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On-bird Sound Recordings: Automatic Acoustic
Recognition of Activities and Contexts

Dan Stowell, Emmanouil Benetos, and Lisa F. Gill

Abstract—We introduce a novel approach to studying animal
behaviour and the context in which it occurs, through the
use of microphone backpacks carried on the backs of individ-
ual free-flying birds. These sensors are increasingly used by
animal behaviour researchers to study individual vocalisations
of freely behaving animals, even in the field. However such
devices may record more than an animals vocal behaviour, and
have the potential to be used for investigating specific activities
(movement) and context (background) within which vocalisations
occur. To facilitate this approach, we investigate the automatic
annotation of such recordings through two different sound scene
analysis paradigms: a scene-classification method using feature
learning, and an event-detection method using probabilistic latent
component analysis (PLCA). We analyse recordings made with
Eurasian jackdaws (Corvus monedula) in both captive and field
settings. Results are comparable with the state of the art in
sound scene analysis; we find that the current recognition quality
level enables scalable automatic annotation of audio logger data,
given partial annotation, but also find that individual differences
between animals and/or their backpacks limit the generalisation
from one individual to another. we consider the interrelation
of ‘scenes’ and ‘events’ in this particular task, and issues of
temporal resolution.

Index Terms—

I. INTRODUCTION

STUDYING the behaviour of animals in real time and
in their natural environments is becoming more and

more feasible through the use of animal-borne loggers or
other remote sensing technology [1]. These technologies have
provided insight into different aspects of physiology and
behaviour, such as heartbeat [2] or migratory routes [3], [4],
which in turn can help us understand basic mechanisms up
to evolutionary drivers, as well as support decision-making
processes in nature conservation or disease management.

To reconstruct daily activity patterns, many remote-sensing
studies have used methods that provide information on the
location of an animal in space (today most commonly GPS:
Global Positioning System). To get more fine-scale informa-
tion, spatial data have been combined with accelerometry
which can shed more light on the actual activities of an
animal [5], [1]. However, the immediate causes or related
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contexts of specific animal behaviours were often not iden-
tifiable through these technologies, and required additional
information sources.

Recently, microphone backpacks have become useful tools
to investigate different aspects of vocal behaviour in natu-
ralistic contexts, even in small animals [6], [7], [8], [9]. By
picking up the vocal sounds close to their production origin,
researchers are now able to record and identify vocalisations
from the signal-emitting individuals, even in physically or
acoustically challenging environments. Recording close to the
origin also reduces the influence of propagation effects on the
audio suchas dispersion or echoes. But in small animals, unlike
for example in whales [10], it is often not (yet) possible to
apply tags that provide multiple channels of information simul-
taneously, due to weight limitations—especially in birds. Thus,
placing vocal behaviour into relevant context can be limited
to specific situations in which a simultaneous collection of
further data is possible.

Because an on-board microphone moves along with its
bearer, most microphone backpacks do not exclusively record
vocalisations, but also other sounds. Firstly, depending on their
sensitivity, the microphones have the potential to pick up a
variety of background sounds. Secondly, specific movement
patterns of the animal resulting in characteristic sound patterns
might reveal aspects of the animal’s behaviour, e.g. running
or self-scratching (noted by [7], [8]). But, to date, this has not
been investigated in detail.

Automatic Acoustic Recognition

Successful identification of animal-related sounds could
provide a unique opportunity because it may allow investi-
gating not only the behaviour of the animal itself, but also
different aspects of its abiotic and biotic environment—which
is currently not possible by recording the spatial position or
movement of single individuals, without further data collec-
tion. This in turn could be useful for various purposes (as
above: from basic research to conservation, e.g. effects of
anthropogenic noise), but analysing such signals/soundscapes
remains a challenge to date. Manual annotation is possible
for small datasets, though hard to scale up; further, for free-
flying birds there will usually be no visual/video support for
manual annotation. Hence there is strong potential for micro-
phone backpack methodologies to be augmented by automatic
acoustic recognition of bird activities and their contexts.

The problem of automatic animal context recognition from
audio is directly related to the emerging field of sound scene
analysis (also termed acoustic scene analysis), and more
specifically to the two core problems in the field, namely
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sound scene analysis and sound event detection [11]. Since
the context in question can refer either to an animal’s current
activity or background sounds, the problem can be viewed
as either or both of searching for specific acoustic events
(e.g. related to flapping wings in the context of flying) or
evaluating the overall properties of a continuous sound scene
(e.g. background sounds indicating that an individual is based
in a nest).

The vast majority of approaches in the field of sound scene
analysis either fall directly into the problem of sound scene
recognition (which typically refers to identifying scenes based
on location-specific characteristics, e.g. park, car, kitchen)
or the problem of sound event detection (which refers to
identifying instances of sound events with a start and end
time, e.g. door slam, scream) [11]. An approach that is
closer to the present work is proposed by Eronen et al.
[12], who developed a computationally efficient classification-
based system for audio-based context recognition in urban
environments, where ‘context’ referred to both locations (e.g.
train, street) but also to specific activities (e.g. construction,
meeting). In [13], Heittola et al. proposed a system for sound
event detection, which is however dependent on the context of
each sound scene. A system based on hidden Markov models
(HMMs) with multiple Viterbi decoding was proposed, which
was able to identify to a relative degree of success 60 types of
sound events, being present in 10 different types of location-
dependent audio-related contexts.

Another related strand of research is speaker diarisation,
in which multi-party speech recordings are analysed such as
discussions in meetings, and the primary goal is to recover a
transcript of which party spoke when [14], [15]. In speaker di-
arisation, the emphasis is primarily on speech and so the range
of sound types considered is often highly constrained. Also
the targets of transcription are individual speaking sources
rather than aggregate contextual categories. Much work in
speaker diarisation treats the transcription task as monophonic
(only one speaker at a time), although recent directions are
beginning to address overlapping speech [15]. Generalisation
across different domains (e.g. conference meetings versus
broadcast news) is also an open topic, indicating the difficulty
of these types of problem in general.

