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Abstract 

We begin by using a version of Green correspondence due to Grab

meier to count the number of components of two permutation modules 

V®r and y®r for the hyperoctahedral group. We quantize these ac

tions to make v®r and y®r into modules for the type B Hecke algebra 

1i(r) and then show that, as 1i(r)-modules, y®r is isomorphic to a di

rect sum of permutation modules MA as given by Du and Scott. This 

enables us to use our earlier results to show that in the group case, 

over odd characteristic, the q-Schur2 algebra and the hyperoctahedral 

Schur algebra are Morita equivalent, as these algebras are respectively 

the centralizing algebras of the actions of the hyperoctahedral group 

on y®r and v®r. 

We then attempt to construct a bialgebra, the dual of whose rth 

homogeneous part is isomorphic to the q-Schur2 algebra. We show 

that this is not possible by the usual methods unless q = 1, and give a 

full description in the group case. 

Results of earlier chapters lead us to introduce the notion of a bal

anced Mackey system for a finite group G, and exhibit balanced Mackey 

systems for wreath products of H and the symmetric group, where H is 

any finite group, and a new balanced Mackey system for the symmetric 

group itself. We then use this as a basis for counting the number of 

simple modules for the partition algebra, and also derive a formula for 

the dimensions of these simple modules. 

In the final chapter we conjecture how some of our results may 

extend to complex reflection groups and Ariki-Koike algebras. 
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Introduction 

Dipper and James first introduced the q-Schur algebra in [4] , and it 

has been extensively studied since then. They defined for each composi

tion A E A(n, r) a cyclic submodule M>' of Hec(r), the Hecke algebra of 

type A. The q-Schur algebra, Sq (n, r), is the centralizing algebra of the 

action of Hec(r) on the direct sum EB>'EA(n,r) MA. If we put q = 1 then 

Hec(r) becomes k Sym(r), the group algebra of the symmetric group, 

and the q-Schur algebra is the classical Schur algebra, S(n, r), which 

was first considered in [31]. Now the t'''M Schur algebra was coined 

by Green in [18], where he defined S(n, r) as the dual of a certain coal

gebra A(n, r). In [3] Dipper and Donkin quantized A(n, r), giving us 

the bialgebra Aq(n, r). They then showed that if E denotes the natu

ral module for GL", then the centralizing algebra of a certain action of 

Hec(r) on E@r is isomorphic to the dual of Aq(n, r), generalizing [18, 

2.6]. Since they also show that E@r is isomorphic to EB>'EA(n,r) MA, this 

gives us two ways of constructing the q-Schur algebra. 

Central to this thesis is the idea of a p-Mackey system of a finite 

group G. A Mackey system is traditionally a set of subgroups, M, of a 

given finite group, which is closed under both conjugation and intersec

tion. (See [13, exercise 2.2] for example.) Let p be prime. loF a/$o. 

the identity subgroup is a member of M, and every Sylow p-subgroup 

of G is contained in a member of MJ we call Map-Mackey system of 

G. In his doctoral thesis [14], Grabmeier proves a version of Green cor

respondence where all the vertices come from a given p-Mackey system. 

Using this he derives a method of counting the number of isomorphism 

types of indecomposable trivial source modules with vertices in a given 
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p-Mackey system, working over a field of characteristic p. He applies 

this count to the p-Mackey system of Young su bgrou ps of the symmet

ric group, which enables him to count the number of components of 

the permutation module E®T above and hence to derive results about 

the representation theory of the Schur algebras. 

The main part of this thesis involves generalizations of all of the 

above to the type B situation, where we use 1-l(r) to denote the type 

B Heeke algebra. Now many Schur algebras associated to 1-l(r) have 

been introduced, and in this thesis we consider the following examples. 

In [19], Richard Green introduces the hyperoctahedral q-Schur algebra, 

S:YP(n, r), as the centralizing algebra of the action of1-l(r) on a certain 

tensor power V®T. Independently of each other, Du and Scott [11] and 

Dipper, James and Mathas [5] introduced two Morita equivalent Schur 

algebras, called the q-Schur2 algebra (pronounced q-Schur-two) and the 

(Q, q)-Schur algebra respectively. They are both centralizing algebras 

of the action of 1-l(r) on direct sums of 1-l(r)-modules MA, which are 

defined for each pair of compositions A = (/-L; 11), the direct sum in the 

former being over all such pairs of compositions, and in the later over 

a certain subset of these. In chapters 2, 3 and 4 we derive results to 

help us compare these algebras in certain cases. 

We begin chapter 2 by introducing two systems of subgroups of 

the hyperoctahedral group, Hyp(r). These are V, the set of Young 

subgroups of the hyperoctahedral group, and y, which we call the set 

of infant subgroups. Each Young subgroup is also an infant subgroup. 

We also introduce a k Hyp(r )-module Y and its rth tensor power y®r. 

We show that the set of point stabilizers of the action of Hyp( r) on 

y®r is precisely the set of infant subgroups y, and analogously the set 

of point stabilizers of the action of Hyp( r) on v®r is precisely the set of 
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Young subgroups V. We prove then that for all primes p both Y and V 

are p-Mackey systems of Hyp(r), except in one particular case (V when 

p = 2) which we adapt to suit our methods. We apply Grabmeier's 

count to count the number of isomorphism types of indecomposable 

trivial source modules over both Y and V, which we denote by TSM(Y) 

and TSM(V) respectively. We show when p is odd that TSM(Y) 

TSM(V), but that this is not true when p = 2. 

In chapter 3 we begin by quantizing our Hyp( r )-action on y®r to 

make y®r into a module for the type B Hecke algebra 1-l(r). Now y®r 

has a basis labelled by the set I B (n, r) and we define the content of 

an element of IB(n, r). This gives rise to the subspaces y>.®r, and we 

show that y®r decomposes as a certain direct sum of these subspaces. 

Then, by considering annihilators of certain elements, we show for each 

pair of compositions A that both y>.®r and M>' are isomorphic to the 

same 1-l(r )-module, and hence are themselves isomorphic. This gives 

us that Du and Scott's direct sum EEh M>' and our y®r are isomorphic 

as 1-l(r)-modules, and so the q-Schur2 algebra S:(n, r) is isomorphic to 

End1i(r) (y®r). 

Chapter 4 mainly collects results implied by the previous two chap

ters. We first look at how Grabmeier's methods enable us to count the 

number of components of a permutation module. Then using this and 

some Morita theory we can show that in the group case (at q = Q = 1) 

the Schur2 algebra and the hyperoctahedral Schur algebra are Morita 

equivalent over a field of odd characteristic, but that this is not true 

over characteristic 2. We then also apply Fitting's theorem to count 

the number of irreducible representations of each of the type B Schur 

algebras we consider, again when q = Q = 1. 
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In chapter 5 we mimic [3] to build ourselves a coalgebra from y®r. 

We start with the free bialgebra, FB (3n), for which y®r is naturally 

a comodule and derive the relations needed in it to ensure that mul

tiplication by any element of 1i(r) is a comodule map. We show that 

the ideal I generated by these relations is a biideal of FB(3n) so that 

F(3n)B/ I is also a bialgebra, which we denote by Cq,Q(3n). The fact 

that multiplication by any element of1i(r) is a comodule map induces a 

homomorphism between Cq,Q(3n, r)*, the dual of the rth homogeneous 

part of Cq,Q(3n) , and the q-Schur2 algebra S;(n, r). When q = Q = 1 

we show this is an isomorphism, so that we have a coalgebra con

struction of the Schur2 algebra, analogously to [18, 2.6] and [3, 3.1.5]. 

Hence we can write down the dimension of S;(n, r) for all values of 

q, Q, nand r, and can also exhibit a spanning set of Cq,Q(3n, r) of 

this desired dimension. We show that when q =1= 1 this spanning set 

is linearly dependent, so that the dimension of Cq,Q(3n, r)* is strictly 

less that that of S; (n, r) so that the two cannot be isomorphic in this 

case, and hence in particular we cannot follow the above methods to 

associate a quantum group to this set-up when q =1= 1. 

In chapter 6 we return to Mackey systems and define the idea of 

a balanced p-Mackey system. This is an analogue of what happens in 

the characteristic zero case (or when p f IGI). We then consider the 

so called complete monomial groups G 2 Sym(r), where G is any finite 

group, and look at how to view these as permutation groups. We show 

that the Young subgroups inside these groups form a p-Mackey system, 

providing that p f IGI, and use Grabmeier's methods to show that this 

Mackey system is balanced. 

In chapter 7 we continue to look at Mackey systems. We define 

a system of subgroups of Sym( n) which we call P, and we show that 
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P is a p-Mackey system for all primes p. We use Grabmeier's count 

in the usual way, and show that P is balanced if and only if n > 

p/2. We then use this to count the number of components of a certain 

k Sym(n)-module when char k = p f n, and n ~ r + 1. As the partition 

algebra Pr(n) (see [26] for example) is isomorphic to the centralizing 

algebra of this module when n ~ 2r this suggests a method by which 

we may derive results about the representation theory of Pr (n). We 

end the chapter by using a lemma of Donkin [7, remark after 3.6] and 

Fitting's theorem to count the number of irreducible modules U('\) for 

the partition algebra when n ~ 2r and p f n, and also to calculate in 

these cases the dimension of each U (,\) in terms of dimensions of weight 

spaces of simple GLn-modules. 

In the final chapter we define a k-space X m , and show that its rth 

tensor power X~"r is a module for the group algebra of the complex 

reflection group G(m, 1, r). We conjecture that this is isomorphic to a 

certain direct sum of modules as in [10]. We also make a conjecture 

about a p-Mackey of the complex reflection groups G(m, a, r). 



CHAPTER 1 

Preliminaries 

In this first chapter we introduce the structures we will be using 

throughout the thesis, and also review some of the results relating to 

them which will be useful later on. 

%.1. Groups, Heeke algebras and representations 

Let 0 be a set. Then the symmetric group on 0, denoted Sym(O), is 

the set of all permutations of 0, ollcl Sym(O) is a group with the 

operation of composition. If 0 = {I, 2, ... , r}, which we denote by ,£, 

then we write Sym(r) for the symmetric group on O. For 1 ~ i ~ r-l 

let Si = (i i + 1), the element of Sym(r) which swaps i and i + l. 
Then Sym(r) is generated by the set {Si 11 ~ i ~ r -I}, with relations 

s~ = 1 
~ 

where 1 ~ i, j ~ r - 1, giving Sym(r) a Coxeter type presentation. 

(Sym(r) is the Coxeter group of type A.) Given any finite set 0 we 

could define a similar set which generates Sym(O). 

We now introduce the star of the show. Let X be a set with a 

regular involution - , called bar, so that X necessarily has 2r elements 

for some non negative integer r. Then the hyperoctahedral group, 

Hyp(X), is the subgroup of Sym(X) given by 

Hyp(X) = {a E Sym(X) I a(i) = a(i) Vi EX}. 

Of course, we have in mind that ~ = i. 

11 
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If X = {I, 2, ... ,r, I, 2, ... ,r} then we write Hyp(r) for the hyper

octahedral group on X. It is well known that Hyp( r) is isomorphic to 

the wreath product ~ l Sym(r), and also to the automorphism group 

of an r-dimensional cube. 

We can also present Hyp(r) as a Coxeter group. This time we define 

element Si E Hyp (r) via 

{
(I I) 

Si = ( i i + 1) (I 
if i = 0 

i + 1) if 1 ~ i ~ r - 1 

Then Hyp(r) has generators So, S1, ... ,Sr-1 and relations 

S? = 1 
~ 

SiSj = SjSi, for Ii - jl > 11 tAnti : of- j = 0 ",.J 
_ I < ~ <rJ 

Si Si+1 Si - Si+1 Si Si+1 

where 1 ~ i,j ~ r - 1. Hyp(r) a Coxeter group of Type B. The 

concepts of a reduced expression for an element of a Coxeter group 

and for the Coxeter length of an element are defined in the usual way. 

For an element w of either Sym(r) or Hyp(r), we let l(w) denote the 

Coxeter length of w. If w E Hyp (r), then the number of times So occurs 

in a reduced expression for w is constant, and we denote this by no (w). 

Note that if, for i E [, we put ti = Si-1Si-2 . .. SOS1 ... Si-1 = (i z), 

then tl, t2,"" tr generate a subgroup of Hyp(r) isomorphic to (2~)r. 

Also the elements S1, S2, ... , Sr-l generate a subgroup isomorphic to 

Sym(r). We now present another way of looking at that. 

Again let X be a set with a regular involution - . For any subset 

X' = {Xl,'" ,Xm } of X we write X' for the set {X}, ... ,xm }. Now let 
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Z be a subset of X such that Z u Z = X i.e. with Z u Z = ~\ and 

Z n Z = 0. Then we call Z a schism of X, and we can identify Sym (Z) 

with a subgroup of Hyp(X) via the following map. Let 

¢ : Sym(Z) --+ Sym(X) via ¢(o-)(z) = o-z and ¢(o-)(z) = o-z, 

for 0- E Sym(Z) and z E Z. Now, for each 0- E Sym(Z) and z E Z, 

we have that ¢(o-)(z) = o-z = ¢(o-)(z) so that each ¢(o-) is in fact a 

member of Hyp(X) c Sym(X). We denote the image ofSym(Z) under 

¢ by S(Z), so that S(Z) is a subgroup of Hyp(X) which is isomorphic 

to Sym(Z). Then S(Z) and Sym(X) are reserved with this meaning, so 

that Sym(X) always denotes the full symmetric group on X, and S(Z) 

is always the image of Sym(Z) inside Hyp(X). (Also, in chapter 5, we 

will use S(Z) to denote the image of Sym(Z) inside a larger wreath 

product H 2 Sym(r), where H is any finite group.) Note that of course 

S(Z) and S(Z) are the same subgroup of Hyp(X). 

Let r, n ~ 1, and unless otherwise stated we assume that n ~ r. 

Let A = (AI, ... , An) be a sequence of non negative integers Ai, not all 

equal to zero. If Al + ... + An = r then we call A a composition of r, into 

at most n parts, and denote the set of these by A(n, r) . If in addition 

to this we have that Al ~ A2 ~ ... ~ An then we call A a partition 

of r, and denote the set of these by A + (n, r). If A is a composition 

in A(n, r) then we denote by A the unique partition created from A 

by reordering the parts in descending order. Note that a partition A 

may end in a sequence of zeros, and we usually omit these. We also 

often use superscripts to denote a sequence of more than one Ai' In 

this case the commas may be omitted, so that (4,4,3,3,2,0, ... ,0) = 

(4,4,3,3,2) = 42322. 

We can represent a partition A E A+(n, r) by its Young diagram 

of crosses in the plane. For example, the Young diagram dA of A = 
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(6,4,4,2) is given by 

d).. X X X X X X 

x x x x 

x x x x 

x x 

We can flip a diagram over its main diagonal, and the corresponding 

partition is called the partition conjugate to A, and is denoted by X. 

For example, flipping the Young diagram d).. in the previous example 

gIves 

d)..' x x X x 

x x x x 

x x x 

x x x 

x 

x 

so that X = (4,4,3,3,1,1), is the partition conjugate to (6,4,4,2). 

Now let p be a prime. If A E A+(n, r) is such that Ai - AHI < p 

for all 1 ~ i ~ n - 1 and An < p then we say that A is a column 

p-regular partition of r, and we denote the set of these by A + (n, r ) col· 

If for all 0 ~ i ~ n - p a partition A E A + (n, r) contains no sequence 

Ai+I = Ai+2 = ... = Ai+p > 0 then we call A a row p-regular partition, 

and denote the set of these by A +(n, r)row. Note that if A E A +(n, r)col 

then X E A+(n,r)row, and vice versa. (It may be that A = X.) From 

this it is easy to see that IA+(n,r)coll = IA+(n,r)rowl· It is also very 

useful for us to know that if p is prime then A E A + (n, r) can be 

uniquely written as 
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with each A(i) a column p-regular partition. We call this the unique 

p-adic expansion of A. 

We associate to each partition a subgroup of the symmetric group. 

Let A E A+(n, r), with A = (AI, A2, ... , An). Then the standard Young 

subgroup of Sym(r) associated to A is given by 

... x Sym{r - An, ... ,r}. 

We can similarly associate a group Sym(A) to any composition of r. 

A Young subgroup of Sym(r) is any subgroup Sym(r)-conjugate to a 

standard Young subgroup. 

It is not only single partitions and compositions that will be useful 

in this thesis. The set of pairs of compositions (or bicompositions) of 

r, denoted by A2(n, r), is given by 

A2 (n,r) = {A = (J.-L;v) IJ.-L E A(n,a), v E A(n,r - a),O ~ a ~ r}. 

Note that each partition in the pair has at most n parts. If J.-L and v 

are both partitions then we call A = (J.-L; v) a pair of partitions (or a 

bipartition) of r, and denote the set of these by A;(n, r). 

We can also extend these ideas to construct the set of m-compositions 

of r, denoted A~(n, r), which consists of m-tuples A = (A(l); ... ; A(m)) 

such that A(i) E A(n, ri), 0 ~ ri ~ r and ~iEm ri = r. Note again 

that each A( i) has at most n parts, and if each A( i) is a partition the 

we call A = (A(l); ... ; A(m)) an m-partition, the set of all such being 

denoted by A~ (n, r). 

We also consider Young subgroups inside the hyperoctahedral group, 

and other wreath products of the form H2Sym(r), for H a finite group. 

If J.-L E A + (n, r) then we write S (J.-L) for the image of the standard Young 
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subgroup Sym(J.L) under the map 4> as given earlier in this chapter. Now, 

if A = (J.L; v) E At(n, r), and 9 is the transposition in Hyp(r) given by 

9 = (1, a + 1)(1, a + 1)(2, a + 2)(2, a + 2) ... (r - a, r)(r - a, r), where 

a = IJ.LI, then we write S(A) for S(J.L) x S(V)9 ~ Hyp(r). These are then 

the standard Young subgroups of Hyp(r) and in general a Young sub

group of Hyp(r) is one which is Hyp(r)-conjugate to a standard Young 

subgroup. Of course in this way we have a Young subgroup of Hyp(r) 

associated to each composition of r. Note also that given ..\ E A~(n, r) 

we can make a similar definition for Young subgroups of the wreath 

product H l Sym(r). 

Let k be a field, which for the rest of the thesis we will assume is 

algebraically closed, and since all our k-algebras are finite dimensional 

k will in particular be a splitting field for these algebras. We now turn 

to irreducible kG-modules, or representations, in the cases G = Sym(r) 

and G = Hyp(r). In [22], James constructs for each ..\ E A +(n, r) a 

k Sym(r)-module SA, called a Specht module, and in turn a certain 

factor module denoted by D>'. When k = Q, the field of rational num

bers, it is part of the folklore of representation theory that the set 

{S>'IA E A+(n,r)} is a full set of irreducible QSym(r)-modules, see 

for example [22]. James also shows that over a field k of characteris

tic p, the set {D>'I A E A+(n,r)row} is a full set of kSym(r)-modules. 

This means that Sym (r) has I A + (n, r) I isomorphism types of ordinary 

irreducible representations, and as IA +(n, r)rowl = IA +(n, r)cod, we also 

have that Sym(r) has IA +(n, r)cod isomorphism types of p-modular rep-

resentations. 

As we have already seen, the hyperoctahedral group Hyp( r) is the 

wreath product :z l Sym(r), and therefore moreover it is a semi-direct 

product (2~)r ><I Sym(r). Then since (2~)r is an abelian group, we could 
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use the method of the" little groups of Wigner", as detailed in [32, 8.2] 

to construct and label the irreducibles for the hyperoctahedral group 

over the field C. However, in [1], Morris et al. construct irreducible 

k Hyp(r)-modules over fields of any characteristic. They define modules 

yA and JA for each pair of partitions A = (/-l; 1/) E At(n, r). Then over 

a field k of characteristic 0 the set {yA I A E At(n, r)} is a full set of 

kHyp(r)-modules, so that Hyp(r) has IAt(n,r)1 isomorphism types of 

ordinary irreducible representations. 

Before we look at the modules JA and the p-modular case, we need 

to define p-regular pairs of partitions. If p i= 2 then A = (/-l; 1/) is 

row (resp. column) p-regular if both /-l and 1/ are row (resp. col

umn) p-regular. If p = 2 then A is row (resp. column) p-regular 

if /-l = 0 and 1/ is row (resp. column) p-regular. This gives us the 

sets At(n, r)row and At(n, r)col, for any prime p. Then over a field k 

of prime characteristic the set {JA I A E At(n, r)row} is a full set of 

k Hyp(r)-modules, so that Hyp(r) has IAt(n, r)rowl = IAt(n, r)cod iso

morphism types of p-modular irreducible representations. Note that 

when p = 2 we have that IAt(n, r)cod = IA +(n, r)cod, so we have that 

Hyp(r) has IA +(n, r)cod isomorphism types of 2-modular irreducible 

representations. 

We will also consider Hecke algebras. These can be regarded as 

q-deformations of the group algebras k Sym(r) and k Hyp(r) of the 

symmetric and hyperoctahedral groups. We now make this more pre

cise.lf O~q, Q E k, then the Hecke algebra of type A, which we denote 

by Hec(r), is the free k-module with generators TS1 , TS2 ,' .. , TSr_1 and 

relations 

(TSi - q)(TSi + 1) = 0 

TSiTsj = TsjTsi , for Ii - jl > 1 
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where 1 ~ i, j ~ r-l. Note that by putting q = 1 we retrieve k Sym(r). 

In a similar way the Hecke algebra of type B, denoted 1l(r) or just 1l, 

is the free k-module with generators Tso ' TSll ... ,TSr _
1 

and relations 

(TSi - q)(TSi + 1) = 0, for 1 ~ i ~ r - 1 

(Tso - Q)(Tso + 1) = 0 

TSiTSj = TSjTSi' for Ii - jl > 1 J ott" ,# J~o OJ"I 
1< .. «('.I 

where again 1 ~ i, j ~ r - 1, and this time if we put q = Q = 1 we 

retrieve the group algebra k Hyp(r). Note that the subalgebra of 1l(r) 

generated by TSll TS2 ' ... , TSr _1 is isomorphic to Hec(r). 

Now if w = Sa(l) .•. sa(m) is a reduced expression for W E Hyp(r) 

(resp. W E Sym(r)) then we write Tw for TSa(l) ... TSa(m)' Then as k

modules Hec(r) has k-basis {Tw I W E Sym(r)} and 1l(r) has k-basis 

{Tw I W E Hyp(r)}. 

The representations of Hec(r) and 1l(r) are labelled by partitions 

and pairs of partitions of r in an analogous way to the earlier group rep

resentations, but we do not consider them in this thesis so a description 

of them is not given here. 

