit-
ting the charge-transfer contribution to the interaction
energy, and, in the final stage, to tune the total interac-
tion energy models.

• Dataset(2): Infinite-order SAPT(DFT) interaction ener-
gies calculated on a set of 257 dimers obtained as spe-
cial points (minima) from early versions of the pyridine
potential development. These dimers are significantly
lower in energy than those from Dataset(1). This data
set served two purposes: Firstly, as it contained dimer
geometries significantly different from those found in
Dataset(1), it provided us with an independent means
of assessing the quality of the fits. Secondly, in the final
stage, this data set was used to tune the total interaction
energy models.

• Dataset(3): Infinite-order SAPT(DFT) interaction ener-
gies calculated on a set of 250 pseudo-random dimers
in a manner similar to Dataset(1). This set will be used
only in the assessment of the models.

V. LONG-RANGE METHODS

One of the fundamental advantages of inter-
molecular perturbation theories like SAPT and
SAPT(DFT) over supermolecular methods is that the energy
components from perturbation theory have well-defined
multipole expansions [71]. Therefore the long-range form of
these energies can be derived from molecular properties such
as the multipole moments and static and frequency-dependent
density-response functions. This has the advantage that the
asymptotic part of the potential energy surface is obtained
directly, that is, without fitting. Additionally, the long-range
potential parameters are fully consistent with the short-range
energies from the perturbation theory.

In the CamCASP suite of programs, we have implemented
a number of algorithms for calculating the distributed forms
of the long-range expansions of the electrostatic, polariza-
tion (induction) and dispersion energies. The algorithms per-
mit a considerable degree of freedom in the model, so mod-
els may be more or less complex as the application requires.
The long-range terms in the model can be derived directly
from monomer properties, but there is a conflict between ac-
curacy and computational efficiency. We will aim to model

most of the contributions to the interaction energy separately,
using several versions ranging from accurate but computa-
tionally expensive to less accurate but cheaper. For example,
electrostatic models may be constructed using multipole mod-
els from rank 0 (charges only) up to rank 4; or mixed rank
models may also be considered, with high ranking multipoles
included only on some sites. This allows a considerable de-
gree of flexibility in constructing the total interaction energy
model. For this approach to work, we will need to ensure that
each part of the model is sufficiently accurate, with accuracy
measured in a meaningful manner. Typically, we will expect
to reduce r.m.s. errors against some SAPT(DFT) reference to
less than 1 kJ mol−1, and preferably less than 0.5 kJ mol−1.

A. Electrostatic models

Distributed multipole analysis is a well established pro-
cedure for obtaining accurate electrostatic models from an
ab initio wavefunction. We use the revised version of the
procedure[45] which reduces the dependence of the multi-
pole description on basis set, at the cost of longer computation
times. This procedure uses a scheme based on real-space grids
for the density contributions arising from the diffuse func-
tions, while for the more compact functions in the basis the
original scheme is used. In this work the parameter control-
ling the switch between compact and diffuse functions is set
at 4.0, so the method is denoted DMA4.

Until recently, the DMA approach has been the standard
for distributed moments, but recently we have demonstrated
[47] that the ISA-based distributed multipole analysis (ISA-
DMA) forms a significantly better basis for potential devel-
opment as it guarantees fast and systematic convergence with
respect to the rank of the expansion and a well-defined ba-
sis limit to the multipole components, and yields penetration
energies (calculated as the difference from the non-expanded
E(1)

elst) more strongly proportional to the first-order exchange
energy E(1)

exch. The last aspect of the ISA-DMA is particu-
larly useful in model building, since the proportionality of the
electrostatic penetration energy to the first-order exchange-
repulsion energy allows us to combine the two and model their
sum with a single function. For the purposes of this paper we
will define the electrostatic penetration energy as [47]

E(1)
pen = E(1)

elst − V (1)
elst[DM], (13)

where V (1)
elst[DM] denotes the electrostatic energy calculated

from the distributed multipole (DM) expansion evaluated at
convergence, which we will take to be the model with terms
from ranks 0 (charge) to 4 (hexadecapole).

In fig. 7 of ref. 47 we demonstrated this aspect of the ISA-
DMA moments: in contrast to the DMA4 moments, the pen-
etration energy derived from the ISA-DMA model at rank 4
is indeed significantly more proportional to E(1)

exch for the pyri-
dine dimer. This alone makes the ISA-DMA model more ap-
propriate for this system—or indeed, any other, as this pro-
portionality seems to be generally true. Here we will look at
the data presented in ref. 47 differently, to show more clearly
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FIG. 1: Scatter plot of model electrostatic energies from the DMA4
and ISA-DMA models at various ranks. The multipole expanded
electrostatic energies V (1)

elst[DM] for rank n models, n = 0, 1, 2, 3, (i.e.
including multipole moments only up to rank n) are plotted against
the energies calculated with the rank 4 model (on the x-axis). No
damping has been used. The DMA4 results are in the top panel and
the ISA-DMA (BS-ISA, ζ = 0.1) results are presented in the bottom
panel. The blue bar represents the ±1 kJ mol−1 error range.

how rapidly the DMA4 and ISA-DMA multipole expansions
converge with rank.

For the construction of accurate electrostatic models, it is
advisable to include atom charges, dipoles and quadrupoles.
The dipoles are needed to describe features such as lone pairs,
while quadrupoles are needed to describe π-orbital features.
Octopoles and hexadecapoles can improve the description fur-
ther but the improvement is not generally worth the increased
computational cost of the model. However, for many appli-
cations, particularly for large molecules, due to program de-
sign limitations or more fundamentally, due to computational
limitations, only charge models may be permissible. So the
question arises: How do the multipole models behave when
truncated to lower orders in rank? In Figure 1 we have plotted
V (1)

elst[DM] calculated with each of the two multipole models
with truncated rank against the same with all terms to rank 4
(deemed to be converged) included. We clearly see that while
the rank 4 terms are not needed in the DMA4 model, any fur-
ther truncation results in unacceptably large errors and very
little correlation is left between the converged results (terms

to rank 4) and those with ranks limited to 0 (charges) and 1
(charges and dipoles). In contrast, the ISA-DMA multipoles
are distinctly better behaved upon truncation, with a strong
correlation between all truncated models and the fully con-
verged energies. This has some advantages: it may be possi-
ble to truncate the ISA-based distributed multipole model to
much lower rank, perhaps even to rank 0, without the need
to re-parametrize the potential. We shall return to this issue
below.

We point out here that while the DMA4 multipole model
is not directly amenable to rank truncation, there is a way
to perform a rank transformation that generally does not re-
sult in significant errors. This is done using by optimizing a
distributed-multipole description using the Mulfit program of
Ferenczy et al.[72, 73], in which the effects of higher-rank
multipoles on each atom are represented approximately by
multipoles of lower ranks on neighbouring atoms. In this way,
a model including multipoles up to quadrupole can incorpo-
rate some of the effects of higher multipoles. This approach
has recently been used effectively to generate simple electro-
static models for a wide range of polycyclic aromatic hydro-
carbons occurring in the formation of soot.[32, 74] However
the ISA-DMA treatment is consistently better.

B. Polarization and charge-transfer

In this paper we distinguish between the polarization en-
ergy and the induction energy. In SAPT (or SAPT(DFT)), the
polarization energy and charge-transfer are combined in the
induction energy. We use regularised SAPT [75] to separate
these two contributions [42], and by polarization energy we
mean that part of the induction energy that is not associated
with charge transfer.

The importance of polarizability in the interactions be-
tween polar and polarizable molecules is now well recognized
[18, 76], as is the inadequacy of the common approximation of
polarization effects by the use of enhanced static dipole mo-
ments. In CamCASP we use coupled Kohn–Sham perturba-
tion theory to obtain an accurate charge-density susceptibil-
ity, α(r, r′), which describes the change in charge density at r
in response to a change in electrostatic potential at r′. Using
a constrained density-fitting-based approach [48], the charge
density susceptibility is partitioned between atoms to obtain
a distributed-polarizability model αab

tu that gives the change in
multipole Qb

u on atom b in response to a change in the elec-
trostatic potential derivative Va

t at atom a. Here u = 00 for the
charge, 10 = z, 11c = x or 11s = y for the dipole, 20, 21c,
21s, 22c or 22s for the quadrupole components, and so on;
while t = 00 for the electrostatic potential, 10, 11c or 11s for
the components of the electrostatic field, 20 etc. for the field
gradient, and so on. Note that the electric field components are
Ex = E11c = −V11c, Ey = E11s = −V11s and Ez = E10 = −V10.

This is a non-local model of polarizability. That is, the elec-
tric field at one atom of a molecule can induce a change in the
multipole moments on other atoms of the same molecule. This
is an impractical and unnecessarily complicated description
that seems to be needed only for special cases such as low-
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dimensional extended systems [77]. For most finite systems,
the moments induced on neighbouring atoms b by a change
in electric field on atom a can be represented by multipole
expansions on atom a, giving a local polarizability descrip-
tion in which the effect of a change in electric field at atom
a is described by changes in multipole moments on that atom
alone. This is a somewhat over-simplified description of the
procedure, and more detailed accounts have been given by
Stone & Le Sueur[78], and by Lillestolen & Wheatley[79].
The latter is a more elaborate approach that deals rather bet-
ter with the convergence issues arising from induced moments
on atoms distant from the one on which the perturbation oc-
curs. The local polarizability model is a much more com-
pact and useful description. In particular, the local picture
removes charge-flow effects, where a difference in potential
between two atoms induces a flow of charge between them.
Such flows of charge still occur, but they are described in
terms of local dipole polarizabilities. We point out here that
the ‘self-repulsion plus local orthogonality’ (SRLO) distribu-
tion method [80] can be used to eliminate the charge-flow
terms altogether (for most molecules). This technique, which
is a modification of the constrained density-fitting-based dis-
tribution method [48] is available in CamCASP but has not
been used for the results of this paper. The SRLO polarizabil-
ities are non-local and will typically need localization to be
usable by most simulation programs.

The resulting localized polarizability description can be re-
fined by the method of Williams & Stone [81] using the point-
to-point responses: the change in potential at each of an array
of points around the molecule in response to a point charge at
any of the points. An important advantage of this method is
that the final, refined polarization model can be chosen to suit
the problem—for example a simple isotropic dipole–dipole
model, or an elaborate model with anisotropic polarizabilities
up to quadrupole–quadrupole or higher. For a given choice of
model, the refinement procedure ensures that we obtain the
highest accuracy (in an unbiased sense if sufficiently dense
grids of point-to-point responses are used) subject to the lim-
itations of the model. The combination of the SAPT(DFT)
calculation of local (point-to-point) responses with this re-
finement procedure is referred to here as the WSM method
[43, 49].