When placing the present study in context with related work
in sound scene analysis, it is important to maintain a focus
on the downstream use of the data, which must influence the
way we design and evaluate systems. Typical applications in
animal behaviour include: (a) aggregating timelines to produce
an overall model of a species’ diurnal cycle of activity, or
creating “time budgets”; (b) data-mining to search for one
or many instances of a particular phenomenon. A transcript
is rarely the end goal in itself. As an example consequence
of this, for the applications just mentioned it may often be
helpful to obtain a probabilistic or confidence-weighted output
rather than merely a list of events, for optimal combination of
information or best guidance of subsequent manual effort.

Aims
The aims of this study were thus to find out whether the

recordings from microphone backpacks could be useful for

investigating the immediate context in which individual vocal-
isations occur, such as an animal’s current activity (movement
sound) or vocalising conspecifics (background sound), and to
investigate the extent to which this could be facilitated by
automatic acoustic recognition. To do so, we used video-
validated and human-coded on-bird sound recordings from
captive and free-flying jackdaws (Corvus monedula), to test
the performance of different automatic recognition algorithms.
We experimentally compared two different sound recognition
paradigms (classification and event detection), as well as
combinations and variants, and how they performed in terms
of recognising the various categories of activity and context
that are of interest for measuring animal behaviour.

In the following we describe the data collection process
(Section II) before giving details of our two automatic recog-
nition systems (Section III). Our evaluation method and its
results are presented in Section IV, and then in discussion
(Section V) we consider the implications of our study for the
automatic annotation of animal-attached sound recordings.

II. DATA COLLECTION

A. Birds and microphone backpacks

For the current study, we used a subset of on-bird sound
recordings obtained during a different study (Gill et al., in
preparation). The analysed data were collected in the South
of Germany, from 12 individual jackdaws (Corvus monedula,
7 captive-housed and 6 free-living), early in the years of
2014 and 2015. Backpack application was approved by the
Government of Upper Bavaria and in compliance with the
European directives for the protection of animals used for
scientific purposes (2010/63/EU). The backpacks consisted of
a commercially available digital voice recorder (Edic Mini
Tiny A31, TS-Market Ltd., Russia), a rechargeable battery
(ICP581323PA to ICP402035, Renata, Switzerland), a radio
transmitter for relocation (BD-2 Holohil, Canada) and a
shrinking tube casing. Loggers were charged, programmed
and read out via PC connection and the according software
(RecManager, version 2.11.19, Telesystems, Russia). They
were set to record continuously for a few hours every morning,
for a few days, beginning one day post capture (at 22050 Hz
sampling rate, uncompressed .wav format). This provided co-
herent vocalisation data and acoustic background information,
as opposed to using amplitude-based triggers (but at a cost
of storage and battery). For backpack attachment, birds were
either trained to fly inside a smaller compartment of the aviary
where they were caught using bird nets (captivity), or trapped
inside their nest boxes (wild). The backpacks were fitted using
approved attachment methods (glue, or via a harness similar
to [16]), and following common recommendations (< 5%
of body weight [17]; close to centre of gravity [18]). Birds
were individually identified by colour rings. After capture and
backpack attachment (20 mins ± 4.1 SD), they were observed
using binoculars and/or radio-telemetry, and all of them were
immediately able to fly upon release. For further details on
procedures and animal welfare, see Gill et al. (in preparation).
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B. Video-validation of sounds

For a video-validation of on-bird sound data, video footage
was collected from the captive birds during backpack record-
ing hours. For this, an observer sat inside the aviary and
video-recorded focal birds using a handheld camcorder (JVC
Camcorder Everio GZ-MG77E, Japan). All sound files used
for video validation were processed, played back, visualised
(waveform or spectrograms: FFT window size 512, Hann, 0–
10000 Hz viewing range, gain 20–35 dB, range 45 dB) and
annotated in Audacity (Version 2.0.5) by LFG. Corresponding
sound and video files were cut to match, and were then
played back simultaneously, at normal speed (using Audacity,
see above, and using VLC, Version 2.1.5). First, the sounds
were annotated step-by-step with the corresponding visual
information (see Table I). If the focal bird was temporarily
out of sight, this was labelled as missing data. Secondly, labels
were added for acoustically distinct background sounds, such
as vocalising jackdaws. Next, the annotation track (labels, start
and end points) of each recording was exported as a text file.
To balance between fine detail and sufficient sample size, the
original labels were used to create slightly broader behavioural
and contextual categories (Table I).

An example clip of annotated data is visualised in Figure
2(a). In Supplementary Information we provide videos show-
ing the studied birds in some example contexts, along with
standard and backpack microphone recordings to illustrate the
characteristics of the specific kind of sound recordings dealt
with in this work.

C. Annotation of field data

Having worked with hours of sound and video recordings
from jackdaw backpacks, we had learned a good deal about
the acoustic representation of behaviours and were able to
annotate the sounds in new files in almost as much detail as
in combination with the according visual information (at least
at the behavioural category level). Thus, the field recording
subset was annotated by LFG based on aural and visual
inspection of sounds, as learned from the captive dataset and
from observations in the field, but also taking into account
differences in the sounds due to different materials in the
field (e.g. walking on different substrates), as well as different
durations (e.g. prolonged flight). Two labels were added that
had not been recorded in captivity: copulations; begging chicks
inside the nest (Table I).

III. AUTOMATIC RECOGNITION

To train and then test recognition algorithms, we used a total
of 8.4 hours of video-validated (captive: 43–100 minutes per
bird) and 18.5 hours of human-coded (wild: 164–198 minutes
per bird) sound recordings and their respective annotations.
We next describe the automatic recognition systems that we
evaluated, which are summarised in Figure 1.

A. Classifier-based System

The first system we used for activity and context recognition
sits within the classification-based paradigm. We used our

TABLE I
LABELLING SCHEME FOR THE ACTIONS/CONTEXTS IN OUR RECORDINGS.

THE “CATEGORY” COLUMN GIVES THE CLASS LABELS USED IN THE
PRESENT STUDY, WITH THE OTHER COLUMNS INDICATING THE BROADER
OR MORE SPECIFIC LABELLING USED DURING MANUAL TRANSCRIPTION.