1.2. Endomorphism algebras 

As stated in the introduction one of our aims is to compare the 

various Schur algebras in type B. We also intend to look at the par

tition algebras, and in the cases we consider these are isomorphic to 

certain endomorphism algebras. Therefore we now introduce all these 

structures and look at some useful theorems we will use to prove other 

theorems about them. 
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We begin with Schur algebras. The name Schur algebras was orig

inally used by Green in his mon09rap" [18]. He defined the Schur 

algebra, S(n, r), as the dual of a certain coalgebra A(n, r), and we will 

consider this approach later on in both this chapter and the thesis itself. 

Green shows [18, 2.6] that S(n, r) is isomorphic to the centralizing al

gebra of a certain permutation module for the symmetric group. Here 

we look at that approach and see how it leads to the definition of other 

Schur algebras, these being relatedib -fie hyperoctahedral groups, and 

Hecke algebras of both types A and B. (Of course, there are others, 

but we only introduce the ones which playa role in this thesis.) Here 

we go. 

Let E be an n-dimensional vector space over a field k with basis 

{ el, e2, ... , en}, and let E®r denote its rth tensor power E ® E ® ... ® E 

(r times). If J(n, r) denotes the set of r-tuples with entries from n, and 

if i = (iI, i2, ... , ir) E J(n, r) then every basis element in E®r can be 

written uniquely as 

The symmetric group Sym(r) acts on the right of J(n, r) via place 

permutation i.e. if i E J(n, r) and 1f E Sym(r) then 

i.1f = (ib ... , ir).1f = (i(I)1T' ... ' i(r)1T). 

We can now transport this action to E®r so that if ei is a basis element 

in E®r, and 7T E Sym(r) then 

Extending this action linearly makes E®r into a k Sym(r)-module. 

Then the centralizing algebra of this action is the Schur algebra S( n, r) 

as above Le. we have that S(n, r) = Endsym(r) (E®r). Note that the 

point stabilizers of basis elements of E®r under this action are the 

Young subgroups, Sym(;\). 
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We can now quantize the above action, as in [3, 3.1.4] to give an 

action of the type A Hecke algebra, Hec ( r ), on E®r. Again we describe 

the action by specifying how each generator TSj of Hec(r) acts on E®r. 

Let q E k, and let i E I(n, r), so that ej is a basis element of E®r. 

Then TSj acts on ej as follows: 

if i j ~ i j +1 

if i j > ij +1 

Then EndHec(r) (E®r) is called the q-Schur algebra, and is denoted by 

Sq(n, r). Note again that putting q = 1 we are back in the group 

case. The q-Schur algebras were introduced by Dipper and James in 

[4]. They defined for each composition A E A(n, r) a certain Hec(r)

"permutation" module M>', and defined the q-Schur algebra to be 

EndHec(r) ($>'EA(n,r) M>'). Since E®r rv $>'EA(n,r) M\ by [3, 3.1.5] we 

can use either incarnation of this "permutation" module. 

We now look at Schur algebras in type B. In [19], Richard Green 

takes the tensor power approach to constructing permutation modules. 

Let L(n) denote the set {I, 2, ... , n, n, ... , I} with elements in L(n) 

being ordered via 1 < ... < n < n < ... < I. Let V denote the 2n-

dimensional vector space over k with basis {Vi liE L(n)}, and let v®r 

denote the rth tensor power of V. Then let Iv = Iv (2n, r) denote the 

set of r-tuples i = (ill i2 , •. , ir) with entries from {I, ... , n, n, ... , I}. 

Similarly to above, v®r has a k-basis consisting of elements Vi, where 

i E Iv. Now Hyp(r) acts on the right of Iv via 

if j ,e 0 

if j = 0 
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and thus Hyp(r) acts on the right of v®r via Vi.7r Vi.7r for every 

7r E Hyp (r) and i E Iv. Again we extend this action linearly to make 

v®r into a right k Hyp(r)-module. The hyperoctahedral Schur algebra, 

which we denote by SHYP(n, r), is then the centralizing algebra of this 

action i.e. we have SHYP(n, r) = EndkHyp(r)(V®r). 

Again this action can be quantized. Let q, Q E k, and let i E 

Iv(2n, r) so that Vi is a basis element of v®r. Then the generators 

Tso ' .•. ,TSr _ 1 act on v®r as follows, by [19, 3.1.2]. 

ViSj + (q - l)Vi if i j > i j +1 

QVisj if j = 0 and i 1 E {I, ... ,n} 

Vis j + (Q - 1 )Vi if j = 0 and i 1 E {n, ... , I} 

Then the hyperoctahedral q-Schur algebra, denoted by S:YP (n, r), is 

defined by S:YP (n, r) = Endll (v®r). It is no surprise to find that by 

putting q = Q = 1 we are back in the group case. 

We now need something to compare this to. In [11] and [5] two 

type B Schur algebras were unveiled, Du and Scott's being the q-Schur2 

algebra, and Dipper et al. introducing the (Q, q)-Schur algebra. We 

will concentrate mainly on the former. 

Let A = (p,; 1/) E A2 (n, r). We now define some elements of 11. 

related to A. Let 1p,1 = a. Then we let 

7r). = n:=l (qi-l + TtJ. 

Also, let x>. = L:wES(>') Tw' Then we put m>. = X>.7r>. and define M>' 

to be the cyclic right 1I.(r)-module given by M>' = m>.1I.(r). Du and 

Scott then define the q-Schur2-algebra, denoted S:(n, r), to be 

S:(n, r) = Endll (E9>'EA2(n,r) M>'). 



1.2. ENDOMORPHISM ALGEBRAS 22 

If q = Q = 1, so that we are back in the group case, we write S2(n, r) 

for the Schur2 algebra. 

Dipper, James and Mathasldefinition of the (Q, q)-Schur algebra 

is similar. Let A~ (n, r) be the subset of A2 (n, r) consisting of pairs of 

compositions A = (/-1; 1/) where between them /-1 and 1/ have at most n 

parts. Then the (Q, q)-Schur algebra, denoted SQ,q(n, r), is defined to 

be 

SQ,q(n, r) = Endll(EB),EA~(n,r) M),} 

SQ,q(n, r) is a sub algebra of S;(n, r), and again back in the group case 

(q = Q = 1) we denote the corresponding Schur algebra by Sl,l (n, r). 

We will see a connection between SQ,q(n, r) and S;(n, r) later on in 

this chapter. 

We now have one more endomorphism algebra to meet, called the 

partition algebra. We now consider graphs on two rows of r vertices, 

with each edge joining precisely 2 vertices, and with at most 1 edge 

between any two vertices. The connected components of each graph 

partition the vertices into m subsets, for some 1 ~ m ~ 2r. We then 

define an equivalence relation rv on the set of all such graphs (with 2r 

vertices) by saying that two graphs are equivalent if they determine 

the same partition of the 2r vertices. So for example 

:iJ\ . 
Then we use the term r-partition diagram, or just diagram, to mean 

the equivalence class under rv of the given graph. 

Let d1 and d2 be diagrams. If we let n E k we can multiply them, 

and the recipe for producing the product d2d1 is, 
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• Place d1 above d2 so that the bottom row of d1 coincides with 

the top row of d2 . This gives us a diagram with a top, middle, 

and bottom row. 

• Let Q be the number of connected components of our 3 rowed 

diagram that lie entirely in the middle row. 

• Make a new r-partition diagram by eliminating the middle row, 

but keeping the top and bottom rows and maintaining the con

nections between them. 

• Then d2d1 = nO!d3 . 

For example, let 

= ",~. 
01\\ 

The partition algebra Pr(n) is the algebra of k-linear combinations of 

r-partition diagrams, with multiplication as above. 

We can now relate this to endomorphism algebras. We have already 

seen a right action of Sym(r) on E®r, but we can also make Sym(n) 

act diagonally on the left of E®r. More precisely, if 7r E Sym(ft), and 
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ei is a basis vector of E®r, then 

7rei = 7r(eil ® ... eir ) = (e 1T(id ® ... e 1T(i r
)). 

Of course, we extend this action linearly to make E®r into a left 

k Sym(n)-module. 

The partition algebra now becomes even more interesting due to 

the following theorem. 

THEOREM 1.1. When n ~ 2r, we have that 

Pr(n) f'V Endksym(n)(E®r). 

PROOF. This was originally proved by Jones in [24], over the com-

plex numbers C. For a characteristic free version see [26, 2.7]. 0 

In a later chapter we will consider some aspects of the representation 

theory of Endk Sym(n) (E®r), giving us results about the partition algebra 

when n ~ 2r. We now look at some useful theorems. 

I. 3. Some useful theorems 

We first look at two theorems concerning endomorphism algebras, 

and begin with some notation. Let A be a finite dimensional 

k-algebra, and let M be a right A-module. If we can find non zero A

modules M' and Mil such that M = M' €a Mil then we call M decom

posable. Otherwise M is indecomposable. We call an indecomposable 

direct summand of M a component of M, and if M has d isomorphism 

types of component we record this by writing Comp(M) = d. We have 

the following theorem, called Fitting's Theorem. 

THEOREM 1.2. Let M be a right A-module, and let 

M = M?m 1 €a M:m2 €a ... €a M:md 

be its decomposition into components, so that each mi ~ 1. Then 
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there exist precisely d simple EndA(M)-modules, and moreover they 

have dimensions ml, m2, ... ,md respectively. 

PROOF. This was originally proved by Fitting in [12], but a proof 

can also be found in [16, 5.2] Oil" r '3 iJ I /.r 1.)( ",."It. 0 

Writing mod(A) for the category of finite generated right A-modules, 

we say that two rings Rand R' are Morita equivalent if there exists an 

equivalence of categories between mod(R) and mod(R'). This essen

tially means they have the same representation theory. The following 

is a standard tool for studying endomorphism algebras, and is useful in 

determining when two endomorphism algebras are Morita equivalent. 

THEOREM 1.3. Let M and N be A-modules such that 

M = M?m1 EB M:m2 EB ... EB MTmd
, and 

N = MI EBM2 EB··· EBMd 

where mi ~ 1. Then EndA(M) and EndA(N) are Morita equivalent. 

Note that since Morita equivalence is transitive, the above theorem 

shows that if M and M' are two A-modules with the same compo

nents (but with possibly different multiplicities) then EndA(M) and 

End A (M') are Morita equivalent. Then in particular the q-Schur2 alge

bra S~(n, r) and the (Q, q)-Schur algebra SQ,q(n, r) are Morita equiva-

lent. 

We now review Grabmeier's work on Green correspondence and 

Mackey systems. We begin by defining the latter. 

DEFINITION. Let M be a set of subgroups of a finite group G, and 

p a prime. Then M is a p-Mackey system of G if 

(Ml) {I} EM. 



1.3. SOME USEFUL THEOREMS 

(M2) M is closed under both (i) conjugation, and (ii) intersection. 

(M3) If S is a Sylow p-subgroup of G then S ~ A for some A E M. 

26 

Some authors, for example Geck and Pfeiffer in [13, Exercise 2.2], 

call M a Mackey system if it satisfies the two closure axioms above. 

We will often abuse this and use the name Mackey system when really 

we should say p-Mackey system. Our Mackey systems always satisfy 

all axioms (Ml), (M2) and (M3). 

Grabmeier shows, in [14, 2.3(i)], that if H is a subgroup of G, and 

M is a p-Mackey system of G, then M -/.. H = {H n A I A EM} is a 

p-Mackey system of H. 

Now for some notation. Let p be a prime, let k have 

characteristic p, let G be a finite group, and let M be a p-Mackey 

system. Let X be a kG-module and H be a subgroup of G. Then 

X is H-projective (or projective relative to H) if X is a direct sum

mand of ind~ W for some kH-module W. We now define the set 

M(X) = {H E M I X is H - projective}. Then M(X) is non-empty, 

and is also stable under G-conjugation. If X is indecomposable we 

call the minimal elements of M(X) the M-vertices of X. These form 

a single conjugacy class. Now let Mo be the subset of M consisting 

of subgroups P of G such that p divides IP : BI for all members B 

of M which are proper subgroups of P. In [15], Green shows that if 

p f IG : HI then every kG-module is H-projective. From this it follows 

that P E Mo if and only if P occurs as an M vertex of some inde

composable kG-module. We call Mo the M-vertices, and where this 

is unambiguous we call them simply the vertices. 

Let P be an M-vertex of an indecomposable kG-module X. We 

call a finite dimensional indecomposable kP-module W such that X is 

a component of ind~ W an M-source (or simply source) of X. Then 
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an indecomposable trivial source module is an indecomposable kG

module X which is a direct summand of ind~ k for some P E MOl 

where k denotes the trivial kP-module. T is a trivial source module 

over M (or just trivial source module when the Mackey system involved 

is understood) if T is a direct sum of indecomposable trivial M-source 

modules. 

For H ~ G, we write Na(H) for the normalizer of H in G. Let P 

be an M-vertex, and let H ~ G with Na(P) ~ H. Let 

x = {A E M I A ~ P n px for some x E G \ H}, 

3 = {A E M .t. H I A ~ H n px for some x E G \ H}, 

21 = {A E M I A ~ P, but no G-conjugate of A is in X}. 

Note that we have X C 3 and P E 21. 

Then for each kG-module V we define, up to isomorphism, the kH

module fV by V .t.H""' fV $ V', where the kH-module V'is a direct 

summand of kH-modules with M .t. H-vertex in 3, and also no compo

nent of fV has an M .t. H-vertex in 3. If V is indecomposable and the 

M-vertex of V is in 21 then the kH-module fV is also indecomposable, 

and it has an M .t. H-vertex in 21. 

Also if W is a kH-module we again define up to isomorphism the 

kG-module gW via ind~ W = gW $ W', where W' is a direct sum

mand of kG-modules with M-vertex in X, and no component of gW 

has M-vertex in X. Similarly, if W is an indecomposable kH-module 

with M .t. H-vertex in 21 then gW is an indecomposable kG-module 

with vertex in 21. Then, by [14, 3.7(i)] we have the following. 

THEOREM 1.4. Let V be an indecomposable kG-module. The as

signment V ~ IV (and similarly W ~ gW) gives us a one to one 
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correspondence between isomorphism classes of finite dimensional in

decomposable kG -modules with M -vertex in 2l and isomorphism classes 

of indecomposable kH -modules with M .J- H -vertex in 2l. The modules 

V and IV have a common vertex, and fV is called the Green corre

spondent of v. 

Note that this is a generalization of the classical Green correspon

dence in which M is the Mackey system of all subgroups of G. Grab

meier now uses his version of Green correspondence to analyze inde

composable trivial source modules over M. In [14, 4.5] he refines this 

correspondence to give the following. 

THEOREM 1.5. Let P be in Mo, so that P is an M-vertex. Then 

there exists a bijection between isomorphism classes of indecomposable 

kG-trivial source modules with vertex P, and isomorphism classes of 

projective indecomposable modules for NG;P). 

Note that in [9, 1.1(1)] Donkin proves an analogous result for mod

ules with a linear source. 

If G is a finite group we write #p(G) for the number of pi-classes of 

G, so that #p(G) is also the number of both irreducible and projective 

indecomposable kG-modules. We also write M~ for the set of M

vertices up to conjugacy. This gives us the following. 

THEOREM 1.6. The number of isomorphism types of indecompos

able trivial source modules over a p-Mackey system M is given by 

L:PEMo #p(NG;P»). 

This result will be used time and again during this thesis, and 

will often be referred to as Grabmeier's count. Note that for ease we 
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will denote the number of isomorphism types of indecomposable trivial 

source modules over a p-Mackey system M simply by TSM(M). 

Remark 

If M is a p-Mackey system for G when p divides IGI then it is also 

a p-Mackey system V,t ,&-, , as if p t IGI then the identity subgroup 

is the unique Sylow p-subgroup. If p t IGI then the identity subgroup 

is also the unique M-vertex, and N{~{}l}) = G so that when p t IGI we 

have that TSM(M) = #p(G) = the number of conjugacy classes of G. 

The story in characteristic zero is identical. 

1.4. Coalgebras and Schur algebras 

Green originally defined the Schur algebras as the dual of a certain 

coalgebra A(n, r). In this section we recall some basic definitions and 

then look at the construction of the q-Schur algebra via the coalgebra 

approach. More details about coalgebras and their friends can be found 

in [34]. 

A k-coalgebra is a triple (A,~, c) where A is a k-vector space and 

we have that ~ : A --+ A ® A and c : A --+ k are linear maps satisfying 

the following conditions: 

(~® 1)~ = (1 ® ~)~ : A --+ A ® A ® A (co-associativity) 

and 

(c ® 1)~ = (1 ® c)~ = 1 : A --+ A (co-unit) 

where 1 denotes the identity map on A. A coalgebra (A,~, c) is a 

bialgebra if in addition to the co-associativity and co-unit conditions 

being satisfied we also have that ~ and c are algebra homomorphisms. 

We do not consider Hopf algebras in this thesis, but remark that a 

bialgebra (A, ~, c)i.s. Hopf algebra if there exists a linear map 0" : A --+ 

A such that we have m(0"®1)8 = m(1®0")8 = € where m: A®A --+ A 
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is multiplication and we define the map E : A -t A by E(a) = E(l)a 

for all a E A. This is called the antipode condition, and if such a map 

(J exists, it is unique and is called the antipode of A. We will often 

abbreviate a co algebra or bialgebra (A,~, E) simply to A. 

If (A,~, E) is a bialgebra, then (1,~, E), or just 1, is called a biideal 

of A if 1 is an ideal of A and : 

(i) ~(1) c 1 ® A + A ® 1, and 

(ii) E(1) = o. 
If 1 is a biideal of A, then (Aj 1, ~', E') is a bialgebra, where ~' and E' 

are induced on Aj 1 by their respective maps on A. This is a useful way 

of constructing bialgebras, as we will see shortly when we construct the 

q-Schur algebras. 

Firstly some more definitions. Let (A,~, E) be a k-coalgebra. Then 

a pair (V, 7), often abbreviated to just V, is a right A-comodule if V is 

a k-space and 7 : V -t V ® A is a linear map such that 

(7 ® 1)7 = (1 ® ~)7 : V -t V ® A ® A 

and 

(1 ® E)7 = 1 : V -t V, 

where of course 1 is the identity map on V. 

Let (V, 7) and (V', 7') be right A-comodules. A linear map 4J : V -t 

V' is a comodule homomorphism if 7'4J = (4J ® 1)7. 

Any right comodule (V, 7) also has associated to it another struc

ture, called the coefficient space of V, denoted cf(V). Say V has k-basis 

{ Vi liE 1}. Then we have elements Cij E A, where i, j E 1, defined by 

7(Vj) = L:iEI Vi ® Cij, 

for each j E 1. Then the coefficient space cf(V) is defined by cf(V) := 

k - span{ Cij Ii, j E I}. Note that cf(V) ~ A. 
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As in [17] if (A,~, c) is a k-coalgebra, then its dual space .-1* = 

Homk(A, k) is an associative k-algebra. Multiplication of two elements 

a, {3 E A* is given by 

a{3 = (a Q9 (3)~. 

Also, for an A-comodule (V, T), we regard the k-vector space F as a 

left A*-module via the product av = (1 Q9 a)T(v), for a E A*, v E lr. 

We are now in position to construct the q-Schur algebra Sq(n, r). 

This construction originally comes from [3].(A similar approach is taken 

in [29, 3.5], giving a different coalgebra but isomorphic Schur algebra.) 

Start with F(n), the free k-algebra in non-commuting indeterminat,,, 

Xi,j, where i and j run over n. This is naturally a bialgebra, with 

~ (Xi,j) = L:mE!! Xi,m Q9 Xm,j, and c (Xi,j) = Oij, the Kronecker delta. Let 

q E k and let J be the ideal of F(n) generated by elements of the form 

for i > j and I ~ m, 

Xi,lXj,m - Xj,mXi,l - (q - l)xj,lxi,m for i > j and 1 > m, 

Xi,lXi,m - Xi,mXi,l for all i, l, m, 

where i, j, l, m E n. Then J is a biideal of F(n), and we put Aq(n) = 

F(n)/ J, so that writing Xi,j for the canonical image Xi,j + J of Xi,j in 

Aq(n) we get that in Aq(n) we have the following relations 

for i > j and 1 ~ m, 

Xi,lXj,m = Xj,mXi,l + (q - I)Xj ,lXi ,m for i > j and I > m, 

Xi,lXi,m = Xi,mXi,l for all i, I, m, 

where i, j, I, m E n. If we let Xi,j have degree 1, then Aq(n) is a graded 

algebra. We denote the rth homogeneous part of Aq(n) by Aq(n, r). 

Then E®r is an Aq(n, r)-comodule [3, 2.1.1] and the relations above 

ensure that multiplication by elements of Hec(r) is a comodule map. 

This induces an isomorphism 

(): Aq(n,r)* --+ EndHec(r)(E®r) = Sq(n,r), 
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and hence we have an alternative way of constructing the q-Schur al

gebra. Putting q = 1 we are back in the group case, and we haye the 

construction of the classical Schur algebra, as given in Green [18]. Note 

that Dipper and Donkin also localize at the determinant, d, to give us 

Aq(n)d, which they show is a Hopf algebra. 

In chapter 5 we will mimic this method in an attempt to construct 

a co algebra whose dual is the q-Schur2 algebra. 



CHAPTER 2 

Mackey systems for Hyp{r) 

Eventually, we aim to compare the above hyperoctahedral Schur 

algebra with Dipper and James' (Q, q)-Schur algebra, and with Du 

and Scott's q-Schur2 algebra, both at q = Q = 1. To this end we 

introduce a new module for the hyperoctahedral group, called y®r. 

Let Z(n) denote the set {n, n - 1, ... ,1,1,2, ... ,Ti, 1,2, ... ,n}, with 

ordering n < n - 1 < ... < I < 1 < 2 < ... < Ti < 1 < 2 < ... < n. 

Call elements I barred, and call the elements i hatted. Then we let 

IB(n, r) denote the set of r-tuples with entries from Z(n), so that the 

involution - acts on Z(n), and we have that i = i and i = i for all 

i E n. 

LEMMA 2.1. Hyp(r) acts on the right of IB(n, r) via 

i.8j = (i1 , ... , i(j)sj' i(j+1)sj"'" ir), if 0 < j < r, 

and i.80 = (II, i 2 , .. , ir) 

--~-.---.------~---- ------_ .. - ------.~----- -- ---- -- -

PROOF. It suffices to check the relation 80818081 = 81808180, which 

splits into 4 cases. The other relations follow from [18], [19], and the 

fact that 80 acts trivially on i E IB(n, r) if i1 E {i,2, ... ,Ti}. 