The quality of the WSM description can be judged by the
accuracy of the interaction energy of a point charge with
the molecule. This interaction comprises the classical elec-
trostatic energy of interaction of the point charge with the
molecular charge distribution, and the additional term, the po-
larization energy, that arises from the relaxation of the molec-
ular charge distribution in response to the point charge. These
components can be separated using SAPT(DFT). The polar-
ization energy of pyridine in the field of a point charge is
mapped in the left-hand picture of Figure 2(a). We construct
a grid on the vdW×2 surface of pyridine—that is, the surface
made up of spheres of twice the van der Waals radius around
each atom—and the polarization energy is calculated for a unit
point charge at each point of the grid in turn. The remaining
three maps in Figure 2(a) show the error in the polarization en-
ergy for three local polarizability descriptions: L1 uses dipole

polarizabilities on each atom, L2 includes dipole–quadrupole
and quadrupole–quadrupole polarizabilities, and L1,iso uses
isotropic dipole polarizabilities on each atom. It is clear that
the dipole-polarizability models are rather poor, and that an
accurate description needs to include quadrupole polarizabili-
ties.

1. Polarization damping

If the polarization interaction between molecules is cal-
culated using distributed multipoles for the electrostatic po-
tential and distributed polarizabilities for the polarization
model, the effects of molecular overlap are absent and damp-
ing is needed to avoid the so-called polarization catastro-
phe which results in unphysical energies. In our early work
on this issue [43] we advocated damping the classical po-
larization expansion to best match the total induction ener-
gies from SAPT(DFT). Through numerical simulations of the
condensed phase and the work of Sebetci and Beran [76] we
now know this to be incorrect, as it leads to excessive many-
body polarization energies. The polarization damping must in-
stead be determined by requiring that the classical polarization
model energies best match the true polarization energies from
SAPT(DFT) [42]. As noted above, perturbation theories like
SAPT and SAPT(DFT) do not define a true polarization en-
ergy, but rather the induction energy, which is the sum of the
polarization energy and the charge-transfer energy. Recently
one of us described how regularized SAPT(DFT) can be used
to split the second-order induction energy into the second-
order polarization and charge-transfer components [42] which
are defined as follows:

E(2)
POL = E(2)

IND(Reg)

E(2)
CT = E(2)

IND − E(2)
IND(Reg), (14)

where E(2)
IND(Reg) is the regularized second-order induction

energy. This definition leads to a well-defined basis limit
for the second-order polarization and charge-transfer energies
[42]. We determine the damping needed for the classical po-
larization expansion by requiring that the non-iterated model
energies best match E(2)

POL. Once a suitable damping has been
found, an estimate for the infinite-order polarization energy
E(2−∞)

POL is obtained by iterating the classical polarization model
to convergence.

In principle the above procedure gives us a straightforward
way to define the damping: once the form of the damping
function is chosen (we use Tang–Toennies damping in this
work) all we need to do is determine the damping parame-
ters needed by fitting to E(2)

POL energies calculated for a suit-
able set of dimer orientations. Since the many-body polar-
ization energy is built up from terms involving pairs of sites,
we should expect that the damping parameters depend on the
pairs of interacting sites, and potentially on their relative ori-
entations. Indeed, one of us has shown [42] that for small
dimers the damping parameters do depend quite strongly on
the site types involved. A single-parameter damping model
that depends only on the types of interacting molecules may
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FIG. 2: (a) Polarization and (b) dispersion energy maps and difference maps on the 2×vdW surface of pyridine. Polarization energies have
been calculated using a +1e point-charge probe and dispersion energies with a neon atom probe. Energies in kJ mol−1.

be constructed, but such a model is a compromise, and must
usually be determined by fitting to data biased towards the im-
portant dimer configurations only [42]. The advantage of this
approach is that the model is simpler and very few evaluations
of E(2)

POL are needed to determine the damping parameter, but
the disadvantage is that the model is almost certainly biased
towards a few dimer orientations, and additionally, these im-
portant orientations need to be known before the final poten-
tial is constructed. The last requirement—that we need to have
knowledge of the potential—is not as serious as it may seem,
as the choice of damping has no effect on the two-body inter-
action potential: this choice affects the many-body polariza-
tion energy only. So it is possible to make an informed guess
for the damping parameter, determine the parameters of the in-
termolecular potential, and subsequently re-assess this choice
by examining the performance of the polarization model at
the important dimer configurations, and, if necessary, alter the
model and re-fit.

The initial choice for the damping parameter in pyri-
dine was obtained using two dimer orientations: the doubly
hydrogen-bonded C2h dimer, and a T-shaped dimer with the
nitrogen of one molecule pointing to the ring of the other.
These were chosen so as to sample both H· · ·N and N· · ·C
interactions, though in retrospect the latter proved to be unim-
portant. In Figure 3 we display the second-order polarization
energies calculated using various single-parameter damping
models for the C2h structure. Energies for only two of the

three polarization models are shown, as the isotropic rank
1 (L1(iso)) model is nearly identical in behaviour to the L1
model. The optimum damping parameter for the L1 model lies
between 1.2 and 1.3 a.u., while for the L2 model a stronger
damping between 1.0 and 1.1 a.u. is needed. To an extent,
the deficiencies of the L1 model are compensated by using a
weaker damping.

The single-parameter damping approach has a serious lim-
itation. In Figure 4 we display similar data for the T-shaped
dimer orientation with the N of one molecule pointing to the
centre of the ring of the other. Here we see that the polarization
models need to be considerably more heavily damped with a
damping coefficient of 0.9 a.u. for the L1 (and L1(iso)) model
and one less than 0.9 a.u. for the L2 model. It is possible that
we observe this large variation in the damping because of the
strong anisotropy of the molecule, and also because a single
damping coefficient is not enough. Perhaps we need to use
separate damping parameters for each pair of atoms [42], or
even to make the damping parameters orientation-dependent.
As a compromise, we have chosen to use the simpler L1 model
with a damping coefficient of βpol = 1.25 a.u. This model
seems capable of describing the polarization in both orien-
tations presented here.

This approach to choosing the damping parameter remains
the most problematic part of our approach to potential devel-
opment. The choice of damping parameters may seem some-
what arbitrary and biased to the choice of dimer configura-
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FIG. 3: Second-order polarization energies vs. centre-of-mass sep-
aration R for the doubly-hydrogen-bonded pyridine dimer, obtained
from regularized SAPT(DFT) and from distributed polarization mod-
els. Model polarization energies are reported with local WSM mod-
els with a maximum rank of 1 (L1, top) and 2 (L2, bottom). Models
are shown with a range of damping parameters using damping func-
tions described in the text. The basin of the minimum along the radial
direction is indicated by the light blue shaded region.

tions used to determine the damping, but this is probably too
pessimistic a view for the following reasons:

• The choice of damping does not affect the two-body in-
teraction energy as the error in the induction energy will
be absorbed in the short-range part of the potential. The
damping does however alter the many-body polariza-
tion energy.

• We should regard this as an iterative process: the damp-
ing model will normally be assessed and possibly
changed once we have a better understanding of the full
PES. Indeed this was done in the present work; we will
re-visit this issue in §XII A.

C. Dispersion models

In CamCASP, we normally calculate atom–atom disper-
sion coefficients using polarizabilities computed at imagi-
nary frequency and localised using the WSM localization
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FIG. 4: Second-order polarization energies vs. centre-of-mass sepa-
ration R for the T-shaped pyridine dimer with N pointing to the centre
of the ring. See the caption of Figure 3 for a description.

scheme. The procedure involves integrals over imaginary
frequency[82], and because the imaginary-frequency polariz-
ability is a very well-behaved function of the imaginary fre-
quency the integrals can be carried out accurately and effi-
ciently using Gauss-Legendre quadrature[50]. Since the dis-
persion coefficients are derived from the WSM polarizabil-
ity model, it is possible to choose the dispersion model to
suit the problem, for example by limiting the polarizabili-
ties to isotropic dipole–dipole, leading to an isotropic C6R−6

model, or by including all polarizabilities up to quadrupole–
quadrupole, which yields a model including anisotropic dis-
persion terms up to R−10. (This latter procedure omits some
R−10 terms arising from dipole–octopole polarizabilities, but
they could be included too if desired.) Within the constraints
of the model, the WSM polarizabilities, and hence the WSM
dispersion models will be optimized to be the best in an unbi-
ased sense. Within these constraints, intramolecular through-
space polarization effects are fully or partially accounted for
in the WSM models.

The dispersion energy of pyridine with a neon atom probe
placed on the vdW×2 surface of pyridine is mapped in the left-
hand picture of Figure 2(b). In the remaining three maps in
this figure we show the error in the dispersion energy for three
local dispersion models: the C6 model includes anisotropic
C6 terms on all atoms; the C8 model additionally includes
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FIG. 5: Scatter plot of pyridine dimer dispersion energies using
various models, against reference E(2)

DISP energies calculated using
SAPT(DFT). See text for details. The bar represents the ±1 kJ mol−1

error range.

C7 and C8 contributions between the heavy atoms; and the
C6,iso model includes only isotropic C6 terms. The C10 and
C12 models are not shown as they exhibit errors close to zero
on the scale shown. It should be clear that to achieve a high
accuracy we need to include higher-rank dispersion effects —
the dispersion anisotropy is not apparently important in this
system, though we may expect it to be important in larger sys-
tems. Also, the errors made by both the C6 models are fairly
uniform, and so the lack of higher-order terms in these mod-
els may be compensated for by scaling the C6 coefficients.
Indeed, we have demonstrated this in a previous publication
[50] and will address this below.

The WSM dispersion models described above need to be
suitably damped for them to be applicable in a potential. We
have used the Tang–Toennies [83] damping functions and a
single damping parameter for all pairs of sites. The damping
model needs to account for two effects: First, the SAPT(DFT)
dispersion energy, E(2)

DISP, includes the effects of penetration
and exchange, which are absent from the CnR−n expansion.
Secondly, the dispersion expansion suffers from an unphys-
ical mathematical divergence as R → 0. For both reasons
the models have to be damped. Damping using the Tang–
Toennies functions cancels out the mathematical divergence at
small R and, with an appropriate damping parameter, is also

able to account for the penetration and exchange effects, al-
beit approximately. We have opted for the simplest damping
model, in which βdisp depends on the interacting molecules
only and is given by eq. (9). With IA = IB = 0.3488 a.u. we
get βdisp = 1.67 a.u.

Figure 5 (bottom) shows the performance of the C12(iso)
isotropic dispersion models for the pyridine dimer, As can be
seen from the Figure, the above damping works reasonably
well for the C12(iso) model with (unweighted) r.m.s. errors
of 0.86 kJ mol−1 for dispersion energies from Dataset(1) in
the energy range −40 to 0 kJ mol−1. However, for Dataset(2)
which includes more strongly bound dimers, the model per-
forms less well with an r.m.s. error of 2.30 kJ mol−1 in the
same energy range. The model dispersion energies are sys-
tematically overestimated for the low energy dimers, with er-
rors as large as 4 kJ mol−1. While these errors are just within
‘chemical accuracy’, they are too large for our purposes. They
may stem from the choice of damping function, the damp-
ing parameter chosen (in particular, our use of a single, atom-
pair independent isotropic damping parameter) and also the
WSM dispersion coefficients. To account for some of these
deficiencies, while maintaining the isotropy of the model, we
have chosen to relax the dispersion coefficients in the C12(iso)
model. The relaxation was done using constrained optimisa-
tion with harmonic constraints in the form given by eq. (12)
used to pin the dispersion coefficients to the values obtained
from the WSM procedure. We used tight constraints to prevent
the model parameters from taking on unphysical (negative)
values. The relaxation was done using only the random dimers
from Dataset(1), with the low energy dimers from Dataset(2)
used to assess the quality of the relaxation. The relaxed model,
C12(iso, opt), is a significant improvement, with r.m.s. errors
of 0.41 kJ mol−1 on the training set of random dimers and 0.68
kJ mol−1 on the test set of low energy dimers.