Sound type Category Label examples
Movement Flying Flying

Walking Run, walk
Looking around Look
Manipulation Food, stick
Self-maintenance Bill-wipe, preen
Small movement Turn
Shaking Body, head

Vocalisations Focal call Contact call
Non-focal call Non-focal call
Allofeed vocalisation Allofeed vocalisation
Background call Bg mobbing

Background Carrion crow Carrion crow
Chickens Hen, cock
Colony sounds Church bells
Noise Traffic noise

Combination Allofeeding Allofeeding
Copulation Copulation
Nest Entering nest

Other Antenna Antenna
NA Missing video

Division into 
5-sec segments

Mel spectrogram

Feature learning / 
transformation

Temporal 
summarisation

Random forest 
classification

ERB filterbank

PLCA inference

Downsampling 
output to 5-sec rate

HMM (filtering or 
Viterbi decoding)

Audio

Inferred 
annotations

PLCA
system

Classifier
system

Fig. 1. Overview of the processing workflows used for automatic recognition.

feature learning and classification method previously devel-
oped for bird species classification from vocalisations [19].
Importantly, this approach applies spherical k-means feature
learning to Mel-spectrogram patches, in order to transform the
input signal into a rich feature space suitable for applying a
standard classifier. This particular feature learning algorithm is
conceptually related to an unsupervised convolutional neural
network, but its simplicity makes it eminently scalable to big
data [20], [19]. In this work, we segmented input audio into
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contiguous five-second clips, from which we calculated Mel
spectrograms (FFT window size 1024 with 50% overlap), and
applied median-clipping noise reduction to each frequency
band. Unlike in the cited previous work, for these data we
did not apply high-pass filtering, since we expected some
classes to be indicated in part by lower-frequency or broadband
components. During training we applied a single pass of the
feature learning decribed in [19] to these data, learning a high-
dimensional projection onto 500 features. We then transformed
the training and test data into this new feature space, before
summarising each audio clip by the mean and standard devi-
ation of each feature (i.e. 1000 summary features).

The summary features were used as input to a random forest
classifier [21] having 200 trees and trained using an entropy-
based criterion for splitting branches. These settings led to
good performance in previous work [19]. The data in this
task is highly unbalanced, with some classes very sparsely
represented. A random forest classifier is typically able to
handle unbalanced (and high-dimensional) data well. However,
an option available to us was to reweight the data to give
equal prominence to positive and negative classes. This was
particularly pertinent as the subsequent HMM postprocessing
(see subsection III-C) also makes use of the relative class
balance. We therefore trained the classifier in both modes,
equally weighted and balanced-reweighted, to inspect the
effect of this choice.

B. Event Detection System

The second system used for activity and context recognition
is adapted from the system of [22], which was originally
proposed for sound event detection in office environments.
Thus, this approach attempts to recognize contexts as a col-
lection of acoustic events related to each context, as opposed
to the previous approach which was based on modelling
the overall characteristics of an acoustic scene. The system
extends probabilistic latent component analysis (PLCA) [23],
a spectrogram factorisation technique which can be viewed
as the probabilistic counterpart of non-negative matrix fac-
torization (NMF) [24]. The PLCA-based model assumes that
an audio spectrogram can be decomposed as a series of
sound activities or contexts, which can potentially overlap over
time. Each activity is produced as a combination of sound
exemplars, which have been pre-computed from training data.

For preprocessing, a time-frequency representation Vf,t (f
is the frequency index and t is the time index) is computed by
processing the input waveform with an equivalent rectangular
bandwidth (ERB) filterbank [25], using the approach of [26].
The filterbank uses 250 filters which are linearly spaced
between 5 Hz and 10.8 kHz on the ERB scale, and has a 23ms
time step. Given that in the context of on-bird sound recordings
several activities exhibit information in higher frequencies, a
linear pre-emphasis filter is applied to Vf,t for boosting high
frequency content. See Figure 2(b) for an ERB spectrogram of
a recording from the captive subset, along with the respective
context annotation.

The PLCA-based model takes as input Vf,t and approxi-
mates it as a bivariate probability distribution P (f, t), which

is in turn decomposed into a series of spectral templates per
sound activity/context and exemplar index, activations over
time for each context class, as well as an auxiliary probability
for the activation of each exemplar per context class over time.
The model is formulated as:

P (f, t) = P (t)
∑
c,e

P (f |c, e)P (c|t)P (e|c, t) (1)

where c ∈ {1, . . . , C} denotes the context class and e ∈
{1, . . . , E} denotes the exemplar index. On model parameters,
P (t) =

∑
f Vf,t, which is a known quantity. Dictionary

P (f |c, e), which in this system is pre-computed from training
data, contains spectral templates per context class c and
exemplar e. The main output of the PLCA model is P (c|t),
which is the probability of an active context per time frame
t. Finally, the model also contains the auxiliary probability
P (e|c, t), which denotes the contribution of each exemplar e
for producing a context c at time t.

The unknown model parameters P (c|t) and P (e|c, t) can
be iteratively estimated using the expectation-maximization
(EM) algorithm [27]. For the E-step, the following posterior
is computed:

P (c, e|f, t) = P (f |c, e)P (c|t)P (e|c, t)∑
c,e P (f |c, e)P (c|t)P (e|c, t)

(2)

Using the above posterior, P (c|t) and P (e|c, t) can be esti-
mated in the M-step as follows:

P (c|t) =
∑
e,f P (c, e|f, t)Vf,t∑
c,e,f P (c, e|f, t)Vf,t

(3)

P (e|c, t) =
∑
f P (c, e|f, t)Vf,t∑
e,f P (c, e|f, t)Vf,t

(4)

Parameters P (c|t) and P (e|c, t) are initialised in the EM up-
dates with random values between 0 and 1 and are normalised
accordingly. Eqs. (2) and (3)-(4) are iterated until convergence.
In our experiments, we found 30 iterations to be sufficient.

In order to extract dictionary P (f |c, e) from training data,
first spectra V (c) ∈ RF×Tc that correspond to an active context
class are collected, where Tc corresponds to the number of
spectral frames that contain an active context class c. Then, for
each context class a list of exemplars is created by performing
clustering on V (c) using the k-means algorithm; here, the
number of exemplars E = 40, following experiments on the
training data.