Case 1 ill i2 ¢. {1,2, ... , Ti}; 

then (iI, i2, ... , i r )SOSIS081 = (ill i2, i3,"" ir )818081 = 

(i2, iI, i3,"" ir )8Q81 = (i2, ill i3,"" ir)81 = (iI, i2, i3,"" ir) 

and 
33 
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(iI, i2,··., ir)SISOSlSO = (i2' it, i3, ... , ir)SOSISO = 

(i2' it, i3, ... , ir)SlSO = (iI, i2, i3,· .. , ir)so = (iI, i2 , i3 , ... , ir) 

Case 2 iI, i2 E {1,2, ... , n}; 

as in case 1, but now i l = i l and i2 = i2 , and so we get 

(iI, i2, ... , ir)SISOSlSO = (iI, i2 , .•. , ir) = (iI, i2 ,··., ir)SlSOSISO. 

Case 3 i l E {1,2, ... ,n},i2 ~ {1,2, ... ,n}; 

as in case 1, but now i l = i l so that we get 

(iI, i2,·· ., ir)SlSOSlSO = (iI, i2 , •.. , ir) = (iI, i2 ,···, ir)SlSOSlSO. 

Case 4 i l ~ {I, 2, ... ,n},i2 E {I, 2, ... ,n}; 

as in case 1, but now i2 = i2 so that we get 

Therefore we have that iSl SOSI So = iSOsl SOSI for all i E I B (n, r) and 

the proof is complete. D 

As before, we now transfer this action to a useful module. Let Y be 

the 3n-dimensional vector space over k with basis {Yi liE Z(n)}, and 

let y®r be its rth tensor power. Unsurprisingly, we now write a basis 

element in y®r as Yi = Yil ® Yi2 ® ... Yir , for some i E I B (n, r). Then 

Hyp(r) acts on y®r via 

Yi·.a = Yi.u for all i E IB(n, r) and a E Hyp(r). 

Extending this action linearly makes y®r into a k Hyp(r)-module. 

Young and younger subgroups 

It is well known that the point stabilizers of the action of Sym(r) 

on the standard basis elements of the tensor space E®r are the Young 

subgroups Sym(A), which are defined in chapter 1. We can make a 

similar definition for Hyp{r). 
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Let A = (J.L; v) be a pair of partitions in At(n, r), and put LJ1 = 

{ L:~=1 J.Li I a E n} and Lv = { IJ.LI + L:~=1 Vi I a E n}. Then let AJ1 = 

[1, IJ.LI] \ LJL and also let Av = [1 + IJ.LI, r] \ LJ1 . Then the standard infant 

subgroup associated to A, denoted Hyp(A) is given by 

An infant subgroup is any which is conjugate in Hyp(r) to a stan

dard infant subgroup. Let Y denote the set of all infant subgroups 

of Hyp(r). Similarly to above we can associate an infant subgroup to 

each pair of compositions in A2(n, r). Then each coset Hyp(r)g, for 

9 E Hyp(r), has a unique member of minimum length. We call these 

the distinguished coset representatives of Hyp(A) in Hyp(r) and denote 

each set of these by Dist(A), so that I Dist(A)I = I~~~~~~\. Also note that 

if A E At(n,r) with A = (/-lI, .. ,J.Lr;Vl,"'Vr), then 

Hyp(A) rv HYP(J.Ll) x HYP(J.L2) x ... x HyP(J.Lr) 

X S(Vl) X S(V2) X •.. X S(vr) 

The following lemma is useful. 

LEMMA 2.2. If X is a G-set, x E X and 9 E G then 

Stab(xg) = g-1 Stab(x)g. 

PROOF. Let h E Stab(x) so that xh = x. Then 

(xg)g-lhg = xhg = xg, 

so that g-lhg E Stab(xg). 

Conversely let h E Stab(xg) so that (xg)h = xg. Then 

x(ghg-1) = (xg)hg-1 = xgg-1 = x, 

so that ghg-1 E Stab(x) and h E g-1 Stab(x)g. o 

So from the above lemma for any A E At (n, r), and a E Hyp( r) we 

have the following. 
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COROLLARY 2.3. Hyp(,X) is the point stabilizer of Yi {=::::} 

Hyp(,X)CT is the point stabilizer of YiCT' 
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Now for a bit of notation. For any pair of compositions ,X E A2(n, r) 
1 ..................................... ......... 
et i('x) = (1,1, ... , 1,2, ... ,2, n, ... ,n, 1, 1, ... , 1,2, ... ,2, n . .. ,n) E 

I B (n, r) with each] occurring J.Lj times, and each "naked" j occurring 

Vj times, so that in particular Hyp(,X) is point stabilizer of Yi{>.). Also 

let X denote the set of all point stabilizers of standard basis elements 

in y®r under the action of Hyp(r). 

LEMMA 2.4. X = y, i. e. the point stabilizers of basis elements in 

y®r are precisely the infant subgroups of Hyp(r). 

PROOF. Let A = Hyp(,X) E y, so that A is a standard infant 

subgroup. Then A is the point stabilizer of Yi(,x) , so that A E X. Now 

say B = ACT E y, so that B is an infant subgroup. Then, by previous 

lemma, we know that B is the point stabilizer of Yi(,x)CT, so that B is 

also in 7f and Y C X. 

Conversely let Yi be any standard basis element in y®r, and let 

X E X be its point stabilizer. Now any such Yi can be written as 

Yi = Yi(,x)CT for suitable choice of ,X E At(n, r) and a E Hyp(r). Now 

Yi(,x) has point stabilizer Hyp(,X), so by the previous lemma we have 

that Yi(,x)O" has point stabilizer Hyp(,X)CT. Therefore X E Y also, and we 

have that X c y. 
o 

We now walk down the same road, but this time for Richard Green's 

space v®r. Let X v denote the set of point stabilizers of the Hyp( r )

action on v®r, and also let 

v = {Hyp(,x)O" E Yla E Hyp(r),,x = (0; v) E At(n,r)} 
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so that V consists of infant subgroups of Hyp(r) which are of the form 

(S(Vl) x S(V2) x ... x S(vn)t for some a E Hyp(r), i.e. with all 

parts isomorphic to some smaller symmetric group inside the hype

roctahedral group. This means each member of V is isomorphic to 

some Young subgroup S(,Xt inside Hyp(r), so that V is the set of all 

Young subgroups of the hyperoctahedral group. Similarly to above, if 

,X = (0; v) E At(n, r), a E Hyp(r) and i E Iv(2n, r) then we have the 

following. 

LEMMA 2.5. Hyp(,X) is a point stabilizer of Vi -¢::=} 

Hyp(,Xt is a point stabilizer of Via' 

PROOF. This again follows from the above lemma about G-sets. D 

COROLLARY 2.6. Xv = V i.e. the set of point stabilizers of the 

Hyp(r)-action on standard basis elements ofv®r is precisely the set V. 

For the time being we concentrate on y, and to that end we now look 

at an alternative description of it. 

2.1. Schisms and Mackey systems 

We recall the following definition of a schism from chapter 1. Let X 

be a set with a regular involution - , called bar, so that X necessarily 

has 2r elements, for some natural number r. For the rest of this section 

X will always be such a set. Let Z be a subset of X such that Z U Z = 

X, i.e. such that Z u Z = X and Z n Z = 0. Then we call Z a schism 

ofX. 

Now we can split up X even more. Let X be as above, and say that 

X = X 1UX2 U·· ·UXaUXa+1U·· ,UXm where each Xi is a bar-stable 

subset, so has size 2bi for some 1 ~ bi ~ r. In particular, each of 

Xa+b Xa+2 , •.• , Xm has bar acting on it as a regular 
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involution, so we can choose Zl C Xa+1, Z2 C X a+2, ... , Zm-a C .. X"m so 

that ZiUZi = X a+i for each 1 ~ i ~ m-a, i.e. for each 1 ~ i ~ m-a, 

we have that Zi is a schism of X a+i . 

Call such a sequence (X; Z) = (XI, ... , Xa; Zl,"" Zb) of such a 

set X a schism sequence of X, and write E(X) for the set of all schism 

sequences of a set X. We will call the Xi'S and the Zj'S the parts of 

the schism sequence, and say that the Xi'S belong to the first half of 

(X; Z), while Zj's belong to the second half. (Of UtA'S", .,::' "" -II. ) 

Now let Z be a schism of X, so that Sym(Z) is the symmetric group 

on Z. Again, recall from chapter 1 that we can identify Sym(Z) with 

a subgroup of Sym(X) via the following map. Let 

¢ : Sym(Z) -+ Sym(X) via ¢(a)(z) = az and ¢(a)(z) = az 

for a E Sym(Z) and z E Z. Now ¢(a)(z) = az = ¢(a)(z) so each 

member of Sym(Z) is in fact identified with a member of Hyp(X) C 

Sym(X) via this map. We denote the image of Sym(Z) under ¢ by 

S(Z), which is a subgroup of Hyp(X). It is worth noting two things. 

Firstly, for any schism Z of X, the subgroups S(Z) and S(Z) are 

the same. 

Secondly, if (X; Z) E E(X) then Hyp(Xi ) is the subgroup of Hyp(X) 

which acts as the hyperoctahedral group on Xi and fixes all other el

ements of X \ Xi' We also have for each Zj a subgroup of Hyp(X) 

denoted by S(Zj), which acts on X a+j = Zj u Zj as a subgroup iso

morphic to Sym(Z) inside Hyp(Xj ), via the map ¢ as described above. 

Also, S(Zj) fixes all elements of X\Xa+j and of course S(Zj) = S(Zj). 

Armed with these subgroups of Hyp(X) we can now make a defini-

tion. 

DEFINITION. Given a set X with a regular involution, and a schism 

sequence (Xj Z) E E(X) of X, we define the schism subgroup H(Xj Z) 
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of Hyp(X) to be H(X; Z) = 

Hyp(Xd x Hyp(X2 ) x ... x Hyp(Xa) x S(Zl) x ... X S(Zb). 

Denote the set {H(X; Z)I(X; Z) E ~(X)} of all schism subgroups of 

Hyp(X) by Z. 

Schism subgroups also come in another guise. 

LEMMA 2.7. For (X; Z) E ~(X) we have H(X; Z) 

= {O" E Hyp(X) I 0" Xi = Xi and O"Zj = Zj VI ~ i ~ a, 1 ~ j ~ b}. 

PROOF. To make things a bit easier to read, we write H' = 

{O" E Hyp(X)IO"Xi = Xi and O"Zj = Zj VI ~ i ~ a, 1 ~ j ~ b}. Now 

each Hyp(Xi) permutes elements of Xi and fixes all elements of X \ Xi' 

Also each S(Zj) permutes elements of Zj, and of Zj correspondingly, 

and fixes all elements of X a+j . Therefore H(X; Z) CH'. 

Conversely O"Xi = Xi implies that 0" E Hyp(Xi ), as 0" E Hyp(X). 

Also O"Zj = Zj induces a 7r E Sym(Zj) but O"(z) = O"Z = 7rZ. Therefore 

0" = cP(7r) and 0" E S(Zj). So H' C H(X; Z) and we are done. 0 

We now prove 3 more lemmas about schism subgroups" wltit,J, 
pt'0vt, +h .. t 'Y h • p- M .. c.tf.~ sv"te .... 

LEMMA 2.8. Z is closed under conjugation. 

PROOF. Let 9 E Hyp(X). Now we know that S(Zj)9 = S(gZj) and 

that Hyp(Xi )9 = Hyp(gXi ) and therefore we get that H(X; Z)9 

= H(Xl' ... ,Xa ; Zr, ... ,Zb)9 = H(gXl' ... ,gXa ; gZr, ... ,gZb) 

= H(gX; gZ). So since 9 E Hyp(X) and it maps Xi's to other Xi's 

and Z/s to other Z/s we get that (gX; gZ) E ~(X) and therefore 

H(gX; gZ) = H(X; Z)9 E Z. 0 

LEMMA 2.9. Let X = {I, 2, ... , r, I, 2, ... , fl. Then Z = y. 
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PROOF. Let A E Y so that A = Hyp(A)U for some A E At(n, r) 

and a E Hyp(X). Choose (X; Z) E ~(X) with 

Xl = {I, 2, ... , J-LI, I, 2, ... ,J-LI}, 

X2 = {J-LI + 1, J-LI + 2, ... ,J-LI + J-L2, J-LI + 1, J-LI + 2, ... ,J-LI + J-L2}, ... 

. . . Xn = {IJ-LI - J-Ln + 1, ... , IJ-LI, IJ-LI- J-Ln + 1, ... ,~}, and 

Zl = {IJ-LI + 1, IJ-LI + 2, ... , IJ-LI + ZlI}, 

Z2 = {IJ-LI + Zli + 1, IJ-LI + Zli + 2, ... , IJ-LI + Zli + Zl2}, ... 

. .. , Zn = {r - Zln + 1, ... , r}. 

Then H(X; Z) = Hyp(A) so that A = Hyp(A)U = H(X; Z)U = 

H(aX;aZ) E Z. 

Conversely, let A E Z, so that A = H(X; Z), for some (X; Z) E 

~(X), where (X; Z) = (Xl, X2, ... , Xa; ZI, ... , Zb). Firstly we ar

range the Xi'S and Zj'S so that they are in descending size order to 

get (X'; Z') = (X~, X~, ... , X~; Z~, ... , Z~), where IXII ~ IXI+II for all 

1 ~ i ~ a' - 1 and IZjl ~ IZj+11 for all 1 ~ j ~ b' - 1. This can be 

done by hitting (X; Z) with a certain, but not usually unique, element 

9 E Hyp(X). This gives us the schism sequence (X'; Z') = (gX; gZ). 

Let F = X~ u X~ u ... U X~. Now we hit (X'; Z') with the (not 

necessarily unique) element h E Hyp(X) so that 

hXf = {I, 2, ... , ~IX~I, I, 2, ... , ~IX~I}, 

hX~ = {~IX~I+l, ~IX~I+2, ... , ~IX~UX~I, ~IX~I + 1, ... , ~IX~ U X~I}, 

... ,etc, ... 

hXn = {~IXfU" ,uX~_II+I, ... , ~IFI, ~IX~ U'" U X~_ll + 1, ... , ~IFI} 

and 

hZ~ = {~IFI + 1, ~IFI + 2, ... , ~IFI + IZ~I}, 

hZ~ = {~IFI + IZ~I + 1, ~IFI + IZ~I + 2, ... , ~IFI + IZ~ u Z~I} , ... 
. . . , hZ~ = {~IF I + I Z~ u ... u Z~_ll + 1, ... , r}. 

Call this schism sequence (X"; ZII) and notice that we have (X"; ZIt) 
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= (hX'; hZ') = (hgX; hgZ). Also notice that H(X"; Z") = Hyp(A), 

for some suitable choice of A E At (n, r). 

But then (X; Z) = (g-lh-1X"; g-lh-1 Z") so that H(X; Z) 

= H(g-lh- 1 X"; g-lh-1 Z") = H(X"; Z")h- 1g
-

1 = HYP(A)h- 1g-
1 E y. 

Therefore Z C Y and we are done. 

o 

N ow for the third and final lemma. 

LEMMA 2.10. Z is closed under intersection. 

PROOF. We claim that for (X; Z), (X'; Z') E E(X) we have that 

H(X; Z) n H(X'; Z') = 

H(Xi n XI; Xi n Z:n, Zj n X;' Zj n Z:n, Zj n Z:n), 

where 1 ~ i ~ a, 1 ~ j ~ b, 1 ~ l ~ a', 1 ~ m ~ b'. Call this 

intersection H(X"; Z"). Since we want to use this name, we will first 

have to show that (X"; Z") is indeed a schism sequence of X. Here 

goes. 

N ow both (X; Z) and (X'; Z') are schism sequences. Say A and C 

are both parts of (X; Z), and Band D are both parts of (X'; Z'), so that 

AnB and CnD are both parts of (X"; Z"). Then (AnB) n (CnD) = 

(A n C) n (B n D), but An C = 0 as (X; Z) is a schism sequence. 

Therefore (A n B) n (C n D) = 0 and so any two parts of (X"; Z") are 

disjoint. 

Also, if Xi is in the first part (X; Z), and Xi is in the first part of 

(X'; Z.'), then Xi n Xi = Xi n Xi C Xi n Xi· Therefore Xi n Xi = 

Xi n Xi as both sets have the same cardinality, so any part of the first 

half of (X"; Z") is bar stable. 

Let A be any part of either of the two schism sequences (X; Z) and 

(X'; Z'). Then ZinAnZi n A C ZinZi = 0. The same argument also 
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shows that Zi nAn Zi n A = A n Z~ nAn Z~ = A n Z~ nAn Z~ = 0 
J J J J' 

This tells us that any part, B say, of the second half of (X"; Z") and 

its bar, B are disjoint. 

Let U be the union of the following subsets of X; 

Xi nx;, Xi nz:n, Zj nx;, Zj nz:n, Zj n z:n, Xi n z:n, Zj n X;, Zj n z:n, 

Zj n Z:n where 1 ~ i ~ a, 1 ~ j ~ b, 1 ~ l ~ a', 1 ~ m ~ b'. Then 

we must show U = X. Now U is a union of subsets of X and so 

therefore U C X. Conversely, let x E X. Then as (X; Z) E E(X) 

either x E Xi,x E Zj, or x E Zj, for some 1 ~ i ~ a, 1 ~ j ~ b, where 

the Xi and Zj are the parts of (X; Z). Similarly for (X'; Z'), x must 

also lie in either X;, Z:n or Z:n, for some 1 ~ l ~ a', 1 ~ m ~ b', where 

the X; and Z:n are the parts of (X'; Z'). 

Now for all i, j, l, m as above we know that each of Xi n XI, Xi n 

z:n, Zj n X;, Zj n z:n, Zj n z:n is in U. But also for all such i, j, l, m we 

have that XinZj = Xinz; ~ Xi n Zj C U and Zjnz:n = Zj n Z:n ~ U 

and Zj nx; = Zj nx; C Zj n X; C U and finally Zj nz:n = Zj n Z:n C 

U. Then as x must lie in one of the above mentioned intersections we 

see that x E U. Therefore X C U so that U = X. 

So we have shown that (X"; Z") is a schism sequence of X. Now 

we just need to show that H(X"; Z") is in fact equal to H(X; Z) n 
H(X'; Z') as claimed. We will show this is true by showing that each 

set is contained in the other. Notice that for all i, j, l, m as above, we 

have that; 

if x E Xi and XI then x E Xi n XI, 

if x E Xi and Z:n then x E Xi n Z:n, 

if x E Xi and Z:n then x E Xi n Z:n C Xi n Z:n, 

if x E Zj and XI then x E Zj n XI, 

if x E Zj and Z:n then x E Zj n Z:n, 
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if x E Zj and Z:n then x E Zj n Z:n, 

if x E Zj and X; then x E Zj n X; C Zj n X; , 

if x E Zj and Z:n then x E Zj n Z:n C Zj n Z:;:, 
and finally if x E Zj and Z:n then x E Zj n Z:n. 
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So therefore each g E H(X; Z) n H(X'; Z') stabilizes each part of 

H(X"; Z"), so therefore this tells us that as we have H(X"; Z") = 

{O" E Hyp(X) IO"X~ = X~andO"Z: = Z:} we have that g E H(X";Z") 

and so H(X; Z) n H(X'; Z') C H(X"; Z"). 

Now for the converse. Let i, j, l, m be as they consistently are above, 

and say that 0" E HYP(Xi n X{) C H(X"; Z"). Then we can expand to 

get Xi = (XinxDu·· ·U(XinX{)U··· (XinX~,)U(XinzDu·· ·U(Xin 

Z~,)u(XinzDu·· ·U(XinZ~,), so that 0" E HYP(Xi)' But similarly we 

also get that X; = (XlnX{)U·· ·U(XinX{)U·· ·U(XanX{)U(ZlnX{)U 

... U (Zb n X{) U (Zl n X{) U··· U (Zb n X{), and therefore 0" E Hyp(X{) 

also, so that 0" E Hyp(Xi ) n Hyp(X{) C H(X; Z) n H(X'; Z'). 

Next say that 0" E S(Xinz:n). Then from the expansion of Xi above 

we have see that 0" E HYP(Xi)' Also, we have that Z:n = (Xl n Z:n) U 

.. ·u(XinZ:n)u·· ·U(XanZ:n)U(ZlnZ:n)U·· . etc, so that 0" E S(Z:n) 

also. Therefore 0" E Hyp(Xi ) n S(Z:n) C H(X; Z) n H(X'; Z'). 

Similarly if 0" E S(Zj n X{) then 0" E S(Zj) n Hyp(X{), if 0" E 

S(Zj nz:n) then 0" E S(Zj) nS(z:n), and finally if 0" E S(Zj nz:n) then 

0" E S(Zj) n S(Z:n). All these are contained in H(X; Z) n H(X'; Z'), 

and as each generator of H(X"; Z") must lie in one of the intersections 

we started with, we see that H(X"; Z") C H(X; Z) n H(X'; Z'). 

Therefore the two sets are equal and for (X; Z) and (X'; Z') E E(X) 

we now have that H(X; Z) n H(X'j Z') = H(X"; Z") E Z, and so Z is 

closed under intersection. 0 
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We can now prove the following. 
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LEMMA 2.11. If p is a prime dividing the order of Hyp(r) then y 

is a p-Mackey system for Hyp(r). 

PROOF. (Ml) If A = (0; IT) E At(n, r) then Hyp(A) = {I}, so the 

identity subgroup is in y. 

(M2) (i) and (ii) We know by the preceding lemmas that Z is closed 

under both conjugation and intersection. So as Z = y, we also have 

that Y is closed under both conjugation and intersection. 

(M3) If A = (r; 0) E At(n, r) then Hyp(A) is just Hyp(r) itself and 

Hyp( r) E y. Therefore all Sylow p-subgroups are contained in a mem

ber of Y as they are all contained in Hyp(r). 

D 

2.2. The Count for Y 

Before we go on to count trivial source modules, we prove the fol

lowing two useful lemmas concerning binomials. The first we call the 

first index lemma. 

LEMMA 2.12. For all primes p, and i ~ 0 

p f x => p f (~i). 

_ « x-I )pi + I )« x-I )pi +2) ... «x-1 )pi +p ~ ... «x-I )pi +2p ) ... «x-I )pi +pi) 
- 1.2.3 ... p' 

_ «x-I)pi+I)(x-I)pi+2)",p«x-I)pi-1+1)",p«x-l)pi-1+2) ... pix 
- 1.2.3 ... pi • 

Now each power of p in the denominator can be cancelled with the 

corresponding power of p in the numerator. This leaves us with a 

denominator coprime to p, and a numerator in which the only factors 
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that could be divisible by p are those of the form 

(x - 1 )pi- j + z, where i > j and Z E [1, p - 1], or just x itself. 
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But when i > j we have that p divides (x - l)pi- j but does not divide 

z, as p and Z are coprime. Therefore p does not divide (x - l)pi- j + Z 

here. But also we have assumed that p does not divide x, so therefore 

the numerator is not divisible by p and the lemma follows. 0 

The ntxt' lemma is imaginatively called the second index lemma. 