In a similar manner we have created an isotropic C6 disper-
sion model for this system. From Figure 5 (top) we see that the
C6(iso) model systematically underestimates the second-order
dispersion energy. This is to be expected, as the higher ranking
dispersion contributions are significant for close dimer separa-
tions. We have previously argued [43] that rather than use the
C6(iso) model directly, we should instead use a scaled model
in which all dispersion coefficients are scaled by a constant to
match the reference E(2)

DISP energies. Here we additionally op-
timise the scaled model in the manner described above. The
resulting model, C̃6(iso, opt) (here the tilde indicates that this
is a scaled model), exhibits an r.m.s. error of 0.68 kJ mol−1

on the training set and 1.00 kJ mol−1 on the test set. How-
ever, such a scaled model will systematically overestimate the
long-range contribution to the dispersion energy, and this is a
significant drawback: while the scaled C6(iso) model may be
used to model small, gas-phase clusters, it is not suitable for
the condensed phase because the scaling causes an excessive
van der Waals pressure and the resulting structures are signif-
icantly more dense. As one of our aims is to use the result-
ing potentials in the study of the condensed phase, we cannot
use the scaled model. However, we can simplify the C12(iso)
model by dropping the R−12 terms, which contribute an in-
significant amount to the dispersion energy, so we have used
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a C10(iso, opt) model in the potentials for pyridine.

VI. SHORT-RANGE ENERGY MODELS

The short-range part of the potential comprises several ef-
fects. All of the long-range terms are modified at short range,
as mentioned above. The multipole expansion on which the
long-range expressions are based converges more slowly or
not at all at short distances, and is incorrect when the charge
densities overlap, even if it does converge. Damping can be
used to correct the dispersion and polarization terms at short
range, but in addition there are corrections arising from elec-
tron exchange, electrostatic penetration, and charge tunneling,
or charge transfer, between the molecules.

The dominant short-range term is the exchange-repulsion:
the wavefunction for two overlapping molecules cannot be
treated as a simple product of isolated-molecule wavefunc-
tions, but has to be antisymmetrized with respect to electron
exchanges between the molecules. This modifies the electron
distribution and results in a repulsive energy. It is straightfor-
ward to calculate the exchange-repulsion energy ab initio, but
it has to be fitted by a suitable functional form for use in an
analytic potential.

The electrostatic interaction is also modified by the effects
of overlap. If a distributed multipole expansion is used, it will
still converge at moderate overlap, but it does not converge to
the non-expanded energy, E(1)

elst. The difference between E(1)
elst

and the converged multipole energy V (1)
elst[DM] is the elec-

trostatic penetration energy, E(1)
pen. We have previously shown

[47] that E(1)
pen is approximately proportional to the first-order

exchange energy, so the two terms can, in principle, be mod-
elled together. Alternatively a separate model for E(1)

pen can be
developed, possibly based on suitable damping functions [51],
but we have not explored this possibility.

The contribution to the interaction energy from charge
transfer — or, more appropriately, the intermolecular charge
delocalisation energy — appears at second and higher orders
in the perturbation expansion. Previously one of us has shown
that this energy can be interpreted as an energy of stabiliza-
tion due to electron tunneling [42], so we may expect the
charge transfer energy to decay exponentially with separation.
In principle, the charge transfer energy should be modelled as
a separate exponentially decaying term, but as we shall see, it
is approximately proportional to the first-order exchange en-
ergy and may therefore be modelled together with E(1)

exch.

Finally we will use the short-range potential to account for
any residual differences between the multipole expansions and
the reference SAPT(DFT) energies. The full form of the short-
range energy, E(1−∞)

sr , is shown in eq. (10) where we have also
implicitly defined the first-order short-range energy, E(1)

sr , and
the contributions from second to infinite order, E(2−∞)

sr .

A. Fitting the short-range potential

The short-range part of the potential has often been rep-
resented by empirical R−12 Lennard-Jones atom–atom terms,
but for accurate potentials a Born–Mayer (exponential) atom–
atom form is usually preferred (eq. (11)), and it is essential
in most cases to allow it to be anisotropic, since the non-
spherical nature of bonded atoms can have a profound effect
on the way that they pack together. Unfortunately, the param-
eters of the various atom–atom terms are strongly correlated,
and this makes the already difficult non-linear fitting problem
even more troublesome. A direct fit is generally not possible:
it is hard to converge and tends to wander off into unphysical
parameter space. Parameters can be forced to stay within rea-
sonable limits, but this introduces an element of arbitrariness
in the procedure.

It has however been found empirically that there is a close
proportionality between the overlap of the electron densities
on two atoms and the exchange–repulsion energy between
them. This observation has been used to construct repulsion
potentials directly from the density overlap, with varying de-
grees of success[84]. A better solution, which we adopt here,
is to use the density overlap only to guide the parameters in a
fitted potential function to a physically meaningful region of
parameter space. Once an initial guess to the parameters has
been obtained, the fit can be improved using constrained op-
timisation. Further, we will achieve the final fits to E(1−∞)

sr in
stages, first by fitting to only E(1)

sr , and then by constrained re-
laxation to include the higher-order contributions from E(2−∞)

sr .

B. The density-overlap model

It is useful at this point to review the theoretical basis for
the density-overlap model. In the mid-1970’s Kita, Noda & In-
ouye [54], and later, in the early 1980’s Kim, Kim & Lee[55]
proposed that the intermolecular repulsion energy of rare gas
atoms could be modelled as

E(1)
exch(R) ≈ K

(
S ρ(R)

)γ
, (15)

where K and γ are constants and the overlap S ρ of the two
interacting densities ρA and ρB separated by generalised vector
R is defined as

S ρ(R) =

∫
ρA(r)ρB(r)dr. (16)

Kita et al. had γ = 1 and did not consider the possibility of
varying this power, but Kim et al. observed that the constant γ
was close to, but less than, unity. This model was subsequently
used by a number of groups and was successfully applied to
study the interactions of polyatomic molecules, and has been
investigated [84, 85] together with many other variants. Cu-
riously, to the best of our knowledge, no one seems to have
realised the reason for the success of this model, nor why the
constant γ is always less than one. Before going on to the nu-
merical details of this model we will discuss both these issues
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as we will be led to a better understanding of the model and
the exchange-repulsion energies.

First of all we should realise that although the exchange-
repulsion and penetration energies are the short-range parts of
the interaction energy, these energies result from the overlap
of the density tails of the interacting densities. That is, we
must consider the asymptotic form of the interacting densities
for an atomic system [86]:

ρ(r) = Cr2βe−2αr, (17)

where, with I as the vertical ionization energy, and Z the
atomic number, we have α =

√
2I and β = −1 + Q/α, where

for an atom with nuclear charge +Z and electronic charge −N,
Q = Z − N + 1. Both I and r here are in atomic units. In
principle, the asymptotic form of the density overlap integral
can be obtained by using this density in eq. (16), but the ex-
act integral is not important. Instead we can use the result of
Nyeland & Toennies [87] who evaluated eq. (16) using only
the exponential term in eq. (17) to get

S ρ(R) = P(R)e−2αR, (18)

where P(R) is a low-order polynomial in the internuclear sep-
aration R. For identical densities P(R) = (4/3)α2R2 +2αR+1,
and for the more general case of different densities, the results
of Rosen[88] may be used to obtain a closed-form expression
for P(R) that is now not a low order polynomial, but also in-
cludes exponential terms. Since S ρ is not a pure exponential,
Nyeland & Toennies argue that the exchange-repulsion energy
should be proportional to S ρ(R)/R2, but this assumes that the
exchange-repulsion itself is a pure exponential, which is not
the case.

The asymptotic form of the exchange-repulsion energy has
been worked out by Smirnov & Chibisov [89] using the
surface-integral approach and later, with a corrected proof, by
Andreev [90]. Their result is

E(1)
exch = KR(7/2α)−1e−2αR (19)

where K is an angular momentum-dependent constant [91].
We observe that:

• The exchange-repulsion energy is not a pure exponen-
tial, as is often assumed, but is better represented as an
exponential times a function of R. This has been empir-
ically verified by Zemke and Stwalley [92] using spec-
troscopic data for alkali diatomic molecules. Also, ac-
curate analytic potentials for small van der Waals com-
plexes have tended to use functional forms that include
a pre-exponential polynomial term [26–28]. The pref-
actor function in eq. (19) is not a polynomial, but it is
close to linear in R for relevant values of α and R.

• The exchange-repulsion energy has an asymptotic form
that is very similar to that of the density overlap,
eq. (18), but the prefactor is different. Consequently
we should not expect a direct proportionality between
the two, and a better form of the density-overlap model
might use

E(1)
exch(R) ≈ K(R)S ρ(R), (20)

where K(R) is a low-order polynomial in R.

• The exponents in the asymptotic forms of the density
overlap and the exchange–repulsion will be the same
only if the wavefunctions used to evaluate them are
the same. In general this will not be the case. While
the exchange–repulsion could be evaluated with elec-
tron correlation effects included, the density-overlap in-
tegrals are more typically evaluated using Hartree–Fock
densities. Therefore, the α in the exponent of eq. (18)
must be replaced by αHF = (−2εHOMO)1/2, where εHOMO
is the energy of the highest occupied molecular or-
bital from Hartree–Fock theory. In this case, there will
be a better agreement between the exchange–repulsion
energy and the density overlap if the exponents are
made the same by raising the latter by the power γ =

(−I/εHOMO)1/2 as is done in eq. (15). Now in Hartree–
Fock theory |εHOMO| > I, so γ is always less than unity,
and for the helium, neon and argon dimers we obtain
values between 0.99 and 0.97 in reasonable agreement
with the empirical results of Kim et al..

We will now use these observations to construct models for
the short-range energies.

Electron charge densities obtained from density functional
theory are exact, in principle. In practice, because of the now
well understood self-interaction problem with standard lo-
cal and semi-local exchange-correlation functionals, they tend
to be too diffuse. This can be corrected by applying a suit-
able asymptotic correction to the exchange-correlation poten-
tial [65, 93]. It is now usual to apply this correction in any
SAPT(DFT) calculation; without it, even energies that depend
on the unperturbed monomer densities, like the electrostatic
energy, can be significantly in error. With the asymptotic cor-
rection, the asymptotic form of the density given by eq. (17)
is enforced, and consequently γ = 1 in eq. (15).

This has important consequences for multi-atom systems
where we use the overlap model to partition E(1)

exch into contri-
butions from pairs of atoms. This idea goes back to the work
of Mitchell & Price [85] and begins with a partitioning of the
densities into spatially localised contributions that will usually
be centered on the atomic locations. If we can write

ρA(r) =
∑

a

ρA
a (r), (21)

where ρA
a is the partitioned density centered on (atomic) site

a, and likewise for ρB, then from eqs. (15) and 16 we get

E(1)
exch(R) ≈

∑
ab

K
∫

ρA
a (r)ρB

b (r)dr

≈
∑
ab

KS ab
ρ (R), (22)

where S ab
ρ is the site–site density overlap. This expression may

be generalised by introducing a site-pair dependence on K as
follows:

E(1)
exch(R) ≈

∑
ab

KabS ab
ρ (R) =

∑
ab

E(1)
exch[ab](R), (23)
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where E(1)
exch[ab] is the first-order exchange contribution as-

signed to site-pair (ab). This is the distributed density over-
lap model. This is essentially the result obtained by Mitchell
& Price but in their case, because of their use of electronic
densities from Hartree–Fock theory, they had γ < 1 and so
obtained an expression for the partitioning that is necessarily
approximate.