The output of the PLCA model is given by P (c, t) =
P (t)P (c|t), i.e. the context activation probability, weighted by
the energy of the spectrogram. Since P (c, t) is a non-binary
representation, it needs to be converted into a list of estimated
contexts per time frame. The first option of post-processing
P (c, t) is by performing thresholding, where threshold values
were estimated per context class using training data. Finally,
active contexts with a small duration (shorter than 120ms)
were removed. Additional post-processing options are dis-
cussed in the following subsection.
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Fig. 2. (a) Context annotations for a recording segment from a captive bird. (b) The annotations for focal and non-focal calls and respective ERB spectrogram
of the same recording, both corresponding to the temporal region marked with vertical dashed lines in figure (a).

C. Postprocessing

Given the output from either the classifier or PLCA detector,
we then optionally applied hidden Markov model (HMM)
postprocessing to the estimated event sequences. See [28]
for an overview of HMMs. HMM-based postprocessing is
a common procedure using knowledge about the temporal
structure of event sequences (gleaned from the training set)
which knowledge may not otherwise be reflected. In particular,
in our case the classifier treats each five-second segment as
independent, neglecting information from neighbouring seg-
ments. Likewise, the PLCA event detection system considers
each 23 msec output frame as independent.

Since our task was polyphonic, having multiple “channels”
in parallel whose activation could be on or off, there was a
combinatorially large number of possible states at any time
(2k, with k the number of classes). To deal with this large
state space we applied the HMM in two alternative ways: (a)
applying a single HMM to the entire system, whose set of
possible states is the whole set of state combinations observed
in the training data; or (b) independently applying a two-state,
on/off HMM to the data of each class. Each approach has
advantages and drawbacks. Treating channels as independent
may lead to efficient training given a limited amount of data,
but it neglects interaction effects which could help to resolve
ambiguous situations. Therefore we tested both approaches.

We trained the HMMs generatively, using Laplacian
smoothing of the transition tables—i.e. initialising each possi-
ble transition with a small uniform weight, which yields a prior
equivalent to having observed one instance of each possible

transition. The emission model for each HMM state was a
Gaussian mixture model (GMM). To initialise and to select
the number of GMM components, we applied the Dirichlet
process GMM approach [29] to the entire training dataset
(sometimes called a universal background model or UBM),
then for each HMM state we trained its emission model by
variational inference initialised from the UBM. We used the
GMM implementations provided by scikit-learn 0.17 [30].

Having trained a HMM, there are multiple ways to apply
it to new data. We explored the use of forward filtering—
producing probabilistic “fuzzy” output which may then be
thresholded if definite decisions are required—and Viterbi
decoding—producing a single definite output, as the maxi-
mum likelihood state sequence given the observations. This
then resulted in four kinds of HMM postprocessing: filtered
or Viterbi-decoded output, from a jointly or independently-
trained HMM.

D. Handling Missing Data

Occasional time-regions of the data were labelled as missing
data (‘NA’), when birds were occasionally off-camera. These
regions (around 17 minutes total, out of the 8.4 hours of cap-
tive audio) were excluded from the training of the classifiers
and HMMs. For the PLCA-based system, the NA class was
not used to create the pre-extracted dictionary P (f |c, e), and
any spectral frames belonging to the NA class were not used
in the training data. In the test phase, any NA regions in the
ground truth are set to be non-active, where any time frames t
in the PLCA model output that correspond to the NA regions
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are set so that P (c, t) = 0. ‘NA’ regions were excluded from
the calculation of our evaluation statistics, due to the lack of
ground truth for comparison.

IV. EVALUATION

A. Metrics
As discussed in Section I, the evaluation must be designed

with regard to the planned or typical downstream use case—
i.e. what tasks or analyses do we expect to follow on from
such automatic annotation? For the present task, this bears
upon the figures of merit which one calculates, as well as on
issues such as the temporal granularity or temporal tolerance.
It is desirable for an automatic system to recover exactly-timed
transcriptions of every vocalisation, action and context given
in the audio, but for some of the downstream tasks we consider
the overriding aim does not require the highest resolution,
for example when characterising time budgets across large
datasets, or locating examples of certain activity. Hence our
main evaluation measures were calculated at a five-second
granularity (the same granularity as was used for the classifier).
The output of the classifier-based system was itself at a five-
second granularity; for the PLCA-based system, the output
was sampled at 23ms steps, as in the input time-frequency
representation Vft. We therefore grouped its outputs into five-
second segments, and the output for each 5-sec segment was
either the mean or the maximum of the 23 msec-step frames
corresponding to that time segment.

Evaluation metrics for automatic transcription have been
debated in music informatics and in sound scene analysis.
Recently Mesaros et al. reviewed such measures for general
sound event detection, discussing issues including the use of
high-resolution versus segment-based metrics [31]. In their
terminology our main metrics are segment-based, using five-
second segments. However, Mesaros et al. consider only
the evaluation of “definite” transcripts, not transcripts with
probabilistic/ranked/fuzzy annotations, and as a result their
review does not include statistics useful for evaluating the
latter type of output. Foster et al., working with probabilistic
outputs, use a four-second segment size and use the area under
the ROC curve (“AUC”) as their figure of merit [32].

The AUC is widely used as an evaluation measure for
detection and classification tasks, and has many desirable
properties [33]: unlike raw accuracy, it is not impeded by
“unbalanced” datasets having an uneven mixture of true-
positive and true-negative examples; and it has a standard
probabilistic interpretation, in that the AUC statistic tells us
the probability that the algorithm will rank a random positive
instance higher than a random negative instance. This last
feature makes it particularly suitable to evaluating with regard
to downstream tasks in which the subsequent postprocessing
will for example involve manually confirming/refining the
separation of positive and negative instances. Hand criticises
the AUC statistic [34], but reluctantly confirms that its use is
well-founded when the downstream makes use of the ranking
information, for example to allocate a fixed budget of manual
postprocessing time.

An alternative widely-used evaluation measure is the
“F score”: the harmonic mean of precision (robustness against

false positives) and recall (robustness against false negatives)
of a system [31]. The F score is particularly suited to
information-retrieval type applications, such as downstream
tasks in which the user might for example wish to retrieve
a subset of positive examples from a large database. The F
score requires definite, binarised output; for fuzzy outputs, this
requires postprocessing such as thresholding.