LEMMA 2.13. For all primes p we have that p divides (P:) for all 

0< a < pn. 

PROOF. It suffices to prove this for 0 ~ a ~ ~pn, as (:) = (u~J 

for all u ~ 1,v ~ O,u ~ v. Now 

(
Pan) = pn! _ (pn-a+l)(pn -a+2) ... (pn ) _ (pn-(a-l))(pn-(a-2)) ... (pn_l)(pn) 

(pn-a)!a! - a! - a(a-l)(a-2)···1 

So if for some 0 < i < a-I we have that p divides a factor of the 

denominator a - i, then p also divides pn - (a - i) in the numerator, 

and hence these can be cancelled. This leaves us with a denominator 

which is coprime to p, apart from maybe the factor a, and a numerator 

with pn as the only factor divisible by p. 

So if p does not divide a, then the numerator is coprime to p, and 

the numerator has factor pn and hence p divides (P:). If p divides a 

then a = plm, where (p, m) = 1 and 1 ~ 1 ~ n - 1, as 0 ~ a ~ ~pn. 

So as the numerator has factor pn, we see that in this case (P:) has 

a factor pn-l where n > l, so that p divides (P:) , and the lemma is 

proved. 

o 

(These two lemmas can also be proved using Lucas's Formula.) 

Our first count is of trivial source modules over a field k of odd 

characteristic. nom now on in this section, p is an odd prime and 
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is the characteristic of our field k. We now define a certain type of 

composition, which will be important for the rest of this chapter. 

DEFINITION. Let p be any prime. Then even though it is not a 

partition, we call a composition A = (f.-l, v) E A2 (n, r) a p-power parti

tion if it has f.-l = 0 and all parts of v being powers of p. Denote the 

set of these by IIp (n, r), so that if A E IIp (n, r) then for some ai ~ 0 

we get that A = (0; 1 aopa1 (p2)a2 ••• ). 

Recall that for a p-Mackey System M, the vertices are precisely the 

set 

Mo = {P E M Ip divides IP: BIVB EJe,with B < Pl· 

We can now describe the vertices of our p-Mackey System y. 

LEMMA 2.14. For odd primes p, we have that P E Yo ¢:::::::> 

P = (Hyp(A)t, where (J E Hyp(r) and A E IIp(n, r). 

PROOF. (Note that all other cases follow from the case (J = 1.) 

Let P = (Hyp(A)t as above. Then to show P is in Yo it is enough 

to show that p divides the index of S (a) x S (pn - a) in S (pn) for all 

n ~ 0 and 0 < a < pn. This is because each P above is isomorphic to a 

product of symmetric groups of degree a power of p, and all subgroups 

of P will be isomorphic to a product of Young subgroups of these 

symmetric groups of degree a power of p. Now 

IS(pn) : S(pn - a) x S(a)1 = (pn~~)!a! = (p:) 

But by second index lemma p divides (P:) for all n ~ 0 and 0 < a < pn 

therefore p divides the index of S(a) x S(pn - a) in S(pn) for all n ~ 0 

and 0 < a < pn as required, and P E Yo· 

Conversely, say that A E A2 (n, r) \ IIp(n, r). Then either J1. :I 0 or 

II has some part which is not a power of p. 
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Firstly, suppose that J.l -# 0. Then Hyp().) is of the form Hyp(s) x J 

for some non-negative integer s and some J :::;; Hyp(r-s). Then Hyp().) 

has subgroup S(s) x J which is also in Y and has index 28 in Hyp(s) x J. 

But P f 28 so Hyp().) i: Yo· 

Secondly, suppose J.l = 0 so that v has some part Vi which is not a 

power of p. Then Vi = Xpi for some i ~ 0 and x -# 0,1 which is coprime 

to p. Then Hyp().) is isomorphic to a subgroup of Hyp(r) of the form 

S(Xpi) x L for some L :::;; Hyp(r - Xpi). Now S(Xpi) has subgroup 

S(pi) x S(Xpi - pi) and this has index i,/x~i2! i)' = (X~i) in S(Xpi). But 
p. xp p . p 

from the first index lemma, 

(p, x) = 1 =} p f (~t). 
So S(Xpi) X L has subgroup (S(pi) x S(Xpi - pi) xL) E Y of index not 

divisible by p and we are done. 

o 

This means that for Y~, a set of representatives of conjugacy classes 

of subgroups in Yo, we can take the subgroups Hyp().), where). E 

I1p( n, r). We now take a look at normalizers. 

LEMMA 2.15. If). = (0: 1aOpa1 (p2)a2 • •• ) E I1p(n,r) then 

NHyp(r) Hyp(A) rv Hyp(ao) x Hyp(ad x Hyp(a2) x .•.. 
Hyp(A) 

PROOF. Let). E I1p(n, r), and let H = Hyp().). Also say that 

X = {I, 2, ... , T, I, 2, ... , f}, and let AI, A2 , •• ·, Am, AI, A2 ,.··, Am be 

the H -orbits of X, so that if Ai = {a, a + 1, ... , b} then we have that 

Ai = {a, a + 1, ... , b}. For i ~ 0 set 

Bi = {Aj, Aj such that IAjl = pi} 

so that IBil = ai, and Hyp(Bi) rv Hyp(ai). 

Let N(H) = NHyp(r)(H). Now N(H) permutes the H-orbits of X 

of the same size, and if a Ai = Aj for some a E N (H), then a Ai = Aj . 
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So N (H) acts on each set Bi , and we can define the homomorphism 

fjJ : N(H) I-t Hyp(Bo) x Hyp(Bt} x Hyp(B2) x ... 

VIa 

Now kerfjJ = {a E N(H)lfjJ(a)(Aj) = Aj , VAj} 
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= {a E N(H)la(Aj) = Aj , VAj} = H. So now we only need to worry 

about the image. Say Aj , Al E Bi with Aj =1= Al, and say also that 

Aj = {Xl, X2,' .. , Xpi} and Al = {Zl' Z2, ... , Zpi}. Define a E Hyp(r) 

via a(xs) = Zs and a(zs) = Xs for 1 ~ s ~ pi, so of course we also have 

that Aj , Al E Bi with a(xs) = Zs and a(zs) = Xs. Let a fix all other 

members of X, and let h E H then 

(aha- l )Aj = (aha)Aj = ahAl = aAl = Aj 

and similarly for Aj , so (aha-I) E H, so a E N(H). 

Now say Aj E Bi so Aj E Bi too, and these sets are as above. 

Define 7r E Hyp(r) via 7r(xs) = Xs and 7r(xs) = Xs for all 1 ~ s ~ pi, 

and let 7r fix all other elements. Again let h E H then 

(7rh7r-1 )Aj = (7rh7r )Aj = 7rhAj = 7r Aj = Aj 

and similarly for Aj , so that 7r E N (H). 

Now all standard generating involutions of each Hyp(Bi) can be 

realized as a fjJ(a) or a fjJ(7r) for some suitable choice of a,7r E N(H), 

so that ¢ is onto. So by the homomorphism theorem we have that 

N~) = Hyp(Bo) x Hyp(Bd x Hyp(B2) x ... 

f'V Hyp(ao) x Hyp(ad x Hyp(a2) x .... 

and the proof is complete. 

o 

Now for ,\ E IIp(n, r), let NHY~;~f~p(A) be denoted by N('\), so that 

N('\) f'V Hyp(ao) x Hyp(ad x Hyp(a2) x .... Recall that for a finite 
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group G, we let #p(G) denote the number of pi-classes of G. Then 

applying Grabmeier's count, or theorem 1.6, we have that TSM(Y) = 

L:AEllp(n,r) #p(N()..)). 

Now [1,2.5] tells us that when p is odd #p(Hyp(r)) is equal to the 

number of bipartitions (J1; 1/) E A; (n, r) such that both J1 and 1/ are 

column p-regular partitions. Therefore as N()..) f'J Hyp(ao) x Hyp(al) x 

Hyp(a2) x ... we get that #p(N()..)) is equal to the number of pairs 

(¢,1/;) where ¢ = (¢(O), ¢(1), ¢(2), ... ) and 1/; = (1/;(0),1/;(1),1/;(2), ... ) 

are sequences of column p-regular partitions with \¢(i)\ + \1/;(i) \ = ai 

for all i ~ O. So from Grabmeier's count, as above, we have that 

TSM(Y) = L:AEllp(n,r) #p(N()..)) 

= L:AEllp(n,r)number of pairs (¢, 1/;) as above 

which means that TSM(Y) is the number of triples ().., ¢, 1/;) where 

).. E IIp(n, r) and ¢ and 1/; are as above. Call the set of such triples \II. 

Now recall that each partition J1 in A+(n, r) has a unique p-adic 

expansion, that is to say that each is uniquely expressible as J1 = 

L:i~opiJ1(i) with each J1(i) a column p-regular partition. We define 

a map 

f : \II --+ A;(n, r) via ().., ¢, 1/;) I-t (a; (3) 

where a = L:i~opi¢(i) and (3 = L:i~opi1/;(i). 

LEMMA 2.16. f is a bijection between wand A;(n, r). 

PROOF. Due to the uniqueness of p-adic expansions, we know that 

f must be both well defined and injective. 

Now say that (a;f3) E A;(n, r). Then as above we can uniquely 

write a = L:i~opi~(i) and f3 = L:i~opil1(i) where ~(i) and l1(i) are 

column p-regular partitions for all i ~ O. Now r = lal + 1{31 = 
Ei~Opi(I~(i)1 + 111(i)I), so by putting bi = 1~(i)1 + 111(i) I for all i ~ 0 we 
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retrieve a triple (X, ~,TJ) where A' = (0; 1 bopb1 (p2)b2 ... ) E ITp( n, r) and 

~ = (~(O), ~(1), ~(2), ... ) and TJ = (TJ(O), TJ(l), TJ(2), ... ) are sequences 

of column p-regular partitions with I~( i) I + ITJ( i) I = bi. Therefore 

(X,~, TJ) E W with f((X,~, TJ)) = (a; 13), and f is surjective also. 0 

COROLLARY 2.17. Over a field of odd characteristic TSM(Y) 

IAt(n, r)l· 

The case p = 2 

Now we consider the case p = 2. We already have all the lemmas 

about binomials that we will need here, so we go straight into a slightly 

different version of p-power partitions, which are called double 2-power 

partitions. 

DEFINITION. Even though it is not a partition, we call a composi

tion A = (J-l; 1/) E A2 (n, r) a double 2-power partition if it has all parts 

being powers of 2, written in ascending numerical order. Denote the 

set of these by Y2(n, r), so that if A E Y 2(n, r) then for some ai, bj ~ 0 

we get that A = (la02a14a2 ... ; 1b02b14b2 ... ). 

So for each A E Y 2(n,r), we get an infant subgroup Hyp(A) E Y 
with Hyp(A) rv Hyp(l)ao X Hyp(2)a1 X Hyp(4)a2 X· .. X S(l)bO X S(2)b1 X 

.. '. We now prove a lemma concerning vertices similar to the one in 

the odd primes count. 

LEMMA 2.18. When p = 2 we have that P E Yo if and only if 

P = Hyp(A)CT, for some A E Y 2(n, r) and (J E Hyp(r). 

PROOF. Again, all cases follow from the case (J = 1. Since we 

already know that 2 divides IS(2m) : S(2m - a) X S(a)1 for all m ~ 0 
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and 0 < a < 2m
, and also that I Hyp(2m) : S(2m)1 = 22m , to prove 

that subgroups of this form really are vertices it suffices to check that 

2 divides I Hyp(2m) : Hyp(2m - a) x Hyp(a) I for all m ~ 0 and 0 < 

a < 2m. Now we know that the order of the hyperoctahedral group 

is given by I Hyp(r)1 = r!2T so I Hyp(2m) : Hyp(2m - a) x Hyp(a) I = 
2m!22m 2m! (2m) . 

((2m-a)!22m a)(a!2a) = (2m-a)!a! = a . But.from the second index lemma 

we know that 2 divides C:) for all 0 < a < 2m . Therefore if A E 

12(n, r) then Hyp(A) E Yo. 

Conversely we must now show that if A is not in 12 (n, r) then 

Hyp(A) t/:. Yo· If A is not in 12(n, r) then there are two possibilities; 

1. A has a part Llj with Llj = x2i , for some i ~ 0 and x =J 0, 1 with 

(2, x) = 1. But we already know that this implies that Hyp(A) t/:. Yo 

from the odd characteristic case (the same argument with symmetric 

groups works here). 

2. The second possibility is that A has a part J.1j with J.1j = x2i
, for 

some i ~ 0 and x =J 0,1 with (2, x) = 1. In this case Hyp(x2i) has 

subgroup Hyp(2i) x Hyp(2i(X - 1)) whose index in Hyp(x2i) is 
2x2' (x2')! _ x2'! _ (X2') 

2'!22'(x2'-2')!2X21_21 - 21!(x2'_2')! - 2' . 

So from the first index lemma as 2 does not divide x, we have that 2 

does not divide (X2~')' Therefore Hyp(x2i) has a subgroup whose index 

in Hyp(x2i) is not divisible by 2 and so if A is not in 12(n, r) then 

Hyp(A) is not a member of y. 
o 

So when p = 2, we can take the subgroups HYP(A), where A E 

T 2(n, r), as representatives of the conjugacy classes of subgroups in 

Yo i.e. we can take Y~ as {Hyp(A)IA E T2(n,r)}. The next step in 

Grabmeier's method is to calculate the normalizers of these subgroups, 

modulo the subgroups themselves. 
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LEMMA 2.19. ]1.-\ E 1 (n r) then NHyp(r)(Hyp(..\» rv 
J 2, Hyp(..\) 

S(ao) x S(al) x S(a2) x ... x Hyp(bo) x Hyp(bd x .. '. For ease we 

refer to this group as N(.-\). 

PROOF. Now.-\ E 12(n, r) so.-\ = (lao2a14a2 ... ; 1bo 2b1 ••. ) for some 

ai, bj ~ O. To keep things tidy we give some subgroups shorter names, 

so that H = S(l)ao x S(2)a1 x S(4)a2 x ... X S(l)bO X S(2)b1 X "', 

H' = Hyp(.-\), and N(H') = NHyp(r) (H'). As usual we also put X = 
{I, 2, ... , r, I, 2, ... ,r}, so that AI, A2, ... ,At, AI, A2, ... ,At, say, are 

the H -orbits of X, in a similar manner to the odd characteristic case. 

Then GI , G2, ... ,Gs , As+I, As+2, ... ,At, As+I, ... ,At are the H'-orbits 

of X, where s ::::;; t and for j ::::;; s we put Gj = Aj U Aj. Now for all 

i ~ 0 we set 

Bi = {Aj,AjIIAjl = 2i} and Di = {GjlIGjl = 2i+1}, 

so that IBil = 2bi and IDil = ai, with Hyp(Bi) rv Hyp(bi) and Sym(Di) 

rv S(ai)' We know from the odd characteristic case that N(H') acts on 

each set Bi, and for each 9 E N (H') and Gj = Aj U Aj E Bi we have 

g(Gj) = g(Aj U Aj) = g(Aj) U g(Aj ) = Al U Al 

for some Al, Al E Bi. Then as Gl = Al U Al E Di we have that 

N(H') acts on each Di too. Then letting H" = Sym(Do) x Sym(DI) x 

Sym(D2) x ... x Hyp(Bo) x Hyp(Bd x "', we can now define the map 

4J : N(H') ~ H" via 4J(a)(Aj ) = a(Aj) for all 1 ::::;; j ::::;; t. 

It is clear that ker 4> = H'. We must now find the image of 4J. Say 

Gj, Gt E Di with Gj = {Xl, X2,"" X2i , XI, X2,'" , X2i }, and Gt = {ZI, Z2, 

""Z2i,ZI,Z2"" ,Z2i}. Then we define an element a E Hyp(r) via 

a(xu) = Zu and a(zu) = Xu for each 1 ::::;; u ::::;; 2i, so that also a(xu) = Zu 

and a(zu) = Xu, as a E Hyp(r). Let a fix all other elements of X, and 

let h E H', Then 
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a-lhaCj = a-lhCl = a-lCl = Cj. 
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So a-lha E H' and a E N(H'), and all standard generating involutions 

of Sym(Do) x Sym(Dl) x Sym(D2) x ... can be realized as a ¢(a) for 

suitably chosen Cj and Cl in D i . 

Also, all standard generating involutions of Hyp(Bo) x Hyp(Bl) x 

Hyp(B2) x··· occur in ¢(N(H')) by identical arguments to those given 

in the odd characteristic case. Therefore im¢ = H", and so by the 

homomorphism theorem we have that N~') rv H", and since H" rv 

N (A) the lemma follows. 0 

Now by [1, 2.5] we have that the number of 2'-classes in Hyp(r), 

denoted #2(Hyp(r)), is equal to the number of column 2-regular par

titions of r i.e. IA +(n, r)cod. Also, by [22] for example, the number of 

2'-classes in Sym(r), denoted #2(Sym(r)), is equal to the number 

of 2-regular partitions in A +(n, r), or IA +(n, r)cod. 

So therefore if A E 12(n,r), we see that #2(N(A)) is equal to 

the number of pairs (¢, 'I/J) where ¢ = (¢(O), ¢(l), ¢(2), ... ) and 'I/J = 

('I/J(O) , 'I/J(l) , 'I/J(2) , ... ) are sequences of column 2-regular partitions with 

each ¢(i) E A +(ai' ai), and each 'I/J(i) E A +(bi , bi) for each i ~ o. Then 

applying theorem 1.6, Grabmeier's method gives us that when p = 2 

TSM(Y) = l:>'E1 2(n,r) number of pairs (</>, 'I/J) as above 

which means that TSM(Y) is the number of triples (A, </>, 'I/J), where 

A E 12 (n, r) and ¢ and 'I/J are as above. Call the set of such triples T, 

and then define the map 

F : T --t At(n, r) via F((A, </>, 'I/J)) = (o:;{3) 

where 0: = l:i~O 2i</>(i) and (3 = l:i~o 2i'I/J(i). 

LEMMA 2.20. F is a bijection between T and At(n, r). 
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PROOF. By uniqueness of p-adic expansions of partitions F is well 

defined and distinct triples in T will map to distinct elements of At (n, r) 

under F. Therefore F is injective. 

Say that (8; £) E At (n, r). Then 8 and £ both have unique 2-adic 

expansions 8 = Li~O 2i~(i) and £ = Li~O 2i'f](i) , with each ~(i) and 'f](i) 

a 2-regular partition for each i ~ O. Now put ~ = (~(O), ~(l), ~(2), ... ) 

and 'f] = ('f](O) , 'f](l), 'f](2) , ... ). From these we can recover a dou

ble 2-power partition 'Y = (11{(0)121{(1)141{(2)1 ... ; 1117(0)12117(1)14117(2)1 ... ) E 

l' 2 (n, r), and therefore we have constructed a triple ('Y, ~, 'f]) E T with 

(8;£) = F(('Y,~,'f])). 

So every element of At (n, r) is the image under F of some element 

of T, and F is surjective. o 

COROLLARY 2.21. Whenp= 2 we have that TSM(Y) = IAt(n,r)l. 

Therefore we have now shown this holds over any suitable field of prime 

characteristic. 

2.3. Counting trivial source modules for V 

We now repeat this method with V, which we recall is the set of 

Young subgroups viewed as subgroups of the hyperoctahedral group. 

Firstly, we again go back to schisms to give us an alternative de

scription of V. Recall that for a set X with a regular involution - , we 

have the set E(X) of schism sequences of X, and the Mackey system 

Z of schism subgroups of Hyp(X). Let E(X)res be the subset of E(X) 

consisting of all schism sequences of X with X = 0. Then put 

Zres = {H(X; Z) I (X; Z) E E(X)res} = {H(0; Z) I (0; Z) E E(X)}. 

So if A E Zres then A is S(Zl) x S(Z2) x ... X S(Zm) as described 

earlier. We now prove mOfl!l lemmas. 

LEMMA 2.22. H(0; Z) = {u E Hyp(X) I uZj = Zj 'VI ~ j ~ m} 
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PROOF. H(0; Z) = {O" E Hyp(X) 10"0 = 0,O"Zj = Zj VI ~ j ~ m} 

= {O" E Hyp(X) I O"Zj = Zj VI ~ j ~ m}. 0 

LEMMA 2.23. Zres is closed under conjugation. 

PROOF. Let H(0; Z) E Zres and 9 E Hyp(X), then H(0; Z)g = 

H(g0; gZ) = H(0; gZ) E Zres. 0 

LEMMA 2.24. Zres = V. 

LEMMA 2.25. Zres is closed under intersection. 

PROOF. Similarly, these two lemma are proved by putting X = 0, 

and correspondingly J.-l = 0, into our proofs that Z = y, and that Z is 

closed under intersection. o 

To summarize
l 
we have that Zres is closed under conjugation and 

intersection, and is equal to V. N ow we come to Mackey systems and 

counting. As before, we deal with the odd characteristic case first. We 

can now prove the following. 

LEMMA 2.26. If P is an odd prime then V is a p-Mackey system of 

Hyp(r). 

PROOF. (Ml) If A = (0; Ir) E At(n, r) then Hyp(A) = {I}, so the 

identity subgroup is in V. 

(M2) (i) and (ii) We now know that Zres is closed under both intersec

tion and conjugation, and is equal to V. Therefore V is closed under 

conjugation and intersection too. 

(M3) If p is odd then all Sylow p-subgroups of Hyp(r) are in fact 

subgroups of S(r) < Hyp(r). Now if A = (0; r) E At(n, r) then 

Hyp(A) = S(r) so that S(r) E V and all Sylow p-subgroups of Hyp(r) 

are contained in a member of V. 0 
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Our first job in the count is to find the vertices Vo. 

LEMMA 2.27. When p is odd we have that P E Vo if and only if 

P = Hyp(A)O" for some A E IIp(n, r), and a E Hyp(r). 

PROOF. This is proved using an identical method to that of finding 

Yo for odd p, except in the converse the case J.l -=I- 0 is not applicable 

here, and need not be considered. o 

This lemma tells us that when p is odd Vo is equal to Yo, so applying 

Grabmeier's count to V will give us the following. 

COROLLARY 2.28. Whenp is odd TSM(V) = TSM(Y) = IAt(n,r)l. 