There are a few important issues about the overlap model
given in eq. (23):

• The model was originally formulated for the first-order
exchange repulsion only, but, as the other short-range
energy contributions are also roughly proportional to
E(1)

exch, we may use the density-overlap model more gen-
erally for all of the short-range energy, E(1−∞)

sr . Hence-
forth we will use the model in this general sense, that is,
to model the short-range energy, Esr, however we may
choose to define it.

• The model allows us to partition the short-range en-
ergy into terms associated with pairs of sites. With this
partitioning, we may fit an analytical potential to indi-
vidual site pairs rather than fit the sum of exponential
terms given in eq. (11). The fit to each individual term
Vsr[ab] (eq. (5)) is numerically better defined and may
be achieved with relative ease.

• This is an approximation: Since the density overlap
model cannot exactly model the short-range energy, we
have Esr(R) ,

∑
a,b Esr[ab](R). That is, there is a resid-

ual error that originates from the original ansatz given
in eq. (15).

• Although the residual error is small compared with Esr,
it needs to be accounted for to achieve an accurate
fit, particularly as the error may be a non-negligible
fraction of the total interaction energy, which is gen-
erally much smaller in magnitude than Esr. This may
be achieved by constrained relaxation of the final short-
range potential Vsr =

∑
ab Vsr[ab].

VII. ISA-BASED DISTRIBUTED DENSITY OVERLAP

Formally, the distributed density overlap integrals, S ab
ρ (R),

defined through eqns. (21) and (23), are particularly straight-
forward to evaluate using the BS-ISA algorithm [47] as this
algorithm provides basis-space expansions for the atomic den-
sities ρA

a (r). However, basis-set limitations mean that while the
BS-ISA algorithm results in fairly well-defined atomic shape-
functions, the atomic densities are not well described in the
region of the atomic density tails, where the density can even
attain small negative values. This not only leads to distributed
density overlap integrals that can be negative, but also re-
sults in a relatively poor correlation between the first-order ex-
change energies and the density overlap integrals. This prob-
lem may be alleviated using better basis sets for the atomic
expansions, but we have not as yet explored this option.

An alternative is to evaluate S ab
ρ (R) using the atomic densi-

ties defined as

ρA
a (r) = ρA(r) ×

w̃a(r)∑
a′ w̃a′ (r)

, (24)

where w̃a is the tail-corrected shape-function for site a as de-
fined in Ref. 47 as a piece-wise function:

w̃a(r) =

wa(r) if |r| ≤ ra
0

wa
L(r) otherwise,

(25)

where wa(r) is the atomic shape-function that is the spherical
average of atomic density ρA

a (r), and the long-range form of
the shape-function is defined as wa

L(r) = Aa exp (−αa|r − Ra|),
where ra

0 is a cutoff distance, and the constants in wa
L are de-

fined to enforce continuity and charge-conservation. [47] The
shape-functions may be thought of as pro-atomic densities
that encode the ionic state of the atom in its molecular en-
vironment. This ionic state is not fixed and is instead deter-
mined self-consistently through the ISA iterations [46]. While
the atomic shape-functions are spherically symmetrical, the
atomic densities are not. Now, the distributed density overlap
integral is defined as

S ab
ρ (R) =

∫ (
ρA(r)

w̃a(r)∑
a′ w̃a′ (r)

) (
ρB(r)

w̃b(r)∑
b′ w̃b′ (r)

)
dr. (26)

Due to the piece-wise nature of w̃a, this integral must be eval-
uated numerically using a suitable atom-centered integration
grid. Using techniques described by us earlier [47], we evalu-
ate the terms in eq. (26) in O(N0) computational effort. This is
done by defining local neighbourhoods, Na and Nb, for sites
a and b. These neighbourhoods are based on the dimer con-
figuration, so Na may include sites that belong to monomer
B, and vice versa forNb. The neighbourhoods are usually de-
fined using an overlap criterion that naturally takes the basis
set used into account with basis sets containing more diffuse
functions resulting in larger neighbourhoods. The integration
grid, and various terms in the integral S ab

ρ are then evaluated
using sites in the intersection set Na ∩ Nb. This intersection
set may be null for monomers that are sufficiently far apart. In
this manner the density overlap integrals are calculated with
linear effort.

VIII. POTENTIALS FOR PYRIDINE

We now apply the methodology presented above to develop
a set of many-body potentials for pyridine. In a study such
as this is, it is important to use a system that simultaneously
presents a challenge and also allows tests to be performed to
validate the method sufficiently. We have chosen to use the
pyridine dimer as our example as it is small enough to permit
accurate interaction energy calculations using SAPT(DFT) on
as dense a grid as is needed, but large enough to exhibit a
varied and complex potential energy surface (PES) with—as
we shall see below—eight distinct minima. Additionally, the
pyridine molecule has a sizeable dipole moment and polariz-
ability, so polarization effects are expected to be important,
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and, as we shall see, the two-body charge-transfer, or charge-
delocalisation [42], energy is also significant. Finally, from
the crystallographic studies by Price and co-workers [94] it is
known that the crystal energy landscape of this molecule is
complex and poses a significant challenge for seemingly ac-
curate empirical potentials. While we will not attempt to use
the results of this study in a crystal structure prediction, we
intend to perform this test in later work.

IX. SHORT-RANGE FIT

The distributed density-overlap fits were performed using
the CamCASP program using the Gaussian/Log weighting
scheme [95] in which wGL(e) = exp(−α(ln(e/E0))2), where
α = 1/ ln 10 and E0 = 100 kJ mol−1. Here the parameter E0
sets the energy-scale for the fit, and it is usually chosen to be
some large multiple of the absolute global minimum dimer en-
ergy so as to obtain a reliable fit to the repulsive wall. The fits
to individual site–site potentials Vsr[ab] were performed with
the Orient program using the same Gaussian/Log weighting
scheme.

All relaxation steps were performed using the Orient pro-
gram using the Boltzmann weighting function

wBol(e) =

exp ((elow − e)/E0) for e > elow

1.0 otherwise.
(27)

Here elow is typically set to the smallest energy in the data set
and the energy-scale for the fit is set by E0 = 40 kJ mol−1

to increase the weight to lower energies. We used elow = 0
kJ mol−1 for the relaxation of the repulsive energies, and −10
kJ mol−1 in the final relaxation step involving the total inter-
action model.

A. Fitting strategy and atomic shape

We set out the fitting strategy for the short-range part of
the potential in some detail in §III above. In this multi-stage
approach we first fit to E(1)

sr calculated on the dense, pseudo-
random set of 3515 dimers in Dataset(0). This is done via the
distributed density-overlap model which allows us to partition
E(1)

sr into contributions from pairs of sites, and fit the terms in
the potential for each atom-pair individually. However, if the
atoms are close to spherical, as is the case for the ISA atom
densities, the atom-pair shape function ρab(Ωab) that appears
in the potential (see eq. (5)) may be written to a good approxi-
mation as the sum of shape functions for the interacting atoms
(see ch. 12 in ref. 20)

ρab(Ωab) ≈ ρa(Ωa) + ρb(Ωb). (28)

Here Ωa is a generalised angular coordinate that describes the
direction of the vector from site a to site b in the local coor-
dinate system of site a, and likewise for Ωb, and ρa and ρb
are the atomic shape functions for atoms a and b. The atomic
shape functions for all atoms of a given type should be the
same.

The shape-function additivity is observed in the first stage
of the fitting when the terms in V (1)

sr [ab] are fitted individually
via the density-overlap model, but it is not exact, probably
in part because of grid sampling variability around the sites.
It can however be exactly enforced in the next stage when
the short-range parameters are collectively relaxed in a con-
strained manner to the E(1)

sr energies in Dataset(1). We find it
best to perform this relaxation iteratively, with only those pa-
rameters associated with a particular subset of sites relaxed at
each step. With this approach the constrained relaxation can
be performed rapidly, in a computationally efficient manner.
At each step, shape-function additivity is imposed by using
pinning (prior) values for the parameters from the averaged
shape-function parameters from the previous step.

In a similar manner, we may relax the resulting potential
parameters to include effects from second and higher orders
in the interaction operator. However, there is no reason to ex-
pect the shape-function additivity to hold at this stage, as the
higher-order short-range effect, which is predominantly the
charge-transfer (or charge-delocalisation) energy, depends on
the pair of atoms involved in a non-additive manner. In the ab-
sence of additivity, the number of independent parameters in
the potential would depend quadratically on the number of in-
teracting atoms, but fortunately, as we will demonstrate below,
the higher-order correction can be treated as isotropic. That is,
the atom-pair shape function now becomes

ρab(Ωab) = ρa(Ωa) + ρb(Ωb) − δab, (29)

where δab is the isotropic higher-order correction.
We will now examine the effectiveness of this strategy in

obtaining a series of fits to the short-range potential for the
pyridine dimer.

B. Fitting using the distributed density overlap model

In principle, it is straightforward to use the distributed
density-overlap model described above. We have used this
approach[31, 32], as have others [85, 87, 95, 96], with a rea-
sonable degree of success. The problem lies in the choice of
density partitioning method. There is no unique way of de-
composing a density into atom-like domains, yet the tacit as-
sumption of the distributed density-overlap model is that the
partitioned density ρA

a is well-behaved and may be used to ex-
tract properties such as size and shape of the atom located on
site a. If this were not the case, then the potential parameters
extracted from the model would be meaningless, and indeed,
a fit to eq. (5) could even be so poor as to be useless. In the
past we have used a density-fitting-based scheme to partition
the density [31]. This works by expressing the electronic den-
sity as a single sum over an auxiliary basis set with functions
located on the atomic nuclei, which then naturally suggests a
partitioning scheme:

ρ(r) =
∑

k

dkχk(r)

=
∑

a

∑
k∈a

dkχk(r) =
∑

a

ρa(r). (30)
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Here the dk are expansion coefficients and χk are Gaussian
basis functions from the auxiliary basis. We have previously
argued [48] that since the auxiliary basis sets are optimised on
free atoms, or homo-diatoms, they may be used in the above
manner to partition the molecular density into atom-like parts.
This does seem to work, but only if small enough auxiliary ba-
sis sets are used, and even then, the resulting atomic domains
may be meaningless.

In Figure 6 we present the density-fitting-based (DF-based)
atomic isodensity surfaces for the atoms in the pyridine
molecule. The total electronic density of pyridine was ob-
tained with the d-aug-cc-pVTZ basis using the PBE0/AC
functional. We had to use the relatively less diffuse def-
TZVPP basis for the density-fitting as results with any of the
more diffuse RIMP2 auxiliary basis sets were so full of arti-
facts associated with the basis set over-completeness as to lead
to completely nonsensical results for the density partition-
ing. However, even with the relatively small def-TZVPP ba-
sis, the DF-based density partitioning results in carbon atoms
with rather unusual shapes. If this partitioning method is used
to construct a short-range potential using the density-overlap
model as described above, we obtain potentials with spurious
terms in the atomic anisotropies and overall very poor fit qual-
ities.