In the present work we calculated both the AUCs and the F
scores for our systems, yielding slightly different perspectives
on their relative performance. Both measures were calcu-
lated from the segment-wise output with five-second segment
durations. AUCs were calculated separately for each class
(our plots will show averages across classes). To use the F
score with fuzzy outputs, we chose binarisation thresholds
to optimise the score on the training data, before applying
the same thresholds to the testing data in each case. This
can be done with one threshold per class or with a single
threshold; we tested both variants. To summarise the F score
we calculated it across all classes, rather than averaging the
per-class F scores, since the latter would be numerically
unstable especially with sparse data [31].

B. Evaluation Schemes

Our data consisted of annotated long-duration audio from
multiple individual birds, one set in captive conditions and
one set in field conditions, with multiple recordings from each
individual (3–8 per individual for captive; 2 per individual for
field, of longer duration). We used this data to evaluate system
performance in various crossvalidation scenarios:

EachCap: Captive, strictly per-individual.
A system was trained with one half of an individual’s
recordings, and tested with the other. The converse
was also done, and then results aggregated over all
captive individuals (yielding 14 ‘folds’).

X-Y: Captive, pooled.
A system was trained with examples from each
individual—half of the recordings from each
individual—and tested with the remainder. This gave
2 crossvalidation folds. Note that X-Y is constructed
so that all the testing files come from birds also seen
in the training data.

A-B: Captive, pooled and stratified.
All recordings from each individual were allocated to
one of two partitions. This is similar to X-Y except
that no bird used for training is used for testing.

Cap-Field: pooled cross-condition.
In this case the captive data is used for training, and
the field data used for testing. (Here we used only
one crossvalidation fold.) It is the most challenging
case: as well as the train and test sets having no birds
in common, the recording situation is also different.

EachField: Field, strictly per-individual.
As EachCap, but for the field data (12 folds).

Each of these scenarios relates not just to different degrees
of generalisation, but to different downstream applications of
automatic recognition technology. For example, a researcher
may wish to annotate a fraction of a recording and then invoke
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Fig. 3. Total ground-truth durations of annotated regions of each category.

automatic recognition for the remainder; or to use a fixed
system trained on one set of birds, e.g. observed in captivity,
and to apply it to new unknown recordings.

Finally, since the PLCA-based system produced its output
at a higher resolution (i.e. for each 23ms frame), we used this
opportunity to explore how the temporal resolution interacts
with evaluation procedures and metrics. For this we repeated
our evaluation using the segment-based F score, but using a
much smaller segment size of 0.1 seconds, as compared with
the 5 sec segment size used in the main experiments. In order
to ensure a fair comparison, sets of class-specific thresholds
were computed from training data for each evaluation segment
size (i.e. 100 msec and 5 sec) separately. The F-measure was
computed directly on the raw high-resolution output of the
PLCA-based system.

C. Results

As intended, the choice of microphone placement led to
high-amplitude recordings for sounds from the focal bird
(calls, flying, and other movements) while other background
sounds were quiet but still largely audible (see Supplementary
Information for examples). The occurrence of the annotated
actions and contexts in the collected data was relatively sparse
(Figure 3), with every class being active for less than 16% of
the total time in both datasets.

We evaluated each of our systems in two configurations:
the classifier-based system with unbalanced or balanced class-
weighting for training; and the PLCA system with mean- or
maximum-based temporal downsampling. In each case the
differences between configurations were small, and so for
clarity of presentation we will plot results from just one of each
system (unbalanced classifier, mean-downsampling PLCA).
We will refer to differences in outcomes from the system
configurations where relevant.

Overall, the quality of automatic recognition showed a
strong dependency on the choice of crossvalidation setup,
i.e. on the relationship between the training data and the
test data (Figure 5). As one clear example: the designs of

the X-Y and A-B schemes were very similar except that
the latter ensured that birds used for testing were not used
for training; this change incurred a substantial penalty both
in AUC and F score, implying that individual differences
were highly pertinent. The X-Y scheme in turn was similar
to the EachCap scheme except that it pooled the training
data across individuals. Curiously, this pooling led to very
similar F scores as EachCap, but to a marked difference in
AUC: judged by AUC, the pooling of training data seems
to have led to better generalisation properties, for both of
the recognition algorithms tested. Judged by F score, both
EachCap and EachField, using systems trained specifically
for each individual, attained many of the strongest results. As
expected, schemes involving generalising to unseen conditions
had lower recognition scores—both A-B (generalising to new
birds) and Cap-Field (generalising to new birds and to new
recording environments).

As this task has not been evaluated before, there are no
direct external comparisons for the overall recognition quality.
The segment-wise F-measures are broadly comparable to those
presented in [31] (for an indoor event-detection task with fewer
categories and a different segment duration). In the present
comparison of two different approaches, the classifier-based
system generally outperformed the PLCA-based system: by
an average of 5 percentage points on AUC, and 8 percentage
points on F score. Figure 4 shows an example of the output
from the classifier-based system overlaid with the groundtruth
annotation, giving a rough visual indication of the kind of
output that corresponds to the results obtained.

The effect of HMM postprocessing led to different results
when considered via F score or AUC. The F score statistics
(Figure 5, upper) often showed a mild improvement when
HMM postprocessing is added, particularly for the classifier-
based system; while the AUC statistics (Figure 5, lower) unan-
imously indicated worse results with HMM postprocessing
(the leftmost result in each cluster, the unprocessed output,
performing best).

To binarise continuous-valued output, we found that per-
class thresholding was not particularly better than a single
threshold in general, except in the case of the raw PLCA
output. This exception is because the raw PLCA output is
expressed in terms of activation magnitude (i.e. related to
the energy of each context class in the spectrogram), which
does not have comparable meaning across classes, and so per-
class thresholding is highly pertinent in that case. For the
HMM-postprocessed outputs, a single threshold often slightly
outperformed per-class thresholds, which is probably due to a
slight reduction in overfitting the threshold choice.

The classes (categories) used in this study are highly diverse
in kind, and so to drill further into system performance it is
important to inspect performance on a per-class level (Figures
6 and 7). It is immediately clear that detection quality ex-
hibits some correlation with the quantity of positive examples
available for training (cf. Figure 3), although the focal call
category is particularly well detected by the classifier system
despite being relatively sparse in the training data. Focal calls
are behaviourally important; they are also the signal class for
which our classifier was originally implemented. The figures
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also decompose the F score into its components: precision and
recall. When the classifier reaches a high F score it is often
achieving strong precision, while when the PLCA does well
it achieves strong recall.