We now must consider the case p = 2. In this case it is no longer 

true that V is a p-Mackey system for Hyp(r). For example, when 

r = n = 2, we see that Hyp(2) has Sylow 2-subgroup Hyp(2), which 

is not a subgroup of any member of V, as subgroups in V are either 

conjugate to 8(2) or are the identity subgroup. However, we can get 

around this problem. We let V* denote V U {Hyp( r) }. 

LEMMA 2.29. If p = 2 then V* is a p-Mackey system for Hyp(r). 

PROOF. (Ml) We know that {I} E V so therefore {I} E V* also. 

(M2)(i) We know that V is closed under conjugation, and also that 

Hyp( r) is conjugate to itself under conjugation by any member of itself. 

Therefore V* is closed under conjugation. 

(M2)(ii) V itself is closed under intersection, and for all A E V we have 

An Hyp(r) = A. Therefore V* is closed under intersection. 

(M3) Hyp(r) E V* so all Sylow 2-subgroups of Hyp(r) are trivially 

contained in a member of V· . 0 
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Now say that Mis ap-Mackey system for a finite group G, such that 

G is an M-vertex. Then G must be a vertex of some indecomposable 

kG-module M, and here M must have trivial source, so that M must be 

a direct summand of k t8, which is just k itself. Therefore M = k, so 

that G is the vertex of the trivial kG-module k. From the definition of 

M-vertices, we get that k is not a direct summand of any k t~, where 

H < G. Hence G as a vertex contributes the trivial source module k 

to our count and only this module as # (NHyp(r)(Hyp(r») = 1 and no , 2 Hyp(r) , 

other M-vertex contributes k to our count as above. Therefore, in this 

situation, TSM(M) = TSM(M \ {G}) + 1, or 

TSM(M \ {G}) = TSM(M) - 1. 

So as this is exactly the set up we have in the case of V*, we have that 

TSM(V) = TSM(V*) - 1. 

So the method we will use to count trivial source modules over V is to 

count them over V* and subtract 1 from the result. Here goes. 

LEMMA 2.30. Vo = Vo U {Hyp(r)}. 

PROOF. In V*, the group Hyp(r) has subgroups Hyp('\)O', where 

,\ E II2 (n, r), and a E Hyp(r). But these are all contained in some 

Hyp(r)-conjugate of S(r), which has index 2r in Hyp(r). Hence all 

proper subgroups of Hyp(r) in V* have 2 dividing their index in Hyp(r). 

Therefore Hyp(r) E Vo, and so Vo = Vo U {Hyp(r)}. 0 

So for representatives of conjugacy classes in Vo we can take the sub

groups Hyp(r) and Hyp('\) where ,\ E II2 (n, r). Now applying Grab

meier's count we have that TSM(V*) is equal to 

'" # (NHyp(r)(P») = 
LJPEVo 2 P 

# (NHyp(r)(Hyp(r))) + '" # (NHyp(r)(HYP(~}») 
2 Hyp(r) LJ~En2(n,r) 2 Hyp(~) 
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= 1 + ~ # (NHyp(r)(HYP(A))) 
L.JAETI2(n,r) 2 Hyp(A) 

SO that by our previous discussions 

TSM(V) = ~ # (NHyp(r)(HYP(A))) 
L.JAETI2(n,r) 2 Hyp(A) . 

Of course, we also remember that for A E II2 (n, r) we have that 

NHyp(r)(HYP(A)) rv H ( ) H ( ) H ( ) 
Hyp(A) = yp ao x yp al x yp a2 x··· 

and that the number of 2'-classes of Hyp(r) is equal to the number of 

column 2-regular partitions of r. Therefore #2 (NHYPi{~~7~P(A))) is equal 

to the number of sequences ¢ = (¢(O), ¢(l), ¢(2), ... ) of 2-regular par

titions ¢(i), where for each i ~ 0 we have ¢(i) E A +(ai' ai). So TSM(V) 

is equal to the number of pairs (A, ¢), where A E II2 (n, r) and ¢ is as 

above. Call the set of such pairs 1 Then we define a map 

F : J -t A +(n, r) via (A, ¢) M ~i>-O 2i¢(i). 
~ 

LEMMA 2.31. F is a bijection between J and A+(n,r). 

PROOF. F is well defined and injective by uniqueness of 2-adic 

expansIOns. 

N ow say a E A + (n, r) then a has a unique 2-adic expansion a = 

~i~O 2ie(i), with e(i) a column 2-regular partition for each i ~ O. So by 

setting bi = le(i)1 we get a A' = (0; Ibo2b14b2 ... ) E II2(n, r), and also if 

e = (e(O), e(l), e(2), ... ) we have a pair (X, e) E J with F((X, e)) = a. 

So F is also surjective. o 

COROLLARY 2.32. Whenp = 2 we have that TSM(V) = IA+(n,r)l· 

In summary, we have the following theorem. 

THEOREM 2.33. Over a field of odd characteristic we have that 

TSM(Y) = TSM(V) = IAt(n, r)l· 

However, when the characteristic of k is 2, we have that TSM(Y) = 

IAt(n, r)1 and TSM(V) = IA+(n, r)l, so that TSM(Y) =I TSM(V). 



CHAPTER 3 

EB MA in Disguise 

We now make our k Hyp(r)-module y®r into a module for the type 

B Hecke algebra 1i. Recall that Hyp(r) acts on the generators of y®r 

via Yi 8 j = Yis j and that the set Z(n) is ordered via n < ... < I < l' < 

... < Ti < 1 < ... < n. Then we have the following. 

LEMMA 3.1. 1i acts on y®r via 

qYisa if a > 0 and ia ~ i a+1 

Yisa + (q - I)Yi if a > 0 and ia > i a+1 

QYisa if a = 0 and i 1 f/: {I,2, ... , n} 

Yisa +lQ-1 )~.: if a = 0 and i 1 E {I,2, ... , n} 

Extending linearly makes y®r into a right 1i-module. 

PROOF. It suffices to check the case r = 2, as the action of each 

generator affects at most two tensors. Note that all relations not in

volving Tso follow from [3, 3.1.4], swapping the left action onto the 

right. Also note that TSj Tso = TsOTsj is obvious for any j ~ 2, as the 

two generators act on separate coordinates of the tensor. This just 

leaves us with two relations to check. 

Now if a E {1',2, ... ,Ti} then 

(Ya ® Yb)(Tso - I)(Tso - Q) = (Q(Ya ® Yb) - (Ya ® Yb))(Tso - Q) = 

= Q2 (Ya ® Yb) - Q(Ya ® Yb) - Q( Q(Ya ® Yb)+q(Ya ® Yb)) = 0 
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and if a ~ {i,2, ... ,ri} the same result follows from [19]. 

So (Tso - 1) (Tso - Q) = 0 holds. Also if a, b ~ {i,2, ... ,ri} then 

follows, again from [19]. 

This just leaves another 7 cases to check. 

Case 1 a E {i,2, ... ,ri}, bE {I,2, ... ,n}. 

Now (Ya ® Yb)TsoTsl TsOTsl = Q(Ya ® Yb)Tsl TsOTsl 

= Q((Yb ® Ya) + (q - l)(Ya ® Yb))TsoTsl 

= Q((Yfj ® Ya) + (Q - l)(Yb ® Ya) + Q(q - l)(Ya ® Yb))Tsl 

= Q((Ya ® Yfj) + (q - l)(Yfj ® Ya) + q(Q - l)(Ya ® Yb) 

+Q(q - l)(Yb ® Ya) + Q(q - 1)2(Ya ® Yb)), 

and also 

(Ya ® Yb)TslTsoTslTsO = ((Yb ® Ya) + (q -l)(Ya ® Yb))TsoTslTso 

= ((Yfj® Ya) + (Q - l)(Yb ® Ya) + Q(q -l)(Ya ® Yb))TslTso 

= ((Ya ® Yfj) + (q - l)(Yb ® Ya) 

+q(Q - l)(Ya ® Yb) + Q(q - l)(Yb ® Ya) + Q(q - 1)2(Ya ® Yb))Tso 

= Q((Ya ® Yfj) + (q - l)(Yb ® Ya) + q(Q - l)(Ya ® Yb) 

+Q(q -1)2(Ya ® Yb) + (q - l)(Yb® Ya) + (Q - l)(q - l)(Yb ® Ya)) 
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and the two expressions are equal as Q(q - 1) + Q(Q - l)(q - 1) = 

Q2(q - 1). 

Case 2 a E {i,2, ... ,ri}, b E {I, 2, ... ,n}. 

Now (Ya ® Yb)Tsl TsoTsl Tso = q(Yb ® Ya)TsoTsl Tso = qQ(Yb ® Ya)Tsl Tso 

= q2Q(Ya ® Yb)Tso = q2Q2(Ya ® Yb), 

and also 

(Ya ® Yb)TsoTsl TsoTsl = Q(Ya ® Yb)Tsl TsoTsl = qQ(Yb ® Ya)TsoTsl 

= qQ2 (Yb ® Ya)Tsl = q2Q2 (Ya ® Yb) 

and the two expressions are equal. 
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Case 3 a E {I,2, ... , n}, bE {i,2, ... , fi}. 

Now (Ya ® Yb)TsOTslTsoTsl = ((Ya® Yb) + (Q- l)(Ya ® Yb))TsITsoTsl 

= ((Yb ® Ya) + (q - l)(Ya® Yb) + q(Q - l)(Yb ® Ya))TsoTsl 

= (Q(Yb ® Ya) + Qq(q - l)(Ya ® Yb) + Qq(Q - l)(Yb ® Ya))Tsl 

= Qq(Ya ® Yb) + Q (q - l)(Yb ® Ya) + Qq(Q - l)(Ya ® Yb) 

+Qq(q - l)(Q - l)((Yb ® Ya) 

= Qq(Ya ® Yb) + Qq(Q - l)(Ya ® Yb) + Q2q(q - l)(Yb ® Ya) 

and also 

(Ya ® Yb)Tsl TsOTsl Tso = q(Yb ® Ya)TsoTsl Tso = Qq(Yb ® Ya)Tsl Tso 

= Qq((Ya ® Yb) + (q - l)(Yb ® Ya))Tso 

= Qq(Ya ® Yb) + Qq(Q - l)(Ya ® Yb) + Q2q(q - l)(Yb ® Ya) 

and the two expressions are equal. 

Case 4 a E {I, 2, ... ,n}, bE {i,2, ... ,fi}. 

Now (Ya ® Yb)TsoTsl TsoTsl = Q(Ya ® Yb)Ts1 TsoTsl 

= Qq(Yb ® Ya)TsoTsl = Q2q(Yb ® Ya)Tsl 

= Q2q((Ya® Yb) + (q - l)(Yb ® Ya)) 

and also 

(Ya ® Yb)Tsl TsoTsl Tso = ((Yb ® Ya) + (q - l)(Ya ® Yb))TsoTslTso 

= Q((Yb ® Ya) + (q - 1) (Ya® Yb))TslTso 

= Qq((Ya ® Yb) + (q - l)(Yb ® Ya))Tso 

= Q2q((Ya ® Yb) + (q - l)(Yb ® Ya)) 

and the two expressions are equal. 

Case 5 a, b E {i,2, ... ,fi}, a<b. 
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Now (Ya ® Yb)TsoTsl TsOTsl = Q(Ya ® Yb)Tsl TsOTsl = qQ(Yb ® Ya)TsoTsl 

= qc!cYb ® Ya)Tsl = qQ2((Ya ® Yb) + (q - l)(Yb ® Ya)) 

and also 

(Ya ® Yb)T'l T'oT'l T,o = q(Yb ® Ya)T,oTsl Tso = qQ(Yb ® Ya)Tsl Tso 
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= qQ( (Ya ® Yb) + (q - l)(Yb ® Ya) )Tso = qQ2( (Ya ® Yb) + (q - l)(Yb ® Ya)) 

and the two expressions are equal. 

Case 6 a, b E {1,2, ... , n}, a = b. 

Now (Ya ® Ya)TsoTsl TsoTsl = Q(Ya ® Ya)Tsl TsoTsl 

= qQ(Ya ® Ya)TsoTsl = qQ2(Ya ® Ya)Tso = q2Q2(Ya ® Ya) 

and also 

(Ya ® Ya)Tsl TsoTsl Tso = q(Ya ® Ya)TsoTsl Tso = qQ(Ya ® Ya)Tsl Tso 

= q2Q(Ya ® Ya)Tso = q2Q2(Ya ® Ya) 

and the two expressions are equal. 

Case 7 a, b E {1,2, ... , n}, a > b. 

Now (Ya ® Yb)TsOTsl TsoTsl = Q(Ya ® Yb)Tsl TsOTsl = Q( (Yb ® Ya) 

+(q - l)(Ya ® Yb))TsOTsl = Q2((Yb ® Ya) + (q - l)(Ya ® Yb))Tsl 

= Q2(q(Ya ® Yb) + (q - l)(Yb ® Ya) + (q - 1)2(Ya ® Yb)) 

and also 

(Ya ® Yb)Tsl TsoTsl Tso = ((Yb ® Ya) + (q - l)(Ya ® Yb))TsOTslTso 

= Q((Yb ® Ya) + (q - l)(Ya ® Yb))TslTso 

=f\>~( Ya ® Yb) + (q - l)(Yb ® Ya) + (q - 1)2(Ya ® Yb))Tso 

= Q~( Ya ® Yb) + (q - l)(Yb ® Ya) + (q - 1)2(Ya ® Yb)) 

and the two expressions are equal. 

o 

N ow let i E IJ (n, r), so that Yi is a basis element in y®r. Then 

for A = (/-L; v) E A2(n, r) we say that i = (ib i2, .•• , ir) has content 

A if i consists of precisely /-Lj 1's and precisely Vj of either j's, )'S, or 

a combination of the two, so that i(A) has content A. Then for any 

A E A2(n, r) define 

y).®r = k - span{Yi E y®r I i has content A}. 

As each element in I B (n, r) has unique content A for some A E A2 (n, r) 
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this gives us a direct sum decomposition 

y®r _ ffi y®r 
- W>'EA2(n,r) >. . 

LEMMA 3.2. y>.®r = Yi(>.) 1i. 
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PROOF. If j E IJ(n, r) has content A then j = i(A)W for some W E 

Hyp(r). But of course {i(A)wl w E Hyp(r)} = {i(A)d IdE Dist(A)}. 

Hence y>.®r = k - span{Yi(>.)w I w E Dist(A)}, and dim y>.®r = I~~~?~~\. 

Now it is easy to see from the action of 1i on y®r that each member 

of Yi(>.) 1i is a linear combination of elements indexed by r-tuples of 

weight A. Therefore Yi(>.)1i C y>.®r. Now let d E Dist(A). Then again 

from the action of 1i on y®r it is easy to see that 

Yi(>.)Td = adYi(>')d + L:l(w)<l(d) awYi(>.)w 

where ad E k X and aw E k. Of course, each of these elements Yi(>.)w 

can be written as Yi(>.)w = Yi(>.)d' where d' E Dist(A) and l(d') ~ l(w). 

Therefore 

Yi(>.)Td = adYi(>.)d + L:l(d')<l(d) ad'Yi(>.)d' 

for ad E k X
, ad' E k and d' E Dist(A). 

Now from the above expression it is easy to see that the elements 

Yi(>.)Td , where d E Dist(A), are all linearly independent. Then since 

there are I Dist(A) I = //~;~~~~// of them we get that Yi(>.)1i is a right 

1i-submodule of y,®r of dimension at least / Hyp(r)/ and so y.(>.)1i 
A / Hyp(>.)/ 1 

Y ®r >. . o 

Therefore we now have a direct sum decomposition of our tensor 

space as y®r = EB>'EA2(n,r) y>.®r = EB>'EA2(n,r) Yi(>.)1i. 

We now recall two completely unrelated facts. Firstly we remember 

from Chapter 1 that Du and Scott (and similarly Dipper, James and 

Mathas) associate to each A E A2(n, r) a permutation module M>' = 

m>.1i. By [5, 3.3] this module has k-basis {m>.Td IdE Dist(A)}, so that 
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in particular M>" and y>..®r have the same dimension. Secondly we recall 

that if R is a ring and M is a right R-module then for any m E 111 the 

right annihilator annR(m) of m is the set annR(m) = {r E R I mr = O}. 

We now define two homomorphisms ¢J and 'l/J. Let ¢J : 1i --+ m>..1i and 

'l/J : 1i --+ Yi(>..) 1i via ¢J(Th) = m>..Th and 'l/J(Th) = Yi(>..)Th. Then both ¢J 

and 'l/J are onto so that by the homomorphism theorem for modules we 

have that 

m 1i rv ~ = 1£ and y. 1i C::!. ~ = 1£ >.. ker</> annR(m>.) 1(>") - ker1/J annR(Yi(>.»· 

Note that since dimm>..1i = dimYi(>..)1i = I~;;~~~\ we have that 

dim annR(m>..) = dim annR(Yi(>..») = I Hyp(r) I - 11~;;t~~\. 

We now wish to calculate annR(m>..) and annR(Yi(>..»). To this end 

we make a definition. 

DEFINITION. Recall from chapter 1 that for ,X E A2(n, r) we have 

the Young subgroup S('x) of Hyp(r). Now for ,X E A2(n, r) let A>.. be 

the set {2::=1 J-li, 1J-l1 + 2::=1 Vi I a E [1, n]} and put A~ = [1, r] \ A>... 

Then S('x) is generated by the set HI (,X) = {sa I a E A~}, so that 

S('x) rv S(J-ll) x S(J-l2) x ... x S(J-ln) x S(vd x ... X S(vn). 

LEMMA 3.3. If h E S('x) then 

(i) m>..Th = q'(h)m>.. and 

(ii) Yi(>..)Th = q'('\)Yi(>..). 

PROOF. It suffices to check both statements when h is a standard 

generator of S('x) i.e. when h E Hl('x). 

(i) Recall that m>.. = X>..'Tr>.. = 'Tr>..X>.., by [6, 3.7] for example. Now also, it 

follows from [28, 3.3] that if Si is a generator of S('x) then X>.TSi = qx>.. 

Therefore, for Si E HI (,X) we have that 

m>.TSi = X>.7r>.TSi = 7r>.X>.TSi = q7r>.X>. = qm>., 

and part (i) follows by induction. 
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(ii) Let Sa E HI (A). Then Sa E Hyp(A) so that Sa stabilizes Yi(>.) 

and also we must have that i(A)a = i(A)a+l. Then 

YiC>.)Tsa = qYiC>')sa = qYiC>'), 

and by induction part (ii) follows too. o 

COROLLARY 3.4. The elements 01- -Hat I .. t 

{(Tw - qlCw))Td I w E S(A) \ {I}, d E Dist(A)} are all members of both 

annR(m>.) and annR(YiC>'))' 

Recall that for each 1 ~ i ~ r we have the element ti = Si-l Si-2 ... 

. . . SOSI ... Si-l· Then we let C>.(i) = (ti' ti+l' ... ,tllLl), so that C>.(l) is 

Du and Scott's group C>. (see [11, 2.2]). Let Ui = Si-lSi-2 ... SI and 

Vi = SI S2··· Si-l, so that ti = UiSOVi. Then by [11, proof of 3.2.2] we 

have that if ti E C>. (1) then 

m>.Tti = Qm>.TUiTvi· 

We can now tell a similar tale for YiC>')' 

PROOF. Yi().)Tti = Yi().)TuiTsoTvi = qi-lYi().)UiTsoTvi 

= Qqi-lYi().)UisoTvi = Qqi-lYi().)Ui TVi = QYiC).)TuiTvi · o 

Now each non-identity element w of C).(l) can be uniquely written 

as w = tiw' for some 1 ~ i ~ IMI and w' E C). (i + 1) so that each 

(Tti - QTUiTvJTwi annihilates both m). and Yi()')' Now C).(I) forms 

a set of distinguished right coset representatives of S(A) in Hyp(A). 

Therefore each element of Hyp( r) can be uniquely written as 

htiw'd for h E S(A), ti E C).(l), w' E C).(i + 1), dE Dist(A). 

So the elements (Th - ql(h»)TtiTw1Td with h E S(A) \ {I}, d, w', ti as 

above, and (Tti - QTUiTvJTwITd with ti E C).(I) \ {I}, w', d as above 
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all annihilate both m).. and Yi()..), and are all linearly independent. Note 

that 1 Hyp(A) : 3(A)1 = 21JLI. Then the fact that there are 

(1 3(A) 1 - 1)21JLII Hyp(r)1 + (21JLI - 1) I Hyp(r)1 
I Hyp()..)I I Hyp()..)I 

= (13(A)I-1)IHYP()..)IIHyp(r)1 + (I Hyp()..) I -1) I Hyp(r)1 
IS()..)I I Hyp()..)I IS()..)I I Hyp()..)I 

_ 1 Hyp(r) 1 - I Hyp(r)1 + I Hyp(r)1 _ I Hyp(r)1 - 1 Hyp(r) 1 _ I Hyp(r)1 
- IS()..)I IS()..)I I Hyp()..)I - I Hyp()..)1 

= dim ker cP = dim ker 'lj; 

of these independent elements means that they must form a k-basis of 

both annR(m)..) and annR(Yi()..)) so therefore annR(m)..) = annR(Yi()..)) 

and we have the following. 

COROLLARY 3.7. y®r = EB)"EA2(n,r) y)..®r rv EB)"EA2(n,r) M).. 

and S;(n, r) rv Endll (y®r). 



CHAPTER 4 

Morita Equivalences and More 

In the words of Benson [2, 3.11.2] : 

LEMMA 4.1. An indecomposable kG-module has trivial source if 

and only if it is a direct summand of a permutation module. 

We now see how this relates to our situation. Let n be a finite set 

on which a finite group G acts, so that M = k - spann is a permuta

tion module for G. All G-permutation modules arise in this way. Let 

OI, O2 , .•. ,Om be the orbits of n with respect to our action of G, so 

each kOi is a kG-submodule of M, and 

M = k01 EB k02 EB··· EB kOm · 

Let x E Oi and say x has stabilizer H = staba(x). If k also denotes 

the trivial kH-module, we have the following. 

LEMMA 4.2. Let x E Oi) Sf) tlw,t ~t."Gr(z,) = u. · n.." 
k t~.1"V kOi as kG-modules . 

• 
PROOF. We know the dimensions are the same from the orbit

stabilizer theorem. Now define a map 4J : k t~;-+ kOi via gH;, 1---+ g.x . • 
This is onto as Oi = {g.xlg E G}, and ker4J = lit, so that 4J is an 

isomorphism, by the homomorphism theorem. 

o 

So we have that M = Eei kOi = Ee, k t~i' where Xi E Oi, and 

staba(xi) = Hi' So if M is a permutation module for G with set 

of point stabilizers M then counting the number of G-components of 
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M, over a field of characteristic p > 0, amounts to counting the number 

of isomorphism classes of indecomposable trivial source modules over 

M. If we assume that M is a p-Mackey system for G, which we will 

from now on, we can use Grabmeier's methods to do the count. In 

other words if Comp(M) denotes the number of components of a kG

permutation module M, with notation as above we have the following. 