In contrast, we can see in Figure 7 that the ISA-based
atomic shapes obtained using the algorithm described in §VII
are very well-behaved. These have been obtained with the sig-
nificantly larger aug-cc-pVQZ/ISA-set2 fitting basis and show
none of the artifacts seen with the DF-based scheme. Addi-
tionally, the ISA-based atoms do not show any significant dif-
ferences in shape when other basis sets are used, as long as
these are large and diffuse enough. This is a significant result:
if we wish the atomic shapes to be, in some sense, universal
or transferable (properties we will not explore in this paper),
we must be able to calculate the atomic shapes with an algo-
rithm that possesses a well-defined basis-set limit. The ISA
approach is not the only such method, but for reasons dis-
cussed in the Introduction and in ref. 47, it is one of the few
partitioning methods that has desirable numerical properties
while satisfying physical and chemical expectations.

In Figure 8 we present the ISA-atomic shapes viewed in
the molecular plane, along the bond axis, or, in the case of
the nitrogen atom, along the N···C3 axis. In order to high-
light the atomic anisotropies we have superimposed on the
10−3 a.u. isodensity surfaces some contours showing the in-
tersection with spheres centred on the atomic nuclei. These
contours clearly illustrate the shape symmetries of each of the
atoms. Also included in the figure are the important shape
anisotropies for these atoms. These have been calculated by
fitting E(1)

sr via the distributed overlap model using a set of lo-
cal axis frames located on the atomic centres with the x axis
pointing along and out of the bond, and the z axis perpendic-
ular to and pointing out of the plane of the molecule. During
the relaxation step in this fit we eliminate all terms that are
less than a threshold, taken to be 0.01 a.u. The picture that
emerges is remarkably simple and convincing:

• Nitrogen: The largest anisotropy term for the nitrogen
atom in pyridine is the 22c term that is associated with

N C1

C2 C3

H1 H2

H3

FIG. 6: The 10−3 a.u. iso-density surfaces of the density-fitting-based
‘atoms’ in pyridine. The pyridine density was computed using a d-
aug-cc-pVTZ basis, and the density-fitting was performed using the
TZVPP auxiliary basis. The colour coding indicates the anisotropic
component of the electrostatic potential on the surface arising from
ISA-based atomic multipoles located on the nuclei; that is, the atomic
charge contributions are not included. The scale used varies from
−0.5 V (blue), through 0 V (white), to +0.5 V (red).
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N C1

C2 C3

H1 H2

H3

FIG. 7: The 10−3 a.u. iso-density surfaces of the ISA-based ‘atoms’
in pyridine. The pyridine density was computed using a d-aug-cc-
pVTZ basis and the ISA calculations were performed using the aug-
cc-pVQZ/ISA-set2 auxiliary basis set. Colour coding as described in
Figure 6.

the lone pair. Additionally one may include the 11c
and 20 terms on the nitrogen atoms, though these are
smaller. All other terms are negligible.

• Carbon: The 20 term associated with the pz orbitals is
the dominant source of anisotropy on all carbon atoms.
Of the other symmetry-allowed terms, the 11c term as-
sociated with the C–H bond is relatively strong. The 22c
terms are present, but small. Finally, C1 and C2 contain
11s terms due to the proximity of the N atom. These
terms describe the in-plane distortion of the C1/C2 den-
sities due to N.

• Hydrogen: We have limited all hydrogen atoms to rank
1 terms only. All hydrogen atoms possess a 11c term to
describe the electronic distortion along the C–H bond
and, both H1 and H2 additionally have 11s terms.

We have developed three models for the short-range terms:
srModel(1) contains only isotropic terms, in srModel(2) we
have included the 22c anisotropy term on the nitrogen atom,
and in srModel(3) we have used all the anisotropy terms
shown in Figure 8. In all three models, the hardness param-
eters αab in eq. (5) were kept isotropic. The constrained relax-
ation was performed using eq. (12) with constraint strength
parameters ci chosen to be 0.1 for the isotropic parameters
and 1.0 for the anisotropic terms in the ρab(Ω) expansions.
This choice was made empirically on the basis that the appro-
priate parameters were those that when further reduced did
not result in any appreciable improvement in the fit quality.
The distributed density-overlap fits were performed using the
CamCASP program, and the fits to individual site–site poten-
tials Vsr[ab] were performed using the Orient program. The
weighting schemes used in these fits are described in §IV. The
relaxation step was also performed using the Orient program
but this time using the Boltzmann weighting function as de-
scribed in §IV. The scatter plots of these models at various
stages in the fitting process are shown in Figure 9. Weighted
r.m.s. errors at the final stage are 1.03, 0.90, and 0.61 kJ mol−1

for models 1, 2 and 3, respectively. These uncertainties are
less than our target of 1 kJ mol−1 for all three models, but the
performance of srModel(3) is quite remarkable, with errors
less than or close to 1 kJ mol−1 for energies as large as 100
kJ mol−1.

C. Infinite-order charge transfer (delocalisation) energy

The infinite-order charge-transfer energy is the dominant
short-range contribution at second and higher orders in the
intermolecular interaction operator. While we can use regu-
larised SAPT(DFT) [42, 75] to determine the second-order
charge-transfer energy, the contributions from higher orders
cannot, at present, be computed within the SAPT frame-
work. Unfortunately, where charge-transfer is important, these
higher-order effects appear to be too large to be ignored, so
we need to account for them, if only approximately. As it
turns out, the discussion of the infinite-order polarization in
§V B readily suggests an approximation. If we argue that the
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N: 11c,20,22c C1: 11c,11s,20,22c

C2: 11c,11s,20,22c C3: 11c,20,22c

H1: 11c,11s H2: 11c,11s

H3: 11c

FIG. 8: Along-the-bond views of the ISA-based ‘atoms’ in pyri-
dine. Here we illustrate the anisotropy of the atom shapes by con-
tours showing the intersections with spherical surfaces centred at
the atomic nuclei. The dominant anisotropy terms for each atom are
listed for local axis frameworks with the x axis pointing out of the
bond (out of the page) and the z axis normal to the plane of the
molecule.

0 20 40 60 80 100 120 140

E
(1)
exch + E

(1)
pen[ISA] / kJ mol−1

0

20

40

60

80

100

120

140

V
(1

)
sr

[M
od

el
]

/
kJ

m
ol
−

1

Density-Overlap Model

srModel(1) No Relax

srModel(1) Relaxed

0 20 40 60 80 100 120 140

E
(1)
exch + E

(1)
pen[ISA] / kJ mol−1

0

20

40

60

80

100

120

140

V
(1

)
sr

[M
od

el
]

/
kJ

m
ol
−

1

Density-Overlap Model

srModel(3) No Relax

srModel(3) Relaxed

FIG. 9: Performance of two of the short-range models fitted to E(1)
sr .

srModel(1) is fully isotropic and srModel(3) contains the anisotropy
terms described in the text and indicated in Figure 8. srModel(2)
results are only slightly better than those from srModel(1) and are
not shown. The black circles are results directly from the distributed
density-overlap model; the green plus signs are data obtained from
the model fitted to eq. (5) before relaxation, and the red plus signs
are the same after relaxation to E(1)

sr . The blue bar represents the ±1
kJ mol−1 range.

infinite-order induction energy is the sum of just the infinite-
order charge-transfer and polarization terms (i.e., assuming
that there are no cross terms present), then if we know any
two, we can compute the third. Here we approximate the
infinite-order induction energy as:

E(2−∞)
IND ≈ E(2)

IND + δHF
int (31)

and define the two-body infinite-order charge-transfer energy
to be

E(2−∞)
CT = E(2−∞)

IND − E(2−∞)
POL

≈ E(2)
IND + δHF

int − V (2−∞)
pol [DM]. (32)

While this expression is readily implemented, it has a draw-
back in that the definition depends on the type of polarization
model used.

In Figure 10 we have plotted the infinite-order charge-
transfer energy calculated using eq. (32) against the first-order
short-range energy E(1)

sr . First of all, at about 20% of E(1)
sr ,
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FIG. 10: The infinite-order charge delocalisation (charge-transfer)
energy plotted against the first-order short-range energy E(1)

sr . The
thin blue lines represent the ±1 kJ mol−1 limits.

E(2−∞)
CT is a significant contribution to the short-range energy

and it cannot be ignored. Second, while these two energies
are roughly proportional, there is a significant scatter, partic-
ularly at the larger charge-transfer energies. Nevertheless, the
scatter is rarely more than ±1 kJ mol−1. If we argue that the
charge-transfer contribution to the intermolecular interaction
energy arises from a tunneling process [42], then it is natu-
ral to assume that the tunneling probability will be roughly
proportional to the electron density overlap, but further work
needs to be done to see whether this holds for other systems.

We may include E(2−∞)
CT into our models for the short-range

energy by constrained relaxation of the parameters in the mod-
els already obtained for E(1)

sr , or we may exploit the approxi-
mate proportionality of E(1)

sr and E(2−∞)
CT and absorb the bulk of

the charge-transfer effects by scaling as follows. If we assume
a proportionality with constant k < 0:

E(2−∞)
CT ≈ kE(1)

sr ≈ kV (1)
sr , (33)

then we can include E(2−∞)
CT into the short-range energy model

by scaling it by (1 − k) yielding

V (1−∞)
sr ≈ (1 − k)V (1)

sr

≈ (1 − k)
∑
a,b

G exp [−αab(rab − ρab(Ωab))], (34)

then, re-writing 1 − k = exp [−αabδab], where δab = − ln(1 −
k)/αab, we get

V (1−∞)
sr =

∑
a,b

G exp [−αab(rab − (ρab(Ωab) − δab))]. (35)

That is, the isotropic atom-pair radii are reduced by δab by
the attractive effects of the charge delocalisation process. The
atom-pair shape-function ρab(Ωab) remains additive in the
sense of eq. (28), but there is an isotropic non-additive cor-
rection δab, as shown in eq. (29).

For the pyridine dimer we get k ≈ 0.16 (it varies slightly
with the type of polarization model used). Therefore the pair-
radius reduction is of the order 0.05 Bohr, which is small but

not negligible as it leads to an overall reduction in the inter-
molecular separation of a few tenths of a Bohr in some dimer
orientations. These effects may be expected to be larger in
more strongly hydrogen-bonded systems where the charge-
delocalisation is stronger.

The above scaling absorbs the bulk of the charge-transfer
energy into our short-range energy models. The remainder
may be included in a subsequent relaxation step, but we find
that this is not necessary as it is usually small, and in any case,
this and all other errors against the SAPT(DFT) reference en-
ergies will be accounted for in the final relaxation stage that
we describe next.