The per-class results for the most difficult evaluation condi-
tion, Cap-Field, show that the generalisation to new individuals
and new environments has a differential effect on recognition
quality (Figure 6). Importantly, the classifier-based system
is able to generalise well on one of the more important
categories—focal call—as well as on self-maintenance, yet
the performance on some other categories—walking, flying, bg
jackdaws—drops off markedly. The performance of the PLCA-
based system does generalise on some categories—looking
around, self-maintenance—but exhibits lower performance in
other categories, including focal calls.

Figure 8 shows a different view of the temporal nature of our
data. For selected classes in a chosen recording, it summarises
the true or inferred activity levels in broad (five-minute) time-
steps. Both systems exhibit some mismatch with the ground-
truth, though the output from the classifier-based system can be
seen to better match the true contours of activity. In particular
the classifier-based system shows a tendency to better match
the true sparsity levels of class activations.

A final comparative study was made using the higher-
resolution 23 msec step raw output of the PLCA-based system,
comparing this against the 5 sec mean-pooled segments. Using
the X-Y crossvalidation scenario, the performance in terms
of segment-based F-measure with 5 sec segment size was
39.07% when using the 23 msec output, and 38.03% when
using the 5 sec mean-pooled output. When however the high-
resolution output was evaluated using the segment-based F-
measure with a 100 msec segment size, performance dropped
to 22.19%. These results indicate that the higher-resolution
output can lead to a small improvement over the pooled output,
and that the numerical value of the chosen evaluation statistic
depends strongly on the temporal granularity of evaluation.
The reduced performance when evaluated at high resolution
may be partly due to issues in the temporal precision of the
inferred and/or the ground-truth annotations.

Fig. 9 shows an example high-resolution output using the
PLCA-based system for recording MohawkMOV00F a from
the captive set, which in this case reached a 100 msec segment-
based F-measure of 54.1% using the X-Y crossvaliation
scheme. A few observations can be made from Fig. 9: the
system was able to successfully detect overlapping contexts,
in this case background colony sounds and looking around
movement. However, the output was often fragmented, as
for example can be seen for detected flying events. Another
notable issue is the high number of false alarms as compared
to missed detections (which translates into high precision and
low recall, as shown in Fig. 6). So for example, flight events
present in the recording were correctly detected as flight, but
at the same time the output produced false positives for the
manipulation and self-maintenance classes.

V. DISCUSSION

Our study has investigated a novel task in animal sound
recognition, approaching it via two polyphonic sound recog-

nition methodologies related to those previously studied in
environmental and bird sound. Overall evaluation figures are
comparable with the state of the art in these neighbouring
tasks [11], [31]. The details of the timelines recovered (Figures
4, 8, 9) show that across all conditions, further development
is needed before this paradigm can be deployed for fully
automatic analysis of animal behaviour patterns from audio
data. Of the two recognition systems studied, the classifier-
based system consistently led to stronger results, including
a better match to the temporal characteristics of the true
annotations (Figure 8); however, the PLCA-based system has
an advantage of directly outputting a high-resolution (frame-
by-frame) annotation, which may be particularly desirable in
some applications, such as investigating the short-time vocal
interactions between individuals.

Our sequence of crossvalidation tests demonstrated that gen-
eralising to new individuals and new environmental conditions
remains a critical challenge for automatic sound recognition,
certainly when judged by F score (Figure 5), especially when
aiming at extrapolating from captive to field datasets. The
present results suggest that to annotate field recordings, the
best strategy could be to train a human annotator on the
captive data to annotate a small subset of field recordings
from individuals which in turn could be used to train the
classifier for further field data analyses. Crucially, our study
investigated the automatic recognition of a diverse set of
classes, each of them pertinent for the study of animal
communication and behaviour. The classes vary widely in
their acoustic realisations, from single sound events such
as calls, to behaviours such as walking heard as compound
events or sound textures. Consequently, as expected there were
wide variations in recognition performance across classes.
The strongest-performing system achieved good F scores for
focal calls, flying, self-maintenance and walking. In general,
performance levels could be correlated with how well the class
of interest was represented in the training data. The sound of
flying is quite clear to a human annotator, especially in the field
where birds may fly continuously for 15 minutes or longer.
Very short flights (less than 1–2 seconds) are more difficult,
and require more attention, because they may be confused
e.g. with feather ruffling. Especially the captive dataset was
characterised by such short flights, which may explain why the
relatively good scores for automatic detection of flying were
still lower than anticipated. Suitable features and detectors for
such noisy, loosely periodic sounds thus remain a topic for
further development.

In manual inspection, we noted a tendency for systems
to output detections for focal call and non-focal call at the
same time. This can be attributed partly to acoustic similarities
between the classes: the microphone placement was designed
to assist with discriminating these categories, though in some
instances it remained difficult even for a human annotator.
Some acoustic differences included the effects of close-mic
recording, giving increased low-frequency energy for the focal
call over the non-focal call. We did not adapt our time-
frequency representations specifically for this feature, and one
future development could include such adaptation. A rival
explanation for the confusion of focal and non-focal calls is
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Fig. 4. Two examples of automatic annotation from a relatively strongly-performing system (classifier; HMM filtering; per-individual training) for a captive
(upper panel) and a field condition (lower panel). The black and white regions are correctly-identified as on and off respectively. Red are false-positive
detections, and blue false-negatives. (Best viewed in colour.)

that the two do tend to co-occur in close temporal proximity
(< 1 seconds), and so the systems may be influenced more by
the class co-activation (at the 5-second resolution) rather than
acoustics. This highlights the tension inherent in selecting a
time resolution for analysis; for studies such as this, in which
the different categories operate with rather different temporal
characteristics, an option may be for the system—and also the
evaluation—to use a class-dependent time resolution.

In the present study we found relatively little benefit in
HMM postprocessing of system output. Its purpose was to
refine per-segment estimates by making use of temporal
dependencies between segments. In some configurations it
led to a mild improvement in results, though in some other
configurations it led to deterioration. We did however find
a consistent result that HMM filtering led to better results
than Viterbi decoding, and that a per-class HMM was better
than a unified HMM. The classifier-based system treated each
segment entirely independently, and so should have benefited
from some temporal smoothing. One interpretation is that
simple Markovian dependency (at the 5-second timescale)
does not reflect enough of the temporal structure present in
the data, and that more sophisticated temporal models might
be investigated.