LEMMA 4.3. Comp(M) = TSM(M). 

We can now apply this to our earlier results. 

THEOREM 4.4. When p, the characteristic of k, is odd we have 

Comp(y®T) = Comp(V®T) = IAI(n, r)l. However iF p = 2 

Utft Comp(y®T) = IAI(n, r)1 and Comp(V®T) = IA +(n, r)l, so the 

number of components of our two tensor spaces are not equal. 

We can now prove the main theorems of this chapter. 

THEOREM 4.5. Let q = Q = 1, and let p, the characteristic of 

k, be odd. Then Endll (y®T) and Endll (V®r) are Morita equivalent 

i. e. in the group case Du-Scott's q-Schur2 algebra, Richard Green's 

hyperoctahedral Schur algebra, and Dipper, James and Mathass(Q, q)

Schur algebra are all Morita equivalent. However when p = 2 the 

hyperoctahedral Schur algebra is not Morita equivalent to the other two. 

PROOF. When p is odd, we have shown that Comp(y®r) is equal 

to Comp(V®r), and therefore since v®r is a k Hyp(r)-submodule of 

y®r, we see that v®r and y®r have the same components, but with 

different multiplicities. So applying theorem 1.3 from the introduction, 

we see that when q = Q = 1, Endll (y®r) and Endll (V®r) are Morita 

equivalent. Then of course Endll (V®r) = SHYP(n, r) and Endll (y®r) = 
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S2(n, r), and it is already known that S;(n, r) and SQ,q(n, r) are Morita 

equivalent ~~e" ~I q + 0 , so the main part of the theorem 

follows. The second part follows as when p = 2 we have already seen 

that Comp(Y®T) < Comp(V®T). 

o 

Now we can apply Fitting's Theorem, orTheorem 1.2, to give the fol

lowing. 

THEOREM 4.6. Over a field of odd characteristic, the Schur alge

bras SHYP(n, r), S2(n, r) and Sl,l(n, r) all have precisely IAi(n, r)1 in

equivalent irreducible modules. 

In characteristic 2, the algebra SHYP(n, r) has IA +(n, r)1 irreducibles, 

whilst S2(n, r) and Sl,l(n, r) both have IAi(n, r)1 inequivalent irre

ducible modules. 



CHAPTER 5 

Coalgebras 

In this chapter our main aim is to follow methods of [3] to construct 

a graded bialgebra, denoted Cq,Q(3n), which has the dual of its rth 

homogeneous part isomorphic to the q-Schur2 algebra. 

Now, in [3], Dipper and Donkin construct a graded bialgebra Aq(n), 

with rth homogeneous part Aq(n, r). This has the property that its 

dual, Aq(n, r)*, is isomorphic to the q-Schur algebra Sq(n, r). We 

quickly review this construction, which is given in Chapter 1. Start 

with F(n), the free k-algebra in non-commuting indeterminatu Xi,j, 

where i and j run over n. This is naturally a bialgebra. Now let J be 

the ideal of F(n) generated by elements of the form 

for i > j and l ~ m, 

Xi,lXj,m - Xj,mXi,l - (q - l)xj,lxi,m for i > j and l > m, 

Xi,lXi,m - Xi,mXi,l for all i, l, m, 

where i, j, l, m E n. Then let Aq(n) = F(n)/ J, so that writing Xi,j for 

the canonical image Xi,j + J of Xi,j in Aq ( n) we get that in Aq ( n ), and 

its rth homogeneous part Aq(n, r), we have the following relations 

Xi,lXj,m = qXj,mXi,1 for i > j and l ~ m, 

Xi,lXj,m = Xj,mXi,l + (q - 1 )Xj,IXi,m for i > j and l > m, 

Xi,IXi,m = Xi,mXi,1 for all i, l, m, 

where i,j, l, mE n. Then E®r is an Aq(n, r) comodule and the relations 

above ensure that multiplication by elements of Hec(r) is a comodule 
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map, and this induces an isomorphism 

() : Aq(n, r)* ---+ EndHec(r) (E®r) = Sq(n, r). 

In this chapter we follow these methods to construct a bialgebra in 

type B. We begin with the free k-algebra FB(3n) in the non-commuting 

indeterminants Xi,j, where i, j E Z(n), which is naturally a bialgebra. 

We now determine what relations we are required to factor out from 

FB(3n) to give our new bialgebra for which y®r is a comodule and 

multiplication by elements of 1l(r) is a comodule map. 

Recall that Z(n) is the set {n, ... , 1,1, ... , n, 1, ... , n}, with order

ing n < ... < I < 1 < ... < n < 1 < ... < n. Let J be the ideal of 

FB(3n) generated by the elements 

for i > j and l ~ m, 

Xi,lXj,m - Xj,mXi,l - (q - l)xj,lxi,m for i > j and l > m, 

Xi,lXi,m - Xi,mXi,l for all i, l, m, 

where i,j,l,m E Z(n), and put Aq(3n) = FB(3n)/J. Then if we write 

Xi,j = Xi,j + J for the canonical image of Xi,j in Aq(3n) we get that 

Aq (3n) is the k-alge bra given by generators {X i,j Ii, j E Z ( n ) }, and 

relations 

for i > j and l ~ m, 

Xi,lXj,m = Xj,mXi,l + (q - 1 )Xj,lXi,m for i > j and l > m, 

X. ,X. m = Xi mXi l for all i, l, m, If, ", " 

where i, j, l, m E Z(n). Let Aq(3n, r) be the rth homogeneous part of 

this. By [3, 1.4.2, 1.4.3], Aq(3n) is a bialgebra, so that each Aq(3n, r) 

is also a coalgebra. 

Then, also by [3, 3.1.6], y®r is already a right comodule for Aq(3n, r), 

with structure map T : y®r ~ y®r ® Aq(3n, r) given by T(Yi) = 

EjEIB(n,r) Yi®XiJ, and multiplication by an element of the algebra gen

erated by the elements TsI , ... ,Tsf'_l is a comodule map. This means 
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that all the relations in our new algebra that come from the action of 

TS11 ... ,Tsr _ 1 on y®r are already accounted for, and we just need to 

find the ones coming from the action of Tso. We can then factor out the 

ideal, I, generated by these relations from our existing algebra Aq{3n) 

to give us our new algebra Cq,Q{3n) = Aq{3n)/ I r-..J FB {3n)/(I+ J). 

N ow since the action of Tso on y®r only sees the first place in the 

tensor, it suffices to consider the case r = 1. Let ¢ : Y ---+ Y be given 

by ¢(y) = yTso for all Y E y®r, so that for i E n the map ¢ acts on Y 

VIa 

¢(Yi) = QYr, ¢(Yi) = QYi and ¢(Yr) = Yi + (Q - 1 )Yr. 

Also for l E Z (n) the structure map on our new coalgebra will be 

inherited from Aq(3n) so that r : Y ---+ Y ®Cq,Q(3n) is given by r(YI) = 

L:mEZ(n) Ym ® Cm,l· 

Now for multiplication by elements of 'Ii to be a comodule map we 

require that r(¢Yj) = (¢® l)r(Yj) where Yj is a basis element of Y and 

1 is the identity map on Aq(3n, 1). So we equate the two sides of this 

identity and read off the consequences for our new coalgebra. Letting 

j E n we have 

r(¢Yj) = QrYJ = Q L:iEZ(n) Yi ® ci3 

= Q L:iE!! (Yt ® ct3 + Yi ® Ci3 + Yi ® ci3) 

and also that 

(¢ ® l)r(Yj) = (4) ® l)(L:iEz(n) Yi ® Ci,j) 

= L:iE!! (¢ ® 1) (Yt ® ct,j + Yi ® Ci,j + Yi ® Ci,j) 

= L:iE!! (QYt ® Ci,j + QYi ® Ci,j + Yi ® ct,j + (Q - l)Yr ® ca,j) 

= L:iE!!(Yt® (QCi,j + (Q -l)ca,j) + Q'!/i® Ci,j + Yi ® ct,j)· 

Equating coefficients gives that for all i, j E n we have 

ca,j = QCiJ 

C?-: = C? . 
I,J I,J 
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and Qct,,) = QCi,j + (Q -l)ct"j, which using the first relation above gives 

Qct,,) = QCi,j + Q(Q - l)ci ,) or, for Q # 0, it gives 

ct,,) = Ci,j + (Q - 1 )ci')' 

N ow for the hatted case. Let j E n then 

r(¢YJ) = Qr(YJ) = Q(L:iEZ(n) Yi ® ci3) 

= Q(L:iE!! YI ® cl3 + L:iE!! Yi ® q3 + L:iE!! Yi ® ci3) 

and (¢ ® l)r(YJ) 

= (¢ ® 1) (L:iE!! YI ® cl3 + L:iE!! Yi ® q3 + L:iE!! Yi ® ci3) 

= L:iE!! (Yi + (Q - 1 )YI) ® cl3 + Q L:iE!! Yi ® q3 + Q L:iE!! Yz ® ci3 

= Q L:iE!! Yi ® q3 + L:iE!! Yi ® cl3 + L:iE!! YI ® (( Q - 1 )cl3 + QCi3) 

which equating coefficients gives that for all i, j E n we have 

c-;~ = Qc.~. 
',J ',J 

It also gives us that q3 = q3 ' which should come as no surprise, and 

lastly that QCl,"J = (Q - 1)Cl3 + QCi3 ' which is just a less economical 

way of saying that cl3 = QCi3' 

Now asking that r(¢Yz) = (¢ ® l)r(YI) only gives us the relations 

we have already seen, so we have now found all the relations coming 

from the action of the element Tso on the k-space Y. 

We can now build ourselves an algebra. 

DEFINITION. Let Q # O. Let I be the ideal of Aq(3n) generated 

by linear relations of the form 

x-;· -QX.~ I,J f.,J 

X-;~ - X· . - (Q - l)X.~ 
'.J I.J '&.J 

X-;~ - QX.~ 
'I..J 'I..J 

where i, j E n. Then we denote the k-algebra Aq(3n)/ I by Cq,Q(3n), 

and we also denote the canonical image Xi,j + I of Xi,j in Cq,Q(3n) by 
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Ci,j for all i, j E Z(n). Therefore Cq,Q(3n) is the k-algebra given by 

generators {Ci,j I i, j E Z (n)} subject to quadratic relations 

Ci,lCj,m = qCj,mCi,l for i > j and l ~ m, 

Ci,lCj,m = Cj,mCi,l + (q - 1 )Cj,lCi,m for i > j and l > m, 

Ci,lCi,m = Ci,mCi,l for all i, l, m, 

where i,j,l,m E Z(n), and linear relations 

q,j = QCi:J 

q:J = Ci,j + (Q - l)ci :J 

C-:--:-= Qco--:-
t,) t,) 

where i, j E n. 

Recall that the hyperoctahedral group Hyp(r) acts on IB(n, r). 

Then we can also make Hyp(r) act on I~(n, r) = IB(n, r) x IB(n, r) 

via (i,j)7r = (i7r,j7r) , where 7r E Hyp(r). Using the notation of [18, 

2.1] and [3,1.1]' for i = (i1,i2 , ... ,ir) andj = (jl,12, ... ,jr) in IB(n,r) 

we let XiJ = Xi1,il X i2 ,h ... Xir,jr E Aq(3n). Then Aq(3n) is a graded 

algebra, given by Aq(3n) = EBr~o Aq(3n, r), where Aq(3n, r) is spanned 
7 

by monomials XiJ where i,j E IB(3n, r) for r ~ 1, and Aq(3n, 0) = k 

by definition. The generators of I are all of degree one, so that I is 

a homogeneous ideal and Cq,Q(3n) inherits the grading from Aq(3n). 

Similarly, the subspace Cq,Q(3n, r) is spanned by monomials CiJ where 

i,j E IB(3n, r) for r ~ 1, and Cq,Q(3n, 0) = k by definition. Then the 

above grading is given by Cq,Q(3n) = EBr~o Cq,Q(3n, r). 

We now want give Cq,Q{3n) the structure of a bialgebra. Recall 

that bialgebra structure is given on Aq(3n) by 

Ll(Xi,j) = L:aEZ(n) Xi,a ® Xa,j and c{Xi,j) = 6ij • 

Now if we can show that I is a biideal of Aq{3n) then we will have 
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proved that Cq,Q(3n) is a bialgebra with inherited comultiplication and 

counit. Now to show that I is a biideal of Aq(3n) we need to prove 

that: 

(i) c(g) = 0; and 

(ii) ~(g) C I ® Aq(3n) + Aq(3n) ® I 

for all generators 9 of our ideal I. 

LEMMA 5.1. I is a biideal of Aq(3n). 

PROOF. Let B denote I ® Aq(3n) + Aq(3n) ® I. 

(i) We have 

c(X"< . - QX.-:) = c(X"<.) - Qc(X.-:) = ~"<. - Q~.-: = 0 - Q 0 = 0 Z,) Z,) Z,) Z,) Z) Z) ., 

c(X--:--: - X--:- .) = c(X--:--:) - c(X--:- .) = Em - tn. = 0 - 0 = 0, 
Z,) Z,) Z,) Z,) Z) Z) 

and finally 

c(X~3 - Xi,j - (Q - 1)Xi3) = c(XI3) - c(Xi,j) - (Q - 1)c(Xi3) = 
8ij - ~ij - (Q - 1 )~i) = ~ij - ~ij - (Q - 1).0 = 0 

so that c(g) = 0 for all generators 9 of I. 

(ii) Now for comultiplication. We have 

~(X~,j - QXi3) = ~(X~,j) - Q~(Xi3) 

= L:aEZ(n) X~,a ® Xa,j - Q L:aEZ(n) Xi,a ® Xa3 

= L:aE!! X~;li ® Xa,j + L:aE!! X~,li ® Xli,j + L:aE!! XI,a ® Xa,j 

-Q L:aE!! Xi,a ® Xa3 - Q L:aE!! Xi,li ® Xli3 - Q L:aE!! Xi,aXa3 

= Q L:aE!! X~,a ® Xa3 + L:aE!! X"li ® Xli,j + L:aE!! X"a ® Xa,j 

-Q L:aEn Xi,a ® Xa,j - Q( Q - 1) L:aE!! Xi,a ® X a" - Q L:aE!! Xi,li ® Xli,j 

-Q L:aEn Xi,aXaJ ' (modulo B) 

= Q L:aEn(X"a - Xi,a - (Q - l)Xi,a) ® XaJ 

+ L:aEn (X"li - QXi,li) ® Xli,j + L:aEn (X"a - QXi,a) ® Xa,j 
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= O. (modulo B) 

Therefore ~(XI,j - QXi;]) C I ® Aq(3n) + Aq(3n) ® I). 

Also ~(XI;]-Xi,j-(Q-1)Xi;]) = ~(XI;])-~(Xi,j)-(Q-1)~(Xi;]) 

= I:aEZ(n) XI,a®Xa;]- I:aEZ(n) Xi,a®Xa,j - (Q-1) I:aEZ(n) Xi,a®Xa;] 

= I:aE!! XI,a; ® Xa;;] + I:aE!! XI,a ® Xa;] + I:aE!! XI,a ® Xa;] 

- I:aE!! Xi,a; ® Xa;,j - I:aE!! Xi,a ® Xa,j - I:aE!! Xi,a ® Xa,j 

-(Q - 1) I:aE!! Xi,a; ® Xa;;] - (Q - 1) I:aE!! Xi,a ® Xa,J 

-(Q - 1) I:aE!! Xi,a ® X a;] 

- I:aE!! XI,a; ® Xa,j + (Q - 1) I:aE!! XI;a ® Xa,J - Q I:aE!! Xi,a; ® Xa,J 

- (Q - 1) I:aE!! Xi,a; ® Xa,j + (Q - 1)2 I:aE!! Xi,a; ® Xa,J 

+ I:aE!! Xi,a ® Xa,j - I:aE!! Xi,a ® Xa,j - (Q - 1) I:aE!! Xi,a ® Xa,j 

+ I:aE!! XI,a ® X a;] - I:aE!! Xi,a ® Xa,j 

-(Q - 1) I:aEn Xi,a ® X a;] , 

= I:aE!!(XI,a; - Xi,a - (Q - l)Xi,a;) ® Xa,j 

+(Q - 1) I:aE!!(XI,a; - Xi,a - (Q - l)Xi,a;) ® Xa;] 

+ I:aEn (XI a - QXi,a) ® Xa,j - , 

- 0 . 

Now ~(X~-: - QX.-:) = ~(X~-:) - ~(QX.-:) 
~,J ~,J ~,J .,J 

= I:aEZ(n) XI, a ® Xa3 - Q I:aEZ(n) Xi,a ® Xa3 

(modulo B) 

(modulo B) 

= I:aE!! X"a; ® Xa;3 + I:aE!! X"a ® Xa3 + I:aE!! XI,a ® Xa3 

-Q I:aE!! Xi,a; ® Xa;3 - Q I:aE!! Xi,a ® Xa3 - Q I:aE!! Xi,a ® Xa3 

= I:aE!! X"a; ® Xa;3 + I:aE!! X"a ® X a,1- Q I:aE!! Xi,a; ® Xa;3 

-Q I:aE!! Xi,a ® Xa3 ' (modulo B) 
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- Q L:aE!! X1,a; ® Xa3 + L:aE!! X1,a ® Xa3 - Q2 L:aE!! Xi,a; ® Xa3 

-Q L:aE!! Xi,a ® Xa3 ' (modulo B) 

= Q L:aE!! Xi,a ®Xa3 +Q(Q -1) L:aE!! X i,a;®Xa3 +Q L:aE!! X i,a;®.JYa3 

_Q2 L:aE!! Xi,a; ® Xa3 - Q L:aE!! Xi,a ® Xa3 ' (modulo B) 

=0. 

Therefore ~(XI3 - X i3) c J ® Aq(3n) + Aq(3n) ® J). 

Finally, we also have that ~(X--:-~ - X--:- .) = ~(X--:-~) - ~(X-:- .) 
l,J l,J l,J 1,J 

= L:aEZ(n) Xi,a ® Xa,J - L:aEZ(n) Xi,a ® Xa,j 

= L:aE!! Xi,a; ® Xa;,J + L:aE!! Xi,a; ® Xa;,J + L:aE!! Xi,a ® Xa3 

- L:aE!! Xi,a; ® Xa;,j - L:aE!! Xi,a; ® Xa;,j - L:aE!! Xi,a ® Xa,j 

= L:aE!! Xi,a; ® Xa;,J + L:aE!! Xi,a ® Xa,J 

- L:aE!! Xi,a; ® Xa;,j-L:aE!! Xi,a ® Xa,j , (modulo B) 

= L:iE!! Xi,a ® (Xa,j -t (Q - 1)Xa3 + Xa,J - QXa,J - Xa,j) = 0, 

and this completes the proof. o 

COROLLARY 5.2. Cq,Q(3n) 'ts bialgebra with comultiplication and 

counit given by 

~(Ci,j) = L:aEZ(n) Ci,a ® Ca,j and €(Ci,j) = ~ij. 
We also have, for each r ~ 0, that Cq,Q(3n, r) is a subcoalgebra of 

Cq,Q(3n). 

We now have a detailed look at what happens for the hyperoctahe

dral group. 

~. 1. The group case 

Putting q = Q = 1 we are back in the group case, and we have built 

a bialgebra C1,t{3n) with rth homogeneous part C1,l(3n, r) from the 

action of k Hyp( r) on y®r. In this section we will always assume that 
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q = Q = 1, and write C(3n) and C(3n, r) for C1,1(3n) and C1,1(3n, r) 

respectively. Then C(3n) is the k-algebra generated by the elements 

{Ci,j I i, j E Z (n)} with quadratic relation 

Ci,jCl,m = Cl,mCi,j where i,j,l,m E Z(n), 

so all elements Ci,j and Cl,m commute, and linear relations 

C~· = c·...,. 't,J 't,J 

C~":" = c·":" 
't,J 't,J 

C?...,. = C? 
't,J 't,J 

where i, j E n. We now write i rv j to denote that i and j are in the 

same Hyp(r)-orbit of IB(n, r), and similarly (i,j) rv (i',j') to denote 

that (i,j) and (i',j') are in the same Hyp(r)-orbit of IB(n, r) x IB(n, r). 

Our next job is to construct a k-basis for C(3n, r). The following 

is useful. 

THEOREM 5.3. For i,j, i',j' E IB(n, r), we have 

CiJ = Ci' J' {:} (i, j) rv (i', j') 

PROOF. The relation Ci,jCl,m = Cl,mCi,j gives us that for all elements 

x E C(3n,a -l),y E C(3n,r - (a + 1)) where 1 ~ a ~ r -1, and 

i, j, l, m E 3n we have that 

XCi,jCl,mY = XCI,mCi,jY· 

Then since (XCi,jCl,mY).Sa = xCl,mCi,jY we can re-write this relation in 

C(3n, r) as 

CiJ = CisGJsG for all i,j E IB(n, r) and 1 ~ a ~ r - 1. 

Similarly, with x as above, Y E C(3n, r - a), and i, j E n, the relation 

Ci,j = CiJ tells us that 

xCi,jY = xCiJY for all such i, j, x and Y as above. 

N ow recalling that for all 1 ~ a ~ r we have ta = Sa-l ••. So ..• Sa-I, 
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we have that (xq,jy).ta = xC(JY' so that we can rewrite our original 

relation in C(3n, r) as 

CiJ = CLta,Lta if ia is barred and ja is unbarred. 

Applying similar arguments to the other 3 linear relations in C(3n, r) 

we get 

CiJ = CitaJta for all i,j E IB(n, r) and 1 ~ a ~ r. 

So for any relation CiJ = Ci'J' in C(3n, r) we must have that (i,j).7r = 

(i',j') for some 7r E Hyp(r), so that (i,j) rv (i',j'). 

Conversely, let Sa be a generator ofHyp(r). Then since the elements 

Ci,j in C(3n, r) all commute, and for 1 ~ a ~ r-1 the generators Sa just 

transpose Cia,ja and cia+t.ia+l we have that if (i',j') = (i,j)sa = (isa,jsa) 

for some 1 ~ a ~ r -1, then CiJ = Ci'J'. We now just need to show this 

is true for So. 

As So only sees the first coordinate of elements in I B (n, r), we can 

just consider the case r = 1, so we can write CiJ simply as Ci,j. Then, 

for i,j E n we have 

by the first linear relation. Similarly we also have 

Ciso,jso = CiJ = Ci,j 

and of course 
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Therefore (i, j) So = (i', j') ~ CiJ = Ci' J' and so we have that 

(0 0) (0' 0') 1,J rv 1 ,J ~ CiJ = Ci'J', 

and the proof is complete. o 

Let U (n, r) be a set of representatives of the orbits of the Hyp( r)

action on IB(n, r) x IB(n, r). Then the above theorem gives us the 

following. 