X. TOTAL ENERGY FITS: COMBINING THE TERMS

The analytic fits to the various components of the total in-
teraction energy model may be combined as appropriate, and
optionally relaxed, using constraints, to the total SAPT(DFT)
interaction energies calculated for a suitable set of dimer ge-
ometries. These models have been obtained with a significant
amount of data derived directly from the density and transi-
tion densities using various partitioning methods. The limited
amount of fitting has been largely restricted to the short-range
energy model, and even here, our approach ensures that the
parameters are well-defined and physically meaningful, with
little of the uncertainty usually associated with fits to sums of
exponentials. Further, the target residual error for each of the
models has been 0.5 to 1 kJ mol−1, and we have largely suc-
ceeded in achieving this target. Consequently, as we shall see,
these models may be combined without further relaxation to
produce reasonably accurate models for the total interaction
energy.

In this paper, we have reported the following models:

• Short-range: Three models have been obtained. sr-
Model(1) is fully isotropic; srModel(2) contains a 22c
anisotropy term on the nitrogen atoms; and srModel(3)
contains all the dominant anisotropy terms needed.
These short-range energy models include the first-order
exchange, the electrostatic penetration, and infinite-
order charge-transfer energies.

• Electrostatic: A rank 4 ISA-based distributed multipole
model.

• Polarization: Three distributed polarization models ob-
tained from the WSM procedure. The L1(iso) and L1
models include rank 1 polarizabilities, with the former
being isotropic, and the L2 model includes terms to rank
2 on the heavy atoms. All these models are damped. The
many-body contributions are obtained through the po-
larization models. We will consider only the L1 model
in this paper.

• Dispersion: Two damped isotropic dispersion models
have been obtained. The C6(iso) model contains only
(scaled) isotropic C6 coefficients for all pairs of atoms.
And the C12(iso) model consists of isotropic terms to
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C12 between pairs of heavy atoms, isotropic terms to
C10 between any hydrogen atom and a heavy atom,
and only isotropic C6 terms between pairs of hydrogen
atoms. As the C12 terms in the C12(iso) are found to
have a minimal effect on the quality of the model, we
will instead use the equivalent C10(iso) in the remain-
der of this work. All models are damped. At present we
do not include any three-body dispersion non-additivity.

This gives us 18 possible ways of combining these models
into total interaction energy potentials. Of these, we explore
three combinations in this paper:

• Model(1): Isotropic short-range model, with rank 4
ISA-DMA, L1 polarizability model, and C10(iso) dis-
persion model.

• Model(2): Short-range model containing isotropic
terms on all atoms and an additional 22c term on the
nitrogen atoms, with rank 4 ISA-DMA, L1 polarizabil-
ity model, and C10(iso) dispersion model.

• Model(3): Anisotropic short-range model, combined
with rank 4 ISA-DMA, L1 polarizability model, and
C10(iso) dispersion model.

These models differ only in their description of the short-range
repulsion.

In Table I we report r.m.s. errors made by these models be-
fore relaxation against the SAPT(DFT) interaction energies.
The r.m.s. errors are remarkably small at this stage, with mod-
els (1) and (3) exhibiting errors less than 1 kJ mol−1 for the
most energetically important dimers. Surprisingly, Model(2)
fares slightly worse than the simpler Model(1) with r.m.s. er-
rors of 1.5 kJ mol−1 in this energy range. All models fare rea-
sonably well for the positive energy dimers, with r.m.s. errors
between 1.8 to 2.9 kJ mol−1.

The models may be improved by constrained relaxation
to SAPT(DFT) total interaction energies. We initially re-
laxed the models against energies from the random dimers in
Dataset(1), but this led to a reduction in the quality of the fits
for the test set of low-energy dimers. It appears that while the
random dimers are suitable for an unbiased parametrization
of the individual components of the model, they are not suit-
able for relaxing the sum of these components. The principal
reason for this seems to be that the random dimer set does
not contain low-energy dimers, as can be seen in Figure 11.
Consequently, relaxing to this set causes the models to repre-
sent these relatively high-energy dimers better at the cost of
the more physically important low-energy configurations. Be-
cause of this, we have performed the relaxation of the models
using both Dataset(1) and Dataset(2).

The constrained relaxation was performed using the Ori-
ent program with the weighting scheme described in §IV.
Constraints were imposed using eq. (12) with tight constraint
strength parameters ci chosen to be 1.0 for the isotropic pa-
rameters and the C8 and C10 parameters. The C6 terms were
kept unaltered so as to preserve the long-range dispersion in-
teraction. The anisotropy parameters were not allowed to vary.
Rather than relax all parameters simultaneously, the relaxation

was performed in stages, with parameters associated with par-
ticular sites allowed to vary in each stage. This procedure,
though computationally efficient, needed to be iterated to en-
sure that the relaxation was adequate.

In Table I we also report r.m.s. errors made by the relaxed
models. After relaxation, all three models show r.m.s. errors
of only 0.5 to 0.6 kJ mol−1 for the most strongly bound dimers,
and somewhat larger errors for the higher energy dimers. Per-
haps unsurprisingly, Model(3) fares best, with r.m.s. errors
less than 1 kJ mol−1 for all dimers with energies less than or
equal to 20 kJ mol−1.

In Figure 11 we display scatter plots of the interaction en-
ergies calculated with Model(3) against SAPT(DFT) energies
both before and after relaxation. The excellent performance
of the unrelaxed Model(3) is evident. At no stage in the de-
velopment of Model(3) were the total interaction energies
from Dataset(1) included; rather we only used the charge-
transfer energies in the development of this model. Addition-
ally, none of the low-energy dimers in Dataset(2) were used
in any way in the construction of Model(3), yet these ener-
gies are accurately predicted by the unrelaxed Model(3), with
very few outliers. This model may be improved by relaxing
it to the dimer energies in both data sets. This relaxation was
performed with the anisotropic terms in the potential frozen
and only the isotropic parameters, including the low-ranking
dispersion coefficient, allowed to vary with tight anchors im-
posed (see the SI for additional information). As seen in Fig-
ure 11, this relaxed model exhibits an excellent correlation
with the SAPT(DFT) reference energies, and has fewer low
energy outliers compared with the unrelaxed model. In the
remainder of this paper by ‘Model(3)’ we will refer to this
relaxed model.

Similar figures for Model(1) and Model(2) can be found
in the SI. As may be expected from the r.m.s. errors reported
in Table I, the performance of the unrelaxed Model(1) is ex-
cellent given the simplicity of the model, but the unrelaxed
Model(2) shows somewhat larger errors for the most strongly
bound dimers. However, both of these models improve con-
siderably on relaxation.

The quality of the relaxed potentials can be assessed using
Dataset(3) which was not used at any point in the model de-
velopment process. In Table I we report r.m.s. errors made by
the models (before and after relaxation) against Dataset(3).
We see that the errors made are largely in accordance with
those made against Dataset(1) and Dataset(2), indicating that
the models are predictive. In particular, the good performance
of the un-relaxed models, particularly for the un-relaxed
Model(3), suggests that the algorithm we have described is
indeed robust. The comparison with Dataset(3) indicates that
the relaxed models show somewhat larger inaccuracies in the
repulsive configurations, particularly when compared to the
coresponding un-relaxed models. However, these errors are
not very large, and may be an acceptable price to pay for the
increased accuracy in the low-energy dimer configurations.

In Table I we also report r.m.s. errors for a model function-
ally identical to Model(3), but created using the DF-AIM ap-
proach and with DMA4 multipoles. Apart from these two dif-
ferences, this model, termed Model(3)-DF-DMA4, has been
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FIG. 11: The total interaction energy models for Model(3). The upper
panel shows energies from Model(3) before relaxation to the dimers
in Dataset(1) and Dataset(2), and the lower panel shows model ener-
gies after relaxation. In both cases these energies are plotted against
the total SAPT(DFT) interaction energy E(1−∞)

int . The blue bar repre-
sents the ±1 kJ mol−1 deviation from SAPT(DFT).

created in an identical manner to the others reported in this
paper. This is the kind of model that might have been cre-
ated using the approach we have described in an earlier paper
on atom–atom potentials[40]. We see that across the −20 : 20
kJ mol−1 energy range the r.m.s. errors made by this model are
twice as large as those from Model(3). This is mainly a con-
sequence of the unphysical AIM atoms that result from the
DF-AIM approach that are shown in Figure 6. This approach
results in the wrong atomic anisotropies that the fit cannot cor-
rect with the limited amount of SAPT(DFT) data in Datasets
(1) and (2). This is an inevitable consequence of the Bayes-
like approach we have adopted: the role of the first step in the
fitting process — the first-order fits through the distributed
density overlap model — is to determine prior values for the
fitting parameters (see §III). The subsequent relaxation steps
merely refine these prior values. However, if the prior values
are very poor, as they are with the DF-AIM approach, then
we require a considerable amount of data to move them to the
correct values. This is not needed with the ISA-based AIM
approach, and demonstrates the superiority of this method.

XI. RESULTS

A. Minima

We have used the basin-hopping algorithm (see Ref. 97 for
a review) as implemented in the Orient program to search for
stable dimers on the potential energy surfaces. In contrast to
the rather simple PES of the benzene dimer [30, 32] which
supports only three minima, we have found eight minima for
the pyridine dimer. The minimum-energy structures, which
are illustrated in Figure 13, may be classified according to
their bonding:

• Hydrogen-bonded: These include Hb1, Hb2 and Hb3.
Of these, Hb1 is doubly hydrogen-bonded and has
been found in a DFT-D (BLYP+Grimme D1 correc-
tion) search [98] and has also been investigated at the
CCSD(T)/CBS level of theory [99] to be around −15.5
kJ mol−1 (estimated from Figure 5 in Ref. 99). This
compares well with our SAPT(DFT) energy of −16.6
kJ mol−1. The Hb2 and Hb3 structures do not appear to
have been reported in prior literature.

• Stacked: The S1 and S2 minima are the stacked dimers
which are largely dispersion-bound. Both these struc-
tures have been found in the DFT-D search, however
we see no evidence of the two other stacked structures
reported in that study.

• T-shaped: None of these minimum energy dimers are
exactly T-shaped, but the T1 and T2 minima are nearly
so, and the bT minimum is a very bent-T-shaped struc-
ture. The bT structure is similar to one of the T-shaped
structures found in the DFT+D search. We do not find
the ‘T-shaped 1’ structure in the DFT+D search by Pia-
cenza and Grimme [98].

The minimum configurations are displayed in Figure 13 and
their energies are reported in Table II and Figure 14. For
comparison, we have calculated SAPT(DFT) interaction en-
ergies for the dimer configurations obtained from the relaxed
Model(3) PES. Not all of the models support all the minima.
Model(2) does not support the Hb3 minimum, which instead
relaxes to the T1 structure on this model PES. The relaxed
Model(3)-DF-DMA4 supports only five of the eight minima,
and two of those (S2 and T1) differ in structure from the corre-
sponding structures on the ISA-based surfaces: in the S2 struc-
ture on this surface the molecules are not parallel, and the T1
is bent. The three missing structures relax to either the Hb2
or the T1 structures. The Hb2 minimum is the global energy
minimum on this PES.