Some of the differences in interpretation implied by the
AUC and the F score might be attributed to the fact that F
score requires fuzzy/probabilistic outputs to be binarised at a
specific threshold, whereas the AUC uses the continuous data
and thus generalises over all possible thresholds. In a typical
practical application, the user will know the relative cost of
false positives and false negatives—i.e. the relative importance
of high precision and high recall—and can set a threshold
based on this balance. The standard F score weights the
two equally. However, downstream applications might imply
different priorities, such as high precision in the case of a
user retrieving examples of specific behaviour. In those cases

it would be desirable to use the generalised F score, sometimes
referred to as Fβ where β is the desired precision/recall ratio.
This would be used not only for evaluation but for threshold-
setting.

As already discussed, we consider that the current level
of performance is not yet at level for blind application to
new data. As with tasks in neighbouring disciplines—speaker
diarisation and polyphonic music transcription—the task is
difficult and the development of full automation will require
refinement of methods adapted for the specific character-
istics of the signals in question. This is particularly true
for categories indirectly represented via clusters of related
sound events. The present study with its diverse set of sound
categories raises the possibility that a good detection system
may benefit from using an entirely different system for each
class, perhaps using different timescales. A further possible
direction in relation to the timescale is the possibility of using
dynamic time resolution. The appropriate time resolution at
which to consider animal behaviour is a discussion well-
rehearsed in ethology; if time resolutions could be dynamically
inferred per-class from data, this might inform debate as well
as improving system performance.

We investigated the performance of systems using segment-
based evaluation measures. Our segment size of 5 seconds
was chosen based on manual inspection of pilot data as well
as on considerations of the target application. The classifier-
based system was also configured to operate at this resolution;
such a classifier-based system typically operates over segments
of this size (not at ‘frame-wise’ resolution such as 23 ms)
in order to make stable classification decisions. Segment-
based evaluations aggregate higher-resolution data using a
max-pooling approach [31], with the curious side-effect that
a single positive item anywhere within the 5 sec segment
leads to the whole segment considered active. To mitigate
this effect, in future evaluations one might use a smaller (and
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Fig. 5. F scores (top row) and AUCs (bottom row) for the systems tested. Each panel shows a different crossvalidation setup. In each panel, we show clusters
of scores connected by lines; the items in each cluster relate to the different postprocessing options, left-to-right as follows: no postprocessing; unified HMM
Viterbi decoding; per-class Viterbi decoding; unified HMM filtering; per-class HMM filtering. Plotted values are the median across crossvalidation folds, with
error bars indicating their 5- and 95-percentiles.

data-driven) segment size for evaluation, even in the case that
the system gives output at a larger segment size; perhaps
more fundamentally, the max-pooling could be replaced with
a parametric threshold (e.g. percentile-based) to reduce the
effect of false-positive ‘blips’ on the evaluation outcome.

In the present work we considered interactions between the
annotated categories via co-occurrence dependencies (positive
or negative) implicitly learnt from the data: the classifier-based
system used a single classifier predicting for all classes at
once, the PLCA-based system had the opportunity to ‘explain
away’ a portion of energy as belonging to one class rather
than another, and the HMM postprocessing was able to use
a single HMM model across all classes (though this was
not found to be better than per-class HMMs). Future work
could consider alternative approaches to the relationships
between categories. Hierarchical models such as the context-
dependent sound event detection of [13] may be suitable,
or switching state-space models (switching SSMs), where

the discrete “switch” would correspond to a context and the
context-dependent SSMs would detect specific sound events
or background sounds.

VI. CONCLUSIONS

We have introduced an application of audio recognition
specifically for sound recordings from animal-attached micro-
phones, to enable analysis of the activity of a focal animal as
well as the context of such activity, i.e. the environment around
it as conveyed acoustically. This enables researchers to study
the animal’s behaviour as well as the context of that behaviour,
i.e. the environment around it as conveyed acoustically. We ap-
plied automatic recognition to data collected from lightweight
backpack loggers carried by free-flying birds (jackdaws) in an
aviary and in the field.

We directly compared a scene-classification and an event-
detection approach approach to this task. The classification
method made use of a feature learning method developed
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Fig. 6. F score, Precision and Recall (all in %) for each class separately, for 4 systems tested under the three pooled crossvalidation scenarios (X-Y, A-B,
and Cap-Field), using per-class thresholding.

for bird vocalisations. For event detection, we introduced a
modified PLCA method, improving on previously-published
work in related domains. In evaluation, the classifier-based
method performed most strongly.

We find that the current recognition quality level enables
scalable automatic annotation of audio logger data, given
partial annotation, but also find that individual differences
between animals and/or their backpacks can reduce recog-
nition rates when generalising to previously-unseen individ-
uals. This approach to studying animal behaviour in single
individuals requires further development for full automation
and application to previously-unseen individuals. However,
as on-animal microphones become increasingly common, this
seems an effort worth taking to eventually extract meaning
from such streams of sounds by facilitating the analyses of
vocalisations, as well as some of their associated behaviours
and acoustic contexts, without additional data collection and
devices. Combining such results with an animal’s position
in space or relative to its conspecifics, and with detailed
acceleration data, would provide us with a more complete
picture of what animals do and even provide hints why they
do it, to tackle many remaining open questions in mechanistic,
evolutionary and conservation-related areas of behavioural
research.

AUTHOR CONTRIBUTIONS

DS and LFG jointly conceived the study. DS implemented
the classifier-based system, led on the evaluation, led on the
manuscript writing and wrote parts of the manuscript. LFG
provided the data (conducted animal handling and fieldwork,
supervised video recordings, performed all initial sound and
video analyses and annotations), helped with evaluating the
method, and wrote parts of the manuscript. EB implemented

the PLCA-based system, collaborated in performing the eval-
uation, and wrote parts of the manuscript.

ACKNOWLEDGMENTS

We would like to thank Tiffany Magdalena Pelayo van
Buuren and Magdalena Mair for assistance in the field; Katrin
Mayer for collecting video footage and helping with sound
files; Auguste von Bayern, Wolfgang Goymann, Andries Ter
Maat and Manfred Gahr for their support without which this
work had not been possible; and to the von Bayern family for
granting access to the premises and facilities.