COROLLARY 5.4. The set {CiJ I (i,j) E U(n, rn 1,S a k-basis for 

C(3n, r). 

Now recall that Z(n) is an ordered set with ordering n < ... < I < 

1 < ... < n < 1 < ... < n. Then we let 23(n, r) be the subset of 

IB(n, r) x IB(n, r) consisting of elements (i,j) where: 

(Bl) All elements of i are not barred, and if ia is hatted then ja is not 

barred; 

(B2) We have that i 1 ~ ... ~ ir and if ia = ia+1 then ja ~ ja+l. 

Then 23(n, r) is a transversal for the action of Hyp(r) on IB(n, r) x 

IB(n,r), so in the corollary above we could take U(n,r) = 23(n,r). 

Since 23(n, r) has cardinality en2!r-l) , we know that C(3n, r) has di

mension (5n 2!r-l). 

From Chapter 1, as in [17, 1.1, Remark 2], we know that since 

C(3n, r) is a coalgebra, its dual C(3n, r)* = Homk(C(3n, r), k) is an 

associative k-algebra. We can now mimic [18, 2.3] to give a k-basis 

for C(3n, r)*, and then follow the methods of [18, 2.6] to show that 

C(3n, r)* is isomorphic to the Schur2 algebra. Firstly we make a defi

nition. 



;. 1. THE GROUP CASE 

DEFINITION. For a, b, i, j E I B (n, r) we define the element 

rJa,b E C(3n, r)* via 

1 if (a, b) ~ (i,j) 

o otherwise 
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It is now clear that rJiJ = rJi'J' {:} (i,j) ~ (i',j') which gives us the 

following. 

THEOREM 5.5. The set {rJiJ I (i,j) E (n,r)} is a k-basisJorC(3n,r)*. 

Of course the dimension of C(3n, r)* is the same as that of C(3n, r), 

namely (5n2~r-l). 

We now derive an action of C(3n, r)* on y®r, making y®r into 

a left C(3n, r)*-module. Say we have a bialgebra C, which has right 

comodules V, with structure map T : V --t V ® C such that for v E V 

we have T( v) = L:i Vi ® ai, and W with structure map K : W --t W ® C 

such that for W E W we have K(W) = L: j Wj ® aj. Then V ® W is a 

right C-comodule with structure map cp : V ® W --t V ® W ®C defined 

by cp(v ® w) = L:i,j Vi ® Wj ® aiaj, with Vi, Wj, ai and aj as above. 

Now C(3n) is a bialgebra, and it comes equipped with a right co

module Y with structure map T : Y --t Y ® C(3n) given by 

T(Yj) = L:iEZ(n) Yi ® Cij' So by repeatedly applying what is said above 

about the tensor product of two comodules for a bialgebra we see that 

y®r is a right comdule with structure map T : y®r --t y®r ® C(3n) 

given by T(Yj) = L:iEZ(n) Yi ® Ci,j' 

Now say V is a right comodule for a coalgebra C, with basis 

{Vj I j E J}, and structure map T( Vj) = L:iEJ Vi ® Xij' Then the k-span 

of the elements Xij as above is called the coefficient space of V, and is 

denoted cf(V). Now the C(3n)-comodule Y is homogeneous of degree 1, 

i.e. we have that cf(V) ~ C(3n, 1), and therefore y®r is homogeneous 
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of degree r, so that the structure map T : y®r ~ y®r ® C(3n) of F is 

actually a map from y®r into y®r ® C(3n, r), so that y®r is a right 

C(3n, r)-comodule. We recall the following from chapter 1 (and also 

from in [17, 1. 1 ,Remark 2]). Let (V, T) be a right C-comodule. Then 

the k-space V can be given the structure of a left C* -module via the 

product av = (1 ® a)T(v), where a E C* and v E V. Now from above 

we know that y®r is a right C(3n, r)-comodule with structure map 

T(Yj) = L:iEIB(n,r) Yi ® Cij, so y®r is a left C(3n, r)*-module, and for 

1] E C(3n, r)* we have the product 

1]Yj = (1 ® 1])T(Yj) = (1 ® 1])(L:iEIB(n,r) Yi ® Cij) = L:iEIB(n,r) Yi ® 1](Cij). 

So identifying 1]( Cij) ® 1 and 1]( Cij), we have that the following is true. 

LEMMA 5.6. y®r is a left C(3n, r)*-module, and for 1]a,b a basis 

elements ofC(3n, r)*, andYj a basis element ofy®r we have the product 

1]a,bYj = L:iEIB(n,r) 1]a,b(Cij)Yi. 

We can now use this action to show the following. 

LEMMA 5.7. The actions of C(3n, r)* and Hyp(r) on y®r central

ize each other. 

Note this lemma is a consequence of the way in which we con

structed Cq,Q(3n, r), but the proof given here is straightforward. 

PROOF. For each of our basis elements 1]a,b E C(3n, r)*, each 7r E 

Hyp(r) and each basis element Yi of y®r we have 

(1]a,bYi)7r = (L:iEIB(n,r) 1]a,b(Cij)Yi)7r = L:iEIB(n,r) 1]a,b(Cij)Yi7r 

= ~iEIB(n,r) 1]a,b(Cij)Yhr = ~iEIB(n,r) 1]a,b(Chrj)Yhr 

= 1]a,b (Ybr) = 1]a,b (Yi'1T'), 

i.e. we have that (1]a,bYi)7r = 1]a,b (Yi7r). This then extends linearly to 

give the theorem. o 
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We can now prove one of the main theorems of this chapter. 

THEOREM 5.8. As k-algebras we have that, for all n, r ~ 1, 

C(3n, r)* f'.J EndkHyp(r) (y®r) f'.J S2(n, r). 
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PROOF. Now y®r is a left C(3n, r)*-module, which affords a rep

resentation 

p: C(3n, r)* --+ Endk(y®r) where P(l1)(Y) = l1Y 

for all 11 E C(3n, r)* and Y E y®r. Since by the previous lemma we 

have that (l1Y)7r = l1(Y7r) for all 11 E C(3n, r)*, Y E y®r and 7r E Hyp(r) 

we see that P(l1) is actually a k Hyp(r)-endomorphism of y®r so we in 

fact have that 

P : C(3n, r)* --+ EndkHyp(r) (y®r). 

We now show that P is an isomorphism. Each tJ E Endk(y®r) can be 

written as a matrix (J = ((Jij)ijEIB(n,r) , for some (Jij E k, with respect 

to our basis B = {Yj jj E IB(n, r)} of y®r. Now we want tJ to be a 

k Hyp(r)-endomorphism, so that for all Yj E Band 7r E Hyp(r), we 

have 

tJ(Yj7r) = (tJYj)7r, 

or, what is the same thing, that 

(J(Yj7r) = ((JYj)7r· 

Of course, the action of (J on y®r is given by (J(Yj) = L:iEIB(n,r) (JijYi. 

Then we have that 

(J(Yj7r) = (J(Yj7r) = L:iEIB(n,r) (Jij7rYi = L:iEIB(n,r) (Ji7rj7rYi7r 

but also 

((JYj)7r = (L:iEIB(n,r) (JijYi)7r = L:iEIB(n,r) (JijYi7r' 

Therefore, we see that tJ E EndkHyp(r)(y®r) if and only if (Jij = (Ji7rj7r 

for all i,j E IB(n, r) and 7r E Hyp(r). Consequently Endk Hyp(r) (y®r) = 

8 2 (n, r) has k-basis 
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{'19(a,b) I (a, b) E ~(n,r)} 

where for (a, b) E ~(n, r) we define the basis element 'l9(a,b) to be that 

whose matrix (8iJ ) is such that 

8 
.. _ { 1 if (a, b) rv (i,j) 
1,.) -

o otherwise 

Now 

P(17a,b)(Yj) = 17a,bYj = LiEIB(n,r) 17a,b(CiJ)Yi = LiEIB(n,r) 8 iJYi 

by definition of the element 17a,b E C(3n, r)*. Therefore 

P(17a,b)Yi = LiEIB(n,r) 8 iJYi = 8(a,b)Yi = 'l9(a,b)Yi 

so that 

P(17a,b) = 'l9(a,b) 

and P induces an isomorphism C(3n, r)* rv EndkHyp(r) (y®r). 

D 

Now from [11, 6.1.1]' for fixed n, r ~ 1, the q-Schur2 algebra has a 

k-basis which is indexed by the same set for all values of q and Q, 

and hence the dimension of the q-Schur2 algebra, S; (n, r), is the same 

for all values of q and Q. SO since the above theorem gives us that 

dimS2(n,r) = en2!r-l) for all r,n ~ 1 we have the following. 

COROLLARY 5.9. For all q, Q E k, and n, r ~ 1 we have 

dimS;(n, r) = (5n2!r-l). 

,.2. The non-commuting case 

We now return to the general setting of Cq,Q(3n, r). We can show 

the following. 

LEMMA 5.10. ~(n, r) is a spanning set for Cq,Q(3n, r). 
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PROOF. Consider a general element CI,m' Using the linear relations 

in Cq,Q(3n, r) we can write each Cla,ma as a linear combination of ele

ments satisfying (B1) as above. This means we can write CI,m as a linear 

combination of elements satisfying (B1). We can now use the quadratic 

relations and the fact that if i, j, l E nand m E {I, ... ,n, 1, ... ,n} then 

Ci,IC],m = C],mCi,1 + (q - l)c],lci,m = C],mci,l + (q - l)S,lCi,m 

(using the second quadratic and fourth linear relations) to write each 

part of this linear combination as a further linear combination of ele

ments satisfying both (B 1) and (B2). Therefore 23 (n, r) is a spanning 

set for Cq,Q(3n, r). 

Then as 123(n, r)1 = cn2~r-l) we can make the following conclusion. 

We can now make a stronger statement. 

THEOREM 5.12. If q 1= 1 and r, n > 1 then 

dimCq,Q(3n,r) < cn2~r-l). 

o 

PROOF. It is enough to prove this for the case r = 2, n > 1, then 

the general case r, n > 1 of the theorem comes for free. Consider the 

element Cl,2Cf,1 E Cq,Q(3n,1). Then using the relations we have that 

but also 

Cl,2Cf,l = Cf,lCl,2 + (q - 1)Cf,2C1,l = QC1,ICl,2 + Q(q - 1)Cl,2C1 ,1 

which as Q 1= 0 implies that 

C1,2C1 ,l = 0, unless q = 1. 

Therefore if q i= 1 and n > 1 then Cq,Q(3n, 2) is spanned as a k-space 

by the set {CiJ I (i,j) E 23(n,2)} \ {C.,i c
"
.l t so that when n > 1 
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dim Gq,Q(3n, 2) < cn~+l). 

The general case now follows. 

COROLLARY 5.13. If q -::j:. 1 and r, n > 1 then 

dimGq,Q(3n,r)* < cn2~T-l) = dimS;(n,r), 
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o 

so that in particular Gq,Q(3n, r)* is not isomorphic to S;(n, r) in these 

cases. 

We therefore conclude that it is not possible for all values of q and 

Q to use the 1l-action on y®T to build a bialgebra having the dual of 

its rth homogeneous part isomorphic to S;(n, r) using this method. It 

is however certainly possible in the group case, but not in general for 

1l. 

~. 3. Associated Linear groups 

We close this chapter on a more positive note, by defining a sub

group of GL3n (k) whose action on y®T commutes with that of Hyp(r). 

This is an analogue of the fact that in type A the actions of Sym (r ) 

and GLn(k) on E®T commute, so we have introduced a type B linear 

group into our situation. 

Let S be the member of GLn with Sij equal to 1 if i + j = n + 1 

and 0 otherwise. We can now make the following definition. 

DEFINITION. For all i ~ 1, define r = r3n(k) to be the subgroup 

of GL3n (k) consisting of "Invertible. ,.,,,ffiees • ., ""-~ 

A B G 

D E DS 

SGS SB SAS 

, .,.,1..1'4 A,B, C, D 
... ,/ C .~t tUrn 

ItItIflri teJ . 
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We index the rows and columns of 

these matrices by the set Z(n), with respect to the usual ordering 

n < ... < I < 1 < ... < n < 1 < ... < n. 

We now derive an action of our new group r on y®r. The k-space 

y is a left kr -module, with 9 E r acting via 

gYb = LaEZ(n) ga,bYa· 

Now for a, b E Z(n) and 9 E r we put Ca,b(g) = ga,b, and define 

CiJ(g) = Cil,il (g) ... Cir,jr(g) for all 9 E rand i,j E IB(n, r). Note 

that from the definition of r we have that Ca,b(g) = Caso,bso(g) for all 

a, b E Z(n). 

Then r acts diagonally on y®r. Relative to our basis :=: of y®r the 

action is given by 

g·Yj = gYh ® ... ® gYjr = LiElB(n,r) gil,jl ... gir,jrYi 

= LiEIB(n,r) CiJ (g )Yi. 

PROPOSITION 5.14. The actions ofr and Hyp(r) on y®r centralize 

each other. 

PROOF. We know from earlier that Ca,b(g) = Caso,bso(g) for all 

a, b E Z (n), and also it is trivial to see that CiJ (g) = CisaJsa (g) for all 

1 ~ a ~ r - 1. Putting these together we get that 

CiJ(g) = Ci1rj7r(g) 

for all i,j E IB(n, r), 9 E rand 1r E Hyp(r). 

Now, to prove the theorem it suffices to prove that 

(gYj)1r = g(Yj1r) 

for all 9 E r, Yj E :=: and 1r E Hyp(r). This then extends linearly. Now 

(gYj)1r = (2:IEIB{n,r) CiJ(g)Yi)1r = 2:iEIB{n,r) Cij(g)Yi7r 

and 

g(YJ1r) = g(YJ1I") = 2:iEIB{n,r) Cij1l" (g)Yi = 2:iEIB{n,r) Ci1l"J1I"(g)Yi1l". 
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But Cij(g) = Ci1rj7r(g) ,which tells us that 

(gYj)7r = g(Yj7r) 

and we are done. 
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CHAPTER 6 

Wreath products and Mackey Systems 

Our results on trivial source modules and Mackey systems from 

previous chapters lead us to make the following definition. 

DEFINITION. Let G be a finite group, p a prime, and Map-Mackey 

system for G. Then we call M balanced ifTSM(M) = #o(G) i.e. if the 

number of isomorphism types of indecomposable trivial source modules 

over M is equal to the number of conjugacy classes of G, and therefore 

to the number of ordinary ·' .. n.J"'t;~ fc C"epr~S.t\"'+iMS .f! Ii-. 

Note that our model Mackey system, that of Young subgroups 

of the symmetric group, is balanced for all p. Also, in the char

acteristic zero case all O-Mackey systems for a finite group G have 

TSM(G) = #o(G), so the above definition in some way extends what 

is happening in this case. Given a balanced p-Mackey system B for a 

finite group G we define the Mackey algebra Mac(G, B) as fol

lows. Let N = EDAEB ind~ k. Then Mac(G, B) := EndkG(N), is the 

Mackey algebra associated to G and B. This gives us an analogue of 

the Schur algebra for each finite group G with balanced Mackey system 

B. In fact when B is the Mackey system of Young subgroups of the 

symmetric group, Mac(Sym(r), B) is Morita equivalent to 8(n, r), and 

when B is the Mackey system of infant subgroups Mac(Hyp(r), B) is 

Morita equivalent to 8 2 (n, r), both by Theorem 1.3. 

In this chapter we show that the Mackey system of Young subgroups 

inside certain wreath products, called complete monomial groups, is a 

89 
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balanced Mackey system for certain primes p. Throughout this section 

G is a finite group, and unless otherwise stated we work over an alge

braically closed field whose characteristic p does not divide the order 

ofG. 

b.l. Wreath products and representations 

It will be useful to consider G ~ Sym(r) as a permutation group. 

Now G is a finite group, so Cayley's subgroup theorem [21, 9.24] tells 

us that G is a subgroup of some symmetric group, which we may as 

well assume is Sym(r), where r = {I, 2, ... , m}, for some m E Z~l' 

Also let 0 = {I, 2, ... ,r}, so that Sym(O) is Sym(r). We write i j for 

the ordered pair (i,j) E 0 x r, and for i E [1, r - 1] let 

Then (81,82," . ,8r-1) f'V Sym(r) and we write S(r) for this subgroup 

of G ~ Sym(r), analogously to in the previous chapters. Now, assume 

G has t generators gl, g2, ... , gt. Then each gi can be written as a 

product of 1 distinct cycles of elements of r, say gi = gi,lgi,2 ... gi,l, so 

that for each j E I we have gi,j = (gi,j(1)gi,j(2) ... gi,j(k(j))), for some 

particular gi,j(Z) E rand k(j) E Z~o. Putting these together we have 

that 

explicitly as a product of distinct cycles of elements of r. For b E r. put 

'Yi,b = rr~=l ({)9i'i (1) {)9i,i (2) ... {)9i,i(k(j))) E Sym(O x r). 

Then ('Yi,b liE [1, t], b E [1, m]) is isomorphic to Gr and we also have 

that ",,~bb = "'Ii b+b so that the conjugation action of S(r) simply per-I., , 
mutes the factors of Gr, and thus Gr <J G l Sym (r). Hence the subgroup 
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of Sym(O x r) generated by {SI' S2,··· ,Sr-l, ')'1,1, ')'2,1,' .. ' ')'t,d IS a 

semidirect product and is isomorphic to G Z Sym(r). 

As an example, we look at the complete monomial group Sym(3) Z 

Sym(2). Here we have that 0 = {I, 2} and r = {I, 2, 3}, so all elements 

of this group are permutations of the set {II, 12, 13 , 21, 22, 23 }. Firstly 

we look at the top part. Here we have just one generator, namely 

and the group generated by the single element SI is isomorphic to 

Sym(2) as a subgroup of Sym(3) Z Sym(2). Now Sym(3) has generators 

gl = (12) and g2 = (23) which give us corresponding elements 

')'1,1 = (1112) and ')'2,1 = (1213 ) 

with (')'I,ll ')'2,1) isomorphic to Sym(3). Now SI')'I,ISI = (2122) = ')'1,2 

and SI')'2,ISI = (2223
) = ')'2,2, so that (')'1,1,')'1,2,')'2,1,')'2,2) is isomorphic 

to Sym(3)2. This is the base group of Sym(3) Z Sym(2) and is a normal 

subgroup. Hence (SI' ')'1,1, ')'2,1) is isomorphic to Sym(3) Z Sym(2) as 

required. 

G 2 Sym(r) can also be written as linear group. We start by looking 

at a way of viewing the symmetric group (which trivially is {I }2Sym(r)) 

as a linear group. Each a E Sym(r) can be represented as an r x r 

permutation matrix P(a) with (i,j) entry 

{

I if a(j) = i 
P(a)i,j = 

o otherwise 

Then if a, a', 7r E Sym(r) with aa' = 7r then P(a)P(a') = P(7r) and 

the group {P(a) I a E Sym(r)} is a linear group isomorphic to Sym(r). 

N ow allow the non-zero entries in our matrices to be any member 

of the finite group G, and call this group Mono( G). Then the normal 

subgroup of Mono(G) consisting of matrices where all non-zero entries 
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occur on the diagonal is isomorphic to GT, and also the subgroup whose 

non-zero entries are all equal to 1 is isomorphic to Sym(r). From this 

description it is easy to see that Mono( G) is the semi direct product of 

the above two subgroups, and that it is indeed isomorphic to GlSym(r). 

Again suppose G has t generators 91, 92, ... , 9t. Let 

li,b = diag(l, ... , 1, 9i, 1, ... ,1) E Mono(G), 

the 9i being in the bth place, and for i E [1, r-1]' let 8i be the r x r iden

tity matrix with the ith and i + 1 th columns switched. Then Mono( G) 

is generated by the matrices {/I,b 12,b ... , It,I, 81, 82,' .. ,8T -I}' 

This gives us two useful descriptions of G l Sym(r). Note both 

are generated by elements S = {8I,"" 8T-I}, which generate the top 

group, S(r), and by elements B = {/I,b 12,b' .. , It,d, which together 

with their conjugates in Sym(r) generate the base group GT. 

It will be useful later on to know the number of both ordinary and 

modular representations of G l Sym(r), and we review these now. 

Let k be an algebraically closed field of characteristic p =f:. 0, where 

p is coprime to IG l Sym(r)l. If G has m conjugacy classes (i.e. G has 

m inequivalent ordinary irreducibles), then by [25, 5.21] we have that 

G l Sym(r) has IA~(n, r)1 ordinary irreducible representations. Note 

that this agrees with the particular case Hyp(r) = C2 Z Sym(r) that we 

considered earlier. 

Now say char k = p divides IG l Sym(r) I . Then [25, 5.22] says 

that if t is the number of p-regular classes of G then G Z Sym(r) has 

IAt (n, r ) col I irreducibles over k. 

In particular, if p does not divide IGI but does divide I Sym( r) I then 

G Z Sym(r) has IA;t(n, r)cotl irreducibles over k, as G has m conjugacy 

classes. 
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'.2. A Mackey system 
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U nsurprisingly, we want to consider the Mackey system of Young 

subgroups inside our wreath product. So firstly we need to define this. 

DEFINITION. Let A = (Al,A2, ... ,An ) be a partition in A+(n,r), 

and put L = {L:~=1 Ai I a E r}. Put A = r \ L. Then the standard 

Young subgroup of G 2 Sym(r) associated to A, denoted 8(A) is given 

by 

8(A) = (sa I a E A). 

A Young subgroup is then any which is conjugate in G 2 Sym(r) to a 

standard Young subgroup. Let W denote the set of all Young subgroups 

of G 2 Sym(r). 

We also have the following useful description of Young subgroups. 

Let ~ (n, r) be the set of all dissections of r i.e. 

where any of the 6i may be empty. If 1 ~ j ~ rand 6j = {jl,j2,'" ,jd}, 

where d = 16j I, then we put 

8(6j ) = ((jljl+l) ... (jij~l) 11 ~ i ~ d - 1) 

and 8(6) = 8(61) x 8(62) X ... x 8(6n ), a subgroup of G 2 Sym(r). 

We can make similar definitions for 8(6) ~ Mono(G). Again, for 

j E r let 6j = {jl,j2, ... ,jd}, where d = 16j l· Then for i E [I,d-I] 

let Mi be the r x r identity matrix, but with the jfh and the jf!1 
columns switched. Our group 8(6j ) is the linear group generated by 

Mb M2 , ..• ,Md- b and we similarly have 8(6) = 8(61) x 8(62) X ••• x 

S(6n ). 