For Model(3) we have reported energies for the minima on
both the unrelaxed and relaxed models. These largest energy
differences in the minima on these two PESs differ by just over
1.1 kJ mol−1 (just over 7% of the interaction energy). This is a
remarkable result as it indicates that the unrelaxed models can
be predictive without the need for fitting to the SAPT(DFT)
total interaction energies, in particular, no information about
total interaction energies of the stable, low-energy dimers was
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TABLE I: R.m.s. errors (kJ mol−1) for the total interaction energy models for the pyridine dimer. Errors are calculated against SAPT(DFT)
total interaction energies, and are reported both for the models relaxed to the set of SAPT(DFT) energies in Dataset(1) and Dataset(2), and
for the models obtained by combining the different terms in the potential as described in the text. Additionally we report r.m.s. errors agains
Dataset(3) which was not used at any stage in the potential development process. The errors for these unrelaxed models are reported in
parantheses. Model(3)-DF-DMA denotes a model functionally similar to Model(3) but created using the DF-AIM approach with multipoles
from the DMA4 model.

Energy range Model(1) Model(2) Model(3) Model(3)-DF-DMA4

R.m.s. errors against Dataset(1) and Dataset(2):
E ≤ −10 0.59 (1.26) 0.59 (1.22) 0.53 (1.08) 0.97 (1.85)

−10 < E ≤ 0 0.80 (0.99) 0.72 (0.95) 0.56 (0.70) 1.21 (1.39)
0 < E ≤ 20 1.69 (2.71) 1.19 (2.58) 0.95 (1.53) 2.17 (3.16)

R.m.s. errors against Dataset(3):
E ≤ −10 0.75 (0.66) 0.57 (0.51) 0.33 (0.45) 1.22 (1.53)

−10 < E ≤ 0 0.65 (0.69) 0.61 (0.65) 0.37 (0.42) 0.87 (0.93)
0 < E ≤ 20 1.89 (1.58) 1.76 (1.54) 1.66 (1.23) 2.81 (2.59)

used in creating the three unrelaxed models. Further, the sim-
ilarity of the relaxed and unrelaxed models suggests that the
procedure used here appears to be free of artifacts usually in-
troduced by fitting procedures, and is robust to the inclusion
of additional data. However this data needs to be biased to low
energy dimers, as has been noted above. We will explore this
issue in a forthcoming paper [52].

The agreement between the ISA-based models (relaxed and
unrelaxed) is made even clearer in Figure 12 where we dis-
play PES sections at representative minima. The agreement
between SAPT(DFT) and all models — including the unre-
laxed Model(3) — for the minima is generally very good, both
in the overall shape of the PESs and the location and depth of
the radial minimum. Plots for the remainder of the minima can
be found in the SI.

In Table III we report the lowest harmonic vibrational fre-
quencies at these minima. These frequencies give us an indi-
cation of how different the shapes of the three PESs are at the
stable minima configurations. There is generally a good agree-
ment between the minima on all ISA-based models, but the
frequencies seem to vary more with the models than the cor-
responding energies. This may reflect the importance of the
anisotropy in determining the shape of the PES. This agree-
ment, though imperfect, is reassuring as it gives us some con-
fidence that the minima we observe are real and not artifacts
of the fitting function used. The largest differences are be-
tween the ISA-based models and the DF-based Model(3)-DF-
DMA4. The lowest vibrational frequencies of the Hb1 and
S1 minima are only half as large as the corresponding fre-
quencies for Model(3), indicating that the shape of the PES
of Model(3)-DF-DMA4 differs from that of Model(3) in the
regions of these minima. This should not be a surprise given
the rather significant differences in the AIM shapes from the
ISA- and DF-based density partitioning schemes as shown in
Figures 6 and 7.

B. Second virial coefficients

The second pressure virial coefficient B(T ) represents a
necessary, but not sufficient, test of the quality of the two-
body PES. As the virial coefficients average over the PES, it
is possible to construct an infinity of PESs that yield the cor-
rect values of B(T ) in a finite temperature range. Nevertheless,
it is important that any model PES reproduces the experimen-
tal values as a minimum requirement. In Figure 15 we display
second virial coefficients calculated for the pyridine dimer. We
have calculated B(T ) at a range of temperatures using the Ori-
ent program. Only the Classical results are presented as the
quantum corrections were found to be insignificant over the
range of temperatures reported here. We used a stochastic inte-
gration sampling algorithm with 102 radial steps and 262,144
dimer orientations in order to integrate B(T ) sufficiently accu-
rately. From Figure 15 we see that all three models show good
agreement with the experimental data of Andon et al. [101]
and Cox & Andon [102]. As the models all slightly overes-
timate B(T ) across the temperature range of the figure, they
may, on the whole, be somewhat too attractive. We will return
to this issue later in this paper.

XII. ANALYSIS & DISCUSSION

A. Polarization damping revisited

In developing the damping model for our polarizability
models in §V B we recognised an uncertainty in our choice
for damping model. This arose because the damping parame-
ter βpol depends on the choice of dimer configurations used to
determine it. Here we re-examine this issue by assessing the
damping models against data obtained at the eight minimum
energy dimer orientations at various separations. In Figure 16
we compare the second-order polarization energies from the
polarization models described in §V B with second-order po-
larization energies from regularised SAPT(DFT), E(2)

POL, It
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TABLE II: Interaction energies (kJ mol−1) of the pyridine dimers at the energy minima reported in Figure 13. The SAPT(DFT) reference
energies have been calculated at the dimer geometries obtained on the relaxed Model(3) PES. The energies reported for all models are for the
stationary points on the model PES, therefore the dimer geometries at which the energies are evaluated will depend on the model and will
differ from the geometries used to obtain the SAPT(DFT) reference energies. Where a structure is not supported as a minimum we report in
parentheses the structure it relaxes into. Thus Model(2) does not support the Hb3 structure which instead relaxes to the T1 minimum on this
PES. Structures on the Model(3)-DF-DMA4 surfaces that are only approximately the same as those on the other surfaces are indicated by an
asterisk.

Minimum SAPT(DFT) Model(1) Model(2) Model(3) Model(3)-DF-DMA4
Relaxed Relaxed No Relax Relaxed No Relax Relaxed

Hb1 −16.67 −16.11 −16.00 −17.28 −16.37 −14.38 −15.04
S1 −16.22 −15.64 −15.55 −14.54 −15.61 −13.60∗ −15.46
S2 −15.45 −15.38 −15.38 −14.17 −15.35 −12.71∗ −14.42∗

T1 −14.57 −14.54 −14.73 −14.65 −15.02 −14.63 −14.84∗

T2 −14.70 −14.54 −14.69 −14.68 −14.92 (Hb2) (Hb2)
Hb2 −14.70 −15.03 −14.65 −14.57 −14.76 −15.19 −15.61
bT −14.01 −14.00 −14.12 −13.97 −14.25 (Hb2) (Hb2)

Hb3 −13.84 −14.60 (T1) −13.88 −14.08 −14.00 (T1∗)

TABLE III: Lowest harmonic vibrational frequencies for the minima on the relaxed model PESs. For Model(3) we also include data for the
unrelaxed version of this model. Model(2) does not support the Hb3 minimum. All frequencies are reported in cm−1.

Minimum Model(1) Model(2) Model(3) Model(3)-DF-DMA4
Relaxed Relaxed No Relax Relaxed No Relax Relaxed

Hb1 15.96 12.76 15.79 15.08 7.01 7.70
S1 6.04 3.83 4.79 6.69 1.94 3.42
S2 9.99 10.53 8.98 11.24 9.60 11.81
T1 3.74 4.45 9.57 6.62 5.37 8.22
T2 1.94 3.89 7.38 6.07 — —

Hb2 12.05 9.94 12.15 12.19 11.92 10.91
bT 5.55 7.43 3.13 6.28 — —

Hb3 12.07 — 11.36 10.88 6.88 —

should be apparent that while our choices for the damp-
ing models are reasonable, with errors typically less than 1
kJ mol−1 for the attractive dimers, there is a systematic over-
damping, with the polarization energies of some (repulsive
energy) dimers underestimated by as much as 2.5 kJ mol−1.
This problem can be largely remedied by increasing the value
of βpol. In the same figure we also display polarization en-
ergies calculated with the anisotropic L2 polarization model
with βpol = 1.0 a.u. This small increase causes a significant
improvement to the match between the model and E(2)

POL.

In this manner, we are able to determine a new set of mod-
els with the appropriate polarization damping chosen self-
consistently. As we emphasised in §V B, the choice of βpol
does not affect the quality of the two-body potential. Indeed,
Model(3) with this change to the damping is nearly identical
in every respect to the original model. The effects will how-
ever be manifest in the many-body polarization energies. We
are currently investigating this issue.

B. Multipole model rank reduction

Our simplest model, Model(1), contains anisotropic terms
only in the ISA-DMA multipole and the polarization mod-
els. In §V A we have argued that the ISA-DMA model shows
better convergence properties than the usual DMA procedure
of Stone [103]. Based on that discussion and the results pre-
sented in Figure 1, we may ask whether we can truncate the
rank of the ISA-DMA model without incurring a significant
loss in accuracy. In Figure 17 we display interaction energy
profiles for Model(1) using the ISA-DMA model at various
ranks. As before, these calculations have been performed at
two representative dimer orientations: Hb1 and S1. At the
doubly hydrogen-bonded Hb1 orientation there is no apprecia-
ble change on reducing rank to l = 3, but any further reduction
results in a significant change in the PES with the interaction
energy getting systematically smaller (in magnitude). At the
dispersion-bound S1 orientation there is almost no change to
the model when the rank of the multipole expansion is reduced
all the way to l = 0 (charges only). This is perhaps to be ex-
pected as the electrostatic interaction is relatively insignificant
for the S1 (and S2) complexes. What is surprising is that the
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FIG. 12: PES sections at the Hb1, S1 and T1 dimer orientations. Sec-
tions at the other minima are provided in the supplementary informa-
tion.

(1) Hb1 (2) S1

(3) S2 (4) T1

(5) T2 (6) Hb2

(7) bT (8) Hb3

FIG. 13: Structures of pyridine dimers at stable minima on the three
PESs. The structures are ordered according to their energies calcu-
lated using SAPT(DFT). These images have been produced using
the Jmol program [100].

T1 complex also shows a relative insensitivity to the rank of
the multipole expansion.

The behaviour of the models at the doubly-hydrogen-
bonded Hb1 dimer configuration needs some explanation. The
rank of multipoles on the hydrogen atoms do not appear to
matter as the model interaction energies do not alter signif-
icantly if only rank 0 (charge) terms are included on these
atoms. However, the nitrogen and carbon atoms appear to need
the octopolar terms to model the electrostatic interaction cor-
rectly in this configuration. At least for the nitrogen atom this
should not be surprising as the octopolar terms are needed to
describe the effects from the lone pairs, but it is surprising that
the carbon atoms also require these terms. In any case, it may
be possible to improve the quality of the charge-only model
by including additional sites around the nitrogen and carbon
atoms to account for these terms in much the same way as is
done for the oxygen atom in water models. If successful, this
would provide us with a route to construct a fully isotropic
interaction model for pyridine and other systems. This would
be important as, with some exceptions such as the Orient and
DMACRYS [104] programs, simulation programs cannot nor-
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dimers on the three PESs are displayed as solid horizontal bars. The
dashed lines link the energies levels associated with each of the three
models. SAPT(DFT) reference energies have been calculated at the
dimer geometries from Model(3). Data for Model(3)-DF-DMA4 are
not shown here.
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FIG. 15: Classical second virial coefficients for pyridine. The exper-
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FIG. 16: Second-order polarization energies from regularised
SAPT(DFT) compared with the L1 polarization model. The energies
have been calculated using minimum energy dimer configurations
obtained on the Model(3) PES. Dimers with attractive total interac-
tion energies are indicated with filled symbols, and those with repul-
sive energies with open symbols. The thin blue lines indicate the ±1
kJ mol−1 error limits and the blue bar is present just as a visual aid.

mally use potentials with anisotropic terms, a restriction that
significantly limits the usage of the accurate potentials we are
able to develop.