DS is supported by EPSRC Early Career research fellowship
EP/L020505/1. EB is supported by a UK Royal Academy of
Engineering Research Fellowship (grant no. RF/128). LFG is
funded by the Max Planck Society.

REFERENCES

[1] C. C. Wilmers, B. Nickel, C. M. Bryce, J. A. Smith, R. E. Wheat,
and V. Yovovich, “The golden age of bio-logging: how animal-borne
sensors are advancing the frontiers of ecology,” Ecology, vol. 96, no. 7,
pp. 1741–1753, 2015.

[2] T. G. Laske, D. L. Garshelis, and P. A. Iaizzo, “Monitoring the wild black
bear’s reaction to human and environmental stressors,” BMC physiology,
vol. 11, no. 1, p. 1, 2011.

[3] G. Schofield, V. J. Hobson, S. Fossette, M. K. Lilley, K. A. Katselidis,
and G. C. Hays, “Biodiversity research: fidelity to foraging sites,
consistency of migration routes and habitat modulation of home range
by sea turtles,” Diversity and Distributions, vol. 16, no. 5, pp. 840–853,
2010.

[4] S. H. Newman, N. J. Hill, K. A. Spragens, D. Janies, I. O. Voronkin,
D. J. Prosser, B. Yan, F. Lei, N. Batbayar, T. Natsagdorj et al., “Eco-
virological approach for assessing the role of wild birds in the spread of
avian influenza h5n1 along the central asian flyway,” PloS one, vol. 7,
no. 2, p. e30636, 2012.

[5] J. Shamoun-Baranes, R. Bom, E. E. van Loon, B. J. Ens, K. Oosterbeek,
and W. Bouten, “From sensor data to animal behaviour: an oystercatcher
example,” PloS one, vol. 7, no. 5, p. e37997, 2012.



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. XX, NO. X, SEPTEMBER 20XX 12

E
a
ch

C
a
p
 (

C
la

ss
if
ie

r)

E
a
ch

C
a
p
 (

C
la

ss
if
ie

r 
fi
lt

)

E
a
ch

C
a
p
 (

P
LC

A
 (

m
e
a
n
))

E
a
ch

C
a
p
 (

P
LC

A
 (

m
e
a
n
) 

fi
lt

)

E
a
ch

Fi
e
ld

 (
C

la
ss

if
ie

r)

E
a
ch

Fi
e
ld

 (
C

la
ss

if
ie

r 
fi
lt

)

E
a
ch

Fi
e
ld

 (
P
LC

A
 (

m
e
a
n
))

E
a
ch

Fi
e
ld

 (
P
LC

A
 (

m
e
a
n
) 

fi
lt

)

System

allofeed vocalisation

allofeeding

antenna

bg carrion crow

bg chickens

bg jackdaws

bg colony sounds

bg noise

copulation

flying

focal call

looking around

manipulation

nest

non-focal call

self-maintenance

shaking

small movement

walking
C

a
te

g
o
ry

F score

0

8

16

24

32

40

48

56

64

E
a
ch

C
a
p
 (

C
la

ss
if
ie

r)

E
a
ch

C
a
p
 (

C
la

ss
if
ie

r 
fi
lt

)

E
a
ch

C
a
p
 (

P
LC

A
 (

m
e
a
n
))

E
a
ch

C
a
p
 (

P
LC

A
 (

m
e
a
n
) 

fi
lt

)

E
a
ch

Fi
e
ld

 (
C

la
ss

if
ie

r)

E
a
ch

Fi
e
ld

 (
C

la
ss

if
ie

r 
fi
lt

)

E
a
ch

Fi
e
ld

 (
P
LC

A
 (

m
e
a
n
))

E
a
ch

Fi
e
ld

 (
P
LC

A
 (

m
e
a
n
) 

fi
lt

)

System

allofeed vocalisation

allofeeding

antenna

bg carrion crow

bg chickens

bg jackdaws

bg colony sounds

bg noise

copulation

flying

focal call

looking around

manipulation

nest

non-focal call

self-maintenance

shaking

small movement

walking

C
a
te

g
o
ry

Precision

0

8

16

24

32

40

48

56

64

72

E
a
ch

C
a
p
 (

C
la

ss
if
ie

r)

E
a
ch

C
a
p
 (

C
la

ss
if
ie

r 
fi
lt

)

E
a
ch

C
a
p
 (

P
LC

A
 (

m
e
a
n
))

E
a
ch

C
a
p
 (

P
LC

A
 (

m
e
a
n
) 

fi
lt

)

E
a
ch

Fi
e
ld

 (
C

la
ss

if
ie

r)

E
a
ch

Fi
e
ld

 (
C

la
ss

if
ie

r 
fi
lt

)

E
a
ch

Fi
e
ld

 (
P
LC

A
 (

m
e
a
n
))

E
a
ch

Fi
e
ld

 (
P
LC

A
 (

m
e
a
n
) 

fi
lt

)

System

allofeed vocalisation

allofeeding

antenna

bg carrion crow

bg chickens

bg jackdaws

bg colony sounds

bg noise

copulation

flying

focal call

looking around

manipulation

nest

non-focal call

self-maintenance

shaking

small movement

walking

C
a
te

g
o
ry

Recall

0

10

20

30

40

50

60

70

80

90

Fig. 7. Per-class results as in Figure 6 but for the two per-individual scenarios (EachCap and EachField).

[6] S. Hiryu, Y. Shiori, T. Hosokawa, H. Riquimaroux, and Y. Watanabe,
“On-board telemetry of emitted sounds from free-flying bats: compensa-
tion for velocity and distance stabilizes echo frequency and amplitude,”
Journal of Comparative Physiology A, vol. 194, no. 9, pp. 841–851,
2008.

[7] A. Ilany, A. Barocas, M. Kam, T. Ilany, and E. Geffen, “The energy
cost of singing in wild rock hyrax males: evidence for an index signal,”
Animal Behaviour, vol. 85, no. 5, pp. 995–1001, 2013.

[8] C. Couchoux, M. Aubert, D. Garant, and D. Réale, “Spying on small
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