XIII. CONCLUSIONS & DIRECTIONS

We have described a robust and relatively easy to imple-
ment algorithm for developing accurate intermolecular po-
tentials in which most of the potential parameters are de-
rived from the charge density and density response functions,
and the remaining, short-range, parameters are robustly de-
termined by associating these with specific atom-pairs us-
ing a basis-space implementation of the iterative stockholder
atoms (ISA) algorithm. With this algorithm, accurate, many-
body potentials can be derived using a relatively small number
of dimer energies calculated using SAPT(DFT). This signif-
icantly reduces the computational cost of the approach. Im-
portantly, as all of the long-range and most of the short-range
parameters are derived, the predictive power of the resulting
potentials is significant.

One of the major obstacles to intermolecular potential de-
velopment has been the derivation of the short-range parame-
ters. We have demonstrated that these can be relatively easily
and robustly derived from the non-interacting charge densities
using the distributed density-overlap model based the ISA. In
this manner, even the atomic anisotropy terms, which are usu-
ally poorly defined in a direct fit, are robustly determined with
a relatively small amount of computational effort. Using these
techniques on the pyridine dimer, we have demonstrated that
features such as the density distortions due to the π-bonding
on the carbon atoms, and the lone pair on the nitrogen atom
in pyridine are well-defined using our approach. Indeed, only
terms with a physical origin are present in this approach.
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FIG. 17: The effect of rank reduction of the multipole model for
Model(1).

The main features of the methodology we describe in the
paper are:

• Efficient use of data: The potentials are derived using
a hierarchy of data sets; the more extensive data sets
include only first-order energies and can be very easily
calculated, while the second-order energies are included
through a significantly smaller data set.

• Priors: We use the first and most extensive data set to
determine prior values for most of the short-range pa-
rameters. These priors may subsequently be modified
using the second, smaller data set. These steps may be
repeated thus leading to a multi-stage procedure which
significantly reduces the amount of data needed to tune
the potential.

• ISA: The short-range parameters are determined using
the ISA method for partitioning the molecular densi-
ties into atomic contributions. The BS-ISA algorithm
allows this to be performed using extensive basis sets
with a well-defined basis set limit. The ISA atoms are as
close to spherical as is possible and account for charge
movement within the molecule, consequently the result-
ing short-range repulsion parameters may be expected
to be free from basis set artifacts, and be the most
isotropic possible. This compares favourably with the
density-fitting-based partitioning scheme we have pro-
posed in earlier papers [31, 40] which does not fulfil
either of these properties. Indeed the r.m.s. errors made
by the ISA-based models are half as much as those from
the density-fitting-based models.

• Long-range models: The long-range parameters of the
potentials are determined using distributed multipoles,
polarizabilities and dispersion coefficients. The ISA-
DMA multipoles are obtained from the BS-ISA ap-
proach and have been demonstrated to exhibit sys-
tematic convergence with rank. The WSM distribution
scheme has been used to calculate the distributed po-
larizabilities and dispersion coefficients, the latter of
which we have tuned to SAPT(DFT) dispersion ener-
gies.

• Predictive power: Most of the parameters are derived
from or fitted to molecular properties, consequently
they are physically meaningful and the resulting poten-
tials exhibit a considerable predictive power.

• Hierarchy of models: The methods we have described
allow us to determine potentials of various levels of
complexity in a meaningful manner. These may be fully
isotropic at the atom–atom level or contain as much
anisotropy as is needed.

We have used these techniques to develop a set of poten-
tials of varying levels of detail for the pyridine dimer. The
simplest of these include only isotropic short-range terms, and
the most detailed includes all significant anisotropy terms up
to rank two. The predictive power of these potentials is quite
significant and all are able to predict SAPT(DFT) interaction
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energies for low energy dimers not included in the fit. As a
consequence, the potentials are robust to the inclusion of addi-
tional data: parameters alter very little on relaxation, and fea-
tures on the potential energy landscape change only slightly.
This robustness is particularly important in the development
of multidimensional potentials, as we will generally be unable
to sample dimer configuration space adequately, especially for
larger monomers.

We have compared our newly derived pyridine potentials
to the rather limited set of data available in the literature.
Of the eight stable minima found on the Model(3) PES,
the double hydrogen-bonded Hb1 dimer has been found in
previous DFT+D work by Piacenza and Grimme [98], and
the CCSD(T) energy for this structure [99] differs from our
SAPT(DFT) interaction energy by only 7%. The two other
hydrogen-bonded structures, Hb2 and Hb3, have not been
seen before. Both the stacked structures, S1 and S2, have
been found earlier [98]. Of the three T-shaped structures, only
the bT structure resembles a previously found structure [98],
while the T1 and T2 structures appear to be unique to the mod-
els developed in this paper. As the DFT+D method cannot
be relied on to correctly describe the subtle balance of dis-
persion, electrostatic, polarization and charge-transfer inter-
actions seen in the eight dimers of pyridine, it is possible that
the set of eight minima we have found are a more accurate
representation of this system. Further tests are needed at the
CCSD(T) level of theory if we are to be sure of this.

In this paper we have provided solutions to some of the
most significant issues related to potential development, and,
as a consequence, have inevitably exposed other minor issues
that need resolving. Some of these are:

• The WSM method for deriving distributed polarization
and dispersion models is a good one, but it is based on
a less than ideal partitioning method [48] that seems to
result in some artifacts in the models and a small, but
undesirable basis-set dependence.

• The current damping of the dispersion model based on
molecular ionisation potentials only is less than ideal
and there is good reason to expect a site–site damping
model to perform better.

• More needs to be done to understand the origin of
the polarization damping. Like the dispersion damp-
ing, here too it is clear that the damping model needs
to depend on the pair of interacting sites, but there
is evidence [42] that the polarization damping differs
strongly from that used for the dispersion. This is prob-
ably the least understood issue at present.

• The resulting potentials are for rigid monomers only.
However, as the potential parameters are closely asso-
ciated with the properties of the atoms in the interacting
molecules through either the ISA or the DF-based parti-
tioning methods, it is possible that these models may be
applicable to flexible monomers. This conjecture needs
to be tested.

• One of the most serious limitations of the approach we
have described here is that there are very few simulation

programs capable of using these potentials. Most simu-
lation programs use the simpler Lennard-Jones models
with point-charge electrostatic models. However, dis-
tributed multipoles are being increasingly available in
simulations codes: both OpenMM [105] and DL_POLY
[106] allow the use of distribute multipoles and sim-
ple polarization models, but only the Orient [107] and
DMACRYS [104] programs currently support the use
of the anisotropy terms present in our more complex po-
tentials. We do not doubt that this situation will change
as potential development using the methods described
in this paper becomes more streamlined and easy to use,
and as we accumulate evidence that these more elabo-
rate potentials do result in higher predictive accuracy.

It should be apparent that the ISA — in particular, the BS-
ISA algorithm — plays a central role in the methodology we
have described. Consequently it should come as no surprise
that some of the issues listed above may be resolved using
data extracted from the ISA atomic densities. In a forthcoming
paper [52] we will describe how the dispersion damping issue
may be resolved using the ISA, and also how even more of the
short-range parameters may be derived rather than fitted.

However, there are issues with the models we have pre-
sented here. Second virial coefficients are well reproduced us-
ing our isotropic and anisotropic potentials, though all three
models give B(T ) somewhat too negative. This indicates that
the models are somewhat too attractive on the average. We
have established that there are indeed regions of configura-
tion space where all potentials systematically overbind and
these are associated with stacked-like configurations. While
we do not fully understand the origin of the problem, it is
possible that the additivity assumption we have made in the
definition of ρab in eq. (28) is inappropriate, and also that the
SAPT(DFT) interaction energies are themselves too attractive
for these configurations due to the known problems with the
δHF

int term for dispersion-bound systems [108, 109]. We are ac-
tively engaged in understanding these issues.
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XV. SUPPLEMENTARY INFORMATION

The SI included with this paper contains details of the three
potentials derived in this paper. Additionally, plots referenced
but not included in this paper are provided in the SI.

Appendices

Appendix A: Programs

Many of the theoretical methods described in this paper are
implemented in programs available for download. Some of
these, together with their main uses in the present work, are:

• CamCASP 5.9 [36]: Calculation of WSM polarizabil-
ities, the dispersion models, the SAPT(DFT) energies,
and overlap models.

• Orient 4.8 [107]: Localization of the distributed polar-
izabilities, calculation of dimer energies using the elec-
trostatic, polarization and dispersion models, visualiza-
tion of the energy maps, and fitting to obtain the analytic
atom–atom potentials.

• Dalton 2.0 [63]: DFT calculations. A patch [64] is
needed to enable Dalton 2.0 to work with CamCASP.

Appendix B: CamCASP

Many of the algorithmic details of the electronic structure
methods implemented in the CamCASP suite of programs
have been described in previous publications. Rather than pro-
vide an exhaustive list, we will indicate those algorithms and
methods of importance for potential development, as well as
some numerical techniques that are particularly important for
accuracy and computational efficiency.

Some of the capabilities of the CamCASP suite of programs
are as follows:

• SAPT(DFT): Interaction energies to second-order can
be calculated using SAPT(DFT) [7–10]. Infinite-order
effects may be approximated using the δHF

int correction.

• Distributed multipole models: These may be evaluated
using both the GDMA algorithms [44, 45], or directly
from a density-fitting-based partitioning using a variety
of constraints (see the CamCASP User’s Guide for de-
tails), or from the recently implemented ISA algorithm
[47].

• Distributed frequency-dependent polarizabilities:
These may be calculated in non-local form using
constrained density-fitting-based partitioning schemes
[48], which include the SRLO method [80] as a special
case. Localised models may be obtained using the
Williams–Stone–Misquitta (WSM) model [43, 49].
• Distributed dispersion models: These may be evaluated

directly using the non-local frequency-dependent mod-
els [77], or from localised polarizability models ob-
tained using the WSM procedure [50]. Models may be
isotropic or anisotropic.

• Linear-response kernel: The code is able to evaluate the
linear-response kernel using the ALDA, CHF and hy-
brid, ALDA+CHF, kernels. These integrals are evalu-
ated internally.

• Interfaces: CamCASP can use molecular orbitals cal-
culated from the Dalton program (versions from 2006
to 2015 are supported), the NWChem 6.x program and
GAMESS(US) .

These are the major features of the CamCASP program, and
the code additionally includes other algorithms that are im-
portant for model development. These include the ability
to calculate distributed density-overlap integrals and, from
these, develop density overlap models for the short-range in-
termolecular interaction energy, and interfaces to the Orient
program[107] to aid in visualisation of the interaction energy
models and fitting of intermolecular potentials.
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