If we now take an 68 E ~(n, r) with 6f = {I, 2, ... , 1611}, 

6~ = {1611 + 1, I(hl + 2, ... , I(hl + 162 1}, 6~ = ... etc., and with 
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18[1 ~ 18[+11 for all i E [, then we have that S(8S
) = S(..\) for some 

..\ E A+(n, r), so our S(8S
) is a standard Young subgroup. Call such a 

dissection 8s 
E ~(n, r) a standard dissection, and let ~ +(n, r) denote 

the set of all standard dissections of [. Then for each 8 E ~ (n, r), there 

exists a 8s E ~+(n, r) and a 7r E S(r) such that 

Then the following lemma brings together dissections and partitions. 

LEMMA 6.1. W = {S(..\)W 1..\ E A+(n,r),w E G l Sym(r)} 

= {S(8S )W 18s E ~+(n,r),w E GlSym(r)}, 

= {8(8)1T 18 E ~(n, r), 7r E G l Sym(r)}. 

PROOF. The first equality is trivial. That the second set is con

tained in the third is trivial, as each 8s E ~+(n,r) is in ~(n,r) also, 

and conversely (*) gives us that S(8)W = (S(8S )1T)W, which is S(8st, 
for some T E G l Sym(r), and the proof is complete. 0 

We take the following definition from the world of Association 

Schemes. 

DEFINITION. Let 8,8' E ~(n, r). We write 8 -< 8' if every part of 

8 is contained in a part of 8'. We then say that 8 is finer than 8'. We 

denote by 8 /\ 8' the coarsest (least fine) dissection in ~ (n, r) such that 

both 8 /\ 8' -< 8 and 8 /\ 8' -< 8'. 

It is then easy to see the following. 

LEMMA 6.2. 8(8) n 8(8') = 8(8/\ 8'). 

From this it follows that the set of Young subgroups of the sym

metric group is closed under intersection. We can now show the same 

is true for Young subgroups of G l Sym(r). 
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LEMMA 6.3. W is closed under conjugation. 

PROOF. Throughout this proof, we will have in mind the linear 

representation of G l Sym(r), and W in its third incarnation in the 

above lemma, i.e. indexed by dissections, and members of G l Sym(r). 

It suffices to prove that S (())W n 
S(()') E W, for (), ()' E ~(n, r) and W E GlSym(r). Moreover, since each 

element w E G l Sym(r) can be written uniquely as 7rg with 7r E S(r) 

and g E GT, and as S(())1I' = S(()") for some ()" E ~(n, r), we just need 

to show that S(())g n S(()') E W for all (), ()' E ~(n, r) and g E GT. Now 

as S(())g n S(()') = (S(())g n S([l, rn) n S(()'), we just need to show that 

(S(())g n S([l, rn) = S(()") for some ()" E ~(n, r), then we will have 

S(())g n S(()') = S(()") n S(()') = S(()" /\ ()'). 

Now any element in S(()) can be written as a matrix P(a) where 

{

I if a(j) = i 
P(a)ij = 

, 0 otherwise 

for some suitable a E Sym(r).(Of course this a is actually in a partic

ular Young subgroup Sym(A) of Sym(r) with Sym(A) '" S(()).) Also, 

any element 9 E GT is a matrix of the form 9 = diag(9I, 92, ... , 9T)' 

with each 9i E G. Therefore any element in S(())g is a matrix 

( P( ) 
-1) .. _ {9i9;1 if a(j) = i 

9 a 9 ~,J- o otherwise 

so that P(a) E S(()) nS([l, r]) if and only if 9i = 9j whenever a(j) = i. 

Now each dissection () E ~(n, r) can also be thought of as an equiv

alence relation "'6 on [, so that i "'6 j if and only if i and j are both in 

the same part ()s of () for some s E n. We then define a new equivalence 
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relation by letting i r"V6,9 j if and only if i r"V6 j and 9i = 9j. This equiv

alence relation on r leads to a dissection of r which we will denote by 

89 E ~(n, r). Hence we also get a Young subgroup S(89 ) of G l Sym(r). 

Then 

P(a) E S(8)9 n S([l, rn 

¢:::::} 9i = 9j whenever a(j) = i 

¢:::::} 9i = 9j whenever i r"V6 j 
. . 

¢:::::} 'l r"V 6,9 J 

¢:::::} P(a) E S(89). Therefore S(8)9 n S([l, rn = S(89) so that 

S(8)9 n S(8') = (S(8)9 n S([l, rn) n S(8') = S(89) n S(8') = S(89 A 8') 

and of course 89 A 8' E ~ (n, r) so that W is closed under intersection. 

o 

We can now show the following. 

LEMMA 6.4. If p and IGI are coprime, then W is a p-Mackey sys

tem for G l Sym(r). 

PROOF. (M1) Put .-\ = 1r. Then S(.-\) = {I} and so {I} E W. 

(M2)(i) By definition W is closed under conjugation in G l Sym(r). 

(M2)(ii) W is closed under intersection by the preceeding lemma. 

(M3) Since p does not divide IGI, any P E Sylp(G l Sym(r)) must be 

a subgroup of S(r) ~ G l Sym(r). Then putting .-\ = (r) we get that 

S(.-\) = S(r), so that S(r) E Wand P is a subgroup of a member of 

W. 0 

We now have a Mackey system so we can apply Grabmeier's count. 

/,. 3. The Count 

We now modify the definition of p-power partitions for this partic

ular chapter. For a prime p we say a composition .-\ E A2 (n, r) is a 
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p-power partition if A = (laopa 1 (p2)a2 ••• ). We will denote the set of 

these by ~(n, r). From previous adventures with Young subgroups we 

can deduce the following. 

LEMMA 6.5. The set of W-vertices, denoted Wo, is given by 

Wo = {S(A)W IA E ~(n, r), and W E G l Sym(r)}. 

Hence for Wh, the set of W-vertices up to conjugacy, we can take 

W~ = {S(A) IA E ~(n, r)}. 

The next step in Grabmeier's count is for us to work out 

NG1Sy;(r)(P) for each vertex P E W~. 

LEMMA 6.6. Let A = (1 aopa1 (p2)a2 ••• ) E ~(n, r) . Then 

NG1Sym(r)(S(,x)) is isomorphic to 
S(,x) 

(G l Sym(ao)) x (G l Sym(ad) x (G l Sym(a2)) x ... 

We call this group N(A)o. 

PROOF. Let A E ~(n, r) , and let H = S(A). For each i E n let 

ai = ~;:i Ai and define A{ to be the subset of n x r given by 

so that if A is in A(n, r) then the set 

{A{ liE nand j E m} 

forms a complete set of H-orbits of n x r. 
For b ~ 0, set Bb = {AI, ... , Af such that IA}I = pb}, so that 

IBbl = mab' Let N(H)= NOlSym(r) (H). Now N(H) permutes the H

orbits of n x r of the same size, and we have a wreath product action 

on each Bb such that each G l Sym(Bb) is isomorphic to G l Sym(ab). 

We can know define a homomorphism 
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1 : N(H) --+ (G Z Sym(Bo) x G Z Sym(B1) x ... ) 

via 1 : w(A1) f----t w(A1) 

which has ker 1 = H. We now need to show that 1 is onto. 
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Now say that for each l E m the H-orbits A; = {xLx~, ... ,X~i} 

and A~ = {zt, z~, ... , Z!i} are in the set Bi . Now define 8 E G Z Sym(r) 

via 8(X~) = z~ and 8(Z~) = x~ for each a E [1, pi] and l E m and let 8 

fix all other elements of 0 x r. Let w E H then 

for each l E m. Therefore 8- 1W8 E H and so 8 E N(H). 

We must now deal with the base groups. Recall from earlier parts 

of this chapter that G = (g1, ... , gt), and for each d E r.. we get corre

sponding elements Ti,d = TI~=1 (d9i ,i(1)d9i ,i(2) ..• d 9i ,i(k(j») E Sym(O x r), 

and with the property that the set {Ti,d liE [1, t] and d E [1, r] } gen

erates the base group GT ~ G Z Sym(r). 

N ow say that A} E Bi so that for each l E m we have that A; is 

also in Bi . Let ae = z:::::i Au and define for each Ae in A an element 

7re E G Z Sym(r) via 

If we again let W E H then for each l E [1, m] we have 

for some l'E [1, m]. So we have that 7r;lW7re E Hand 7re E N(H). 

Now all standard generators of G Z Sym(Bi) can be constructed as 

an 1(7re), or as an 1(8), and therefore 1 is onto. 

So, by the homomorphism theorem, we have that 

N~) "-I G l Sym(Bo) x G l Sym(Bd x G l Sym(B2) x ... 
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which is isomorphic to 

N()..)a = G l Sym(ao) x G l Sym(ad x G l Sym(a2) x '" 

and we are done. o 

Therefore, by Grabmeier's count, when p f IGI we have 

TSM(W) = l:AEIIp(n,r) #p(N()..)a) 

where as usual #P denotes the number of p'-classes of G. Recall that 

when P f IGI, and there exist precisely m non-isomorphic simple kG

modules, then #p(GlSym(r)) = IA~(n,r)cod. Therefore #p(N()..)a) = 

the number of m-tuples ('l/h, ... , 'lj;m) where for j E m we have that 

'lj; j = ('lj; j (0), 'lj; j (1), ... ) are sequences of column p-regular partitions 

such that l:j:l 'lj;j (i) = ai for each i ~ O. Therefore Grabmeier's count 

now tells us that 

TSM(W) = l:AEIIp(n,r) #p(N()..)a) 

= l:AEIIp(n,r) number of m-tuples ('lj;1, ... ,'lj;m) as above 

so that in fact TSM(W) is the number of (m+I)-tuples ().., 'lj;1,"" 'lj;m), 

where ).. E ~ (n, r) and 'lj;1, ... ,'lj;m are as above. Call the set of such 

(m + I)-tuples 13. Now define a map 

K, : 13 --t A~(n, r) via ().., 'lj;1,"" 'lj;m) I-t (ab"" am) 

where aj = l:i~o pi'lj;j (i) for each j E m. 

LEMMA 6.7. K, is a bijection. 

PROOF. Due to uniqueness of p-adic expansions, we know that K, is 

both well defined and injective. Now say (ar, a2, ... , am) E A~(n, r). 

Again, by uniqueness, for each j E m we can write aj = l:i~o ej(i), 

where the ej(i) are uniquely determined. Now r = l:;:llaj(i)1 = 

~i~opi(~j:llej(i)l), so by putting bi = ~j:llej(i)1 for all i ~ 0 we 

retrieve an (m+ I)-tuple ()..', 6, ... ,em) where)..' = (0; ... ; 0; Ibopbl ... ) 
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and for j E m each ~j = (~j(O), ~j(l), ... ) is a sequence of column p

regular partitions such that 2.:;:1 l~j(i)1 = bi · 

Therefore (X, 6, ... , ~m) E 13 with /'i:(X, 6,···, ~m) = (a1,"" am) 

and /'i: is surjective also. 

o 

We get the following theorem as a corollary. 

THEOREM 6.8. When p does not divide IGI we have that 

TSM(W) = l#o(GlSym(r))1 and the p-Mackey system W for the group 

G l Sym(r) is balanced. 



CHAPTER 7 

Mackey Systems and Partition Algebras 

In this chapter we consider a new Mackey system and determine 

when it is balanced. These methods will then help to us consider the 

irreducible representations of the partition algebras. 

An unlikely Mackey system 

We let P be the following system of subgroups of Sym(n): 

P = {Sym(j)W I j E {I, 2, ... , n}, W E Sym(n)}. 

Note that P can also be written as 

P = {Sym(X) IX C {1,2, .. . ,n}}. 

At first glance this looks too simple to be a Mackey system. However, 

we have the following. 

LEMMA 7.1. Let p be a prime. Then P is a p-Mackey system for 

Sym(n). 

PROOF. (MI) Sym(0) = {I} is in P. 

(M2)(i) P is closed under conjugation by definition. 

(M2) (ii) Recall that each member of P looks like Sym(X) for some 

X C {1,2, ... ,n}. Now say X,Y C {1,2, ... ,n} then 

Sym(X) n Sym(Y) = Sym(X n Y) 

and since X n Y C {I, 2, ... , r} we have that 

Sym(X) n Sym(Y) E P 

101 
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and P is closed under intersection. 

(M3) Sym(n) E P and therefore this is trivially satisfied. o 

Now for the vertices, which we recall are 

Po = {P E Pip divides IP: BI for all BE P with B < Pl. 

LEMMA 7.2. We have 

Po = {{l}}U{Sym(X) IX C {1,2, ... ,n} andp divides IXI}. 

PROOF. {I} is trivially a member of Po. 

Now say X C {I, 2, ... , n} with IXI = px for some positive integer x, 

and put P = Sym(X). Then every proper subgroup of P in P is a 

subgroup of some H = Sym(Y), where Y c X with IYI = px - 1, or 

is H itself. Since IP : HI = px we must have p divides IP : KI for all 

K E P with K < P. Therefore each Sym(X) with X c {1, 2, ... ,n} 

and IXI = px is a member of Po. 

Conversely, if a member of P is not of the above form, then it must 

look like G = Sym(X), where X c {1, 2, ... ,n} with IXI = px + y 

where x is a non-negative integer and 1 ~ y ~ p - 1. Each G has 

subgroup H = Sym(Y) where Y c X and IYI = px + y - 1. Now 

IG : HI = px + y, and since (p, y) = 1 we get that IG : HI and pare 

also coprime. Therefore each of the above subgroups G has a proper 

subgroup, like H, of pi index and we are done. o 

So for P~, the set of vertices up to conjugacy, we can take the set 

{Sym(ip) I 0 ~ i ~ In/pJ}, bearing in mind that Sym(O) = {I}. Now 

each of these is a Young subgroup and from [27, 4.6.3] we know the 

normalizer in Sym(n) of each of its Young subgroups. From this we 

get the following. 

LEMMA 7.3. For 0 ~ i ~ In/pJ we have 
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NSym(n)(Sym(ip)) ~ S (-') 
Sym(ip) - ym n 'lp. 

Let A +(r) denote the set of all partitions of r, so that when r ~ n 

we have that A +(n, r) = A +(r). Then for s ~ 0, let A +(s)p denote the 

set of partitions of s which correspond to p-regular conjugacy classes 

of Sym(s) i.e. if A E A+(s)p then (Ai'P) = 1 for all 1 ~ i ~ s. 

Call these class p-regular partitions. Of course when s ~ n we have 

\A+(s)p\ = \A+(n,s)col\, so that applying Grabmeier's count we have 

that 

TSM(P) = l:i~o #p(Sym(n - ip)) = l:i~O \A +(n - ip)pl· 

The corollory at the end of the following discussion will enable us to 

decide precisely when the Mackey system P is balanced. 

Let A = Ui>-O A+(i) x A+(n - ip)p, and define 
r 

f : A -t A + (n) via f ((J.L, v)) = pJ.L U v 

where for J.L = (J.Ll, J.L2, ... ,J.Li) E A + (i) and our prime p we have that 

pJ.L = (PJ.Ll,PJ.L2,." , PJ.Li) , and for T(l) E A+(a) and T(2) E A+(n - a) 

we have that T(l) UT(2) is the member of A+(n) given by arranging 

the parts T(lh, T(lh, ... , T(l)a, T(2h, T(2h,· .. ,T(2)n-a in descending 

order. 

LEMMA 7.4. f is a bijection. 

PROOF. Say f((J.L, v)) = f((J.L', v')) E A+(n). Then the parts of 

these two partitions which are divisible by P must be the same, and 

hence on dividing these parts by P we get that J.L = J.L'. The parts 

left over must be the same in each partition, and all must be coprime 

to P, which gives that both v and v' are p-regular and moreover that 

v = v'. Therefore f ((J.L, v)) = f ((J.L', v')) ==} (J.L, v) = (J.L', v') and f is 

injective. 
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Now say that A E A +(n). We can arrange all parts of A which 

are coprime to p in descending order to give a class p-regular partition 

7p E A+(n-a)p, say. The leftover parts will all be divisible by p, and so 

on dividing these parts by p we get a partition 7 E A +(a/p). Putting 

a = ip, which it must do for some i ~ 0, we have a pair of partitions 

(7,7p) E A +(i) x A +(n - ip)p with 1((7, 7p)) = A, which tells us that f 

is surjective. 0 

We can now prove the following. 

PROPOSITION 7.6. P is a balanced p-Mackey system for Sym(n) if 

and only if p > n/2 i.e. TSM(P) = IA +(n)1 {:::=:::> p> n/2. 

PROOF. If i > In/pj then IA+(n - ip)pl = o. This gives us that 

TSM(S) = 2:i~O IA+(n - ip)pl = 2:}:~pJ IA+(n - ip)pl 

and from the above corollary we know that 

Therefore, for IA+(n)1 and TSM(P) to be equal, we would require that 

IA+(i)1 = 1 for each 0 ~ i ~ In/pj, but since IA+(i)1 > 1 whenever 

i > 1 we must have that 0 ~ i ~ 1. Therefore we have equality if and 

only if l nip j ~ 1 i.e. if and only if p > n/2. o 

I. 1. P in action 

We have now applied Grabmeier's count to the p-Mackey system P 

of Sym(n}. We can now show that in certain cases the point stabilisers 

of basis elements of a Sym( n }-action on a familiar space, called E:r, are 

nearly the same as our Mackey system P. Then for particular values 
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of p, we can use our count of the last section to count the number of 

trivial source modules of E:r as a Sym(n)-module, and hence calculate 

the number of irreducible EndSym(n) (E:r)-modules to boot. 

Let r, n ~ 0, and also let En be an n-dimensional k-vector space 

with basis {el' e2,"" en}. Then rth tensor power of E denoted E®r n, n , 

has k-basis {ei = eil ® ei2 ® ... ® eirli = (ib i2 , ... ,ir) E J(n,r)}. Of 

course, we usually denote this module by E®r, but now n is of increased 

importance. As in chapter 1 this is a right Sym(r)-module, the action 

being via place permutation, and the resulting endomorphism algebra 

Endk Sym(r) (E:r) is the classical Schur algebra. 

But we can also make Sym(n) act on the left of J(n, r). The action 

of 7r E Sym(n) on an element i = (iI, i2, ... , ir) E J(n, r) is given by 

We can now transfer this action to E:r via 7rei = e1Ti. Extending this 

action linearly makes E:r into a left k Sym(n)-module, and if n ~ 2r, 

then Endk Sym( n) (E:r) is isomorphic to the partition algebra Pr ( n) as 

in chapter 1, or [26, 5.5]. 

We now look at the point stabilizers of standard basis elements of 

the Sym(n)-module E:r. Say n ~ r + 2 then as every basis element 

eil ® eh ® ... ® ei
r 

of E:r has at most r of the vectors el, e2, ... , en 

in it , there must be at least two of these vectors which do not figure 

in each basis element respectively. Therefore, the smallest possible 

point stabilizer in these cases is Sym(2), or a conjugate of this, and so 

the identity subgroup does not appear as a point stabilizer. Therefore 

when n ~ r + 2 the point stabilizers of the Sym(n)-module E:r do not 

form a Mackey system. We therefore restrict our attention to the case 

n~r+l. 
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For 1 ~ s ~ n, let P(s) = {Sym(X) IX C {1,2, .. . ,n}, IXI ~ s}. 

so that P(n) = P itself. Then it is easy to see that for n ~ r + 1, the 

set of point stabilizers of basis elements of the Sym(n)-module E~r is 

precisely P(n - 1). We then have the following. 

LEMMA 7.7. If p does not divide n then P(n - 1) is a p-Mackey 

system for Sym(n). 

PROOF. We know already that P(n-l) is closed under conjugation 

and intersection, and that the identity subgroup {I} is a member of 

P(n - 1). Now since p does not divide n any S E Sylp(Sym(n)) must 

be a subgroup of some subgroup of Sym(n) which is conjugate to 

Sym(n - 1). Since all such subgroups are in P(n - 1) we can conclude 

that S E P(n - 1) and P(n - 1) is a p-Mackey system. 0 

Now for the vertices. 

LEMMA 7.8. If p does not divide n then P(n - 1)~ = P(n)~ 

PROOF. If p does not divide n then 1 Sym(n) : Sym(n - 1)1 is also 

not divisible by p, and Sym(n) ~ P(n)o. Therefore P(n)o C P(n - 1)0 

but also we trivially have P(n - 1)0 C P(n)o. 0 

So using the above lemma and the count from the last section we 

get the following. 

COROLLARY 7.9. If P f n then TSM(P(n - 1)) = TSM(P(n)). 

N ow if M is a direct summand of E~r, and if m is a basis vector 

of M with stabsym(n)(m) = Sym(i) for some 1 ~ i ~ n then our 

discussion in chapter 4 we know that M t'V k t~~:~~). As all summands 

of E:r must be indecomposable components of such an M, we get the 

following. 
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PROPOSITION 7.10. When char k = p does not divide n the Sym(n)

module E~r has L:i~O IA+(n - ip)pl isomorphism types of indecompos

able summands. 

Now we can apply Fitting's Theorem. 

COROLLARY 7.11. When char k = p does not divide n, the k

algebra Endksym(n)(E~r) has L:i~O IA+(n - ip)pl irreducibles. There 

are IA +(n) 1 of these if and only if p > n/2. 

Remark 

As outlined in chapter 1, if n ~ r + 1 and p = 0, or indeed if p > n, 

then S (n - 1) is a p-Mackey system for Sym ( n ), as in this case the 

Sylow p-subgroup is the identity subgroup, and we already know that 

the other conditions are satisfied. In this case {I} is the only P( n - 1)

vertex, and all conjucacy classes are p-regular, so TSM(P(n - 1)) = 

IA+(n)1 and Endksym(n)(E~r) has IA+(n)1 irreducibles. 

Also, in [20], Halverson looks at P = Endcsym(n)(E~r), the parti

tion algebra over C, and shows using Bratteli diagrams that the set -Pr ( n) = {A r- n 1 IA * 1 ~ r } where A * = (A2' A3, A4, ... ) E A + (n - Ad 

indexes the irreducible CSym(n)-modules in E~r for all rand n. This -means that he has shown that P has IPr(n)1 irreducibles, by theorem 

1.2 (Fitting's Theorem). However all is not lost as when n ~ r + 1 we -have that Pr (n) = A + (n), and the two counts agree, as they should . 

., • 2. Irreducible modules of Partition Algebras 

As we have seen, when n > r + 1 we have no Mackey system to play 

with. This is fine however, as in this case we can use other methods 

to count the number of irreducibles for Endksym(n)(E:r), and also to 

give a formula for the dimension of these modules in terms of certain 
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modules for the general linear group. When n ~ 2r this gives us the 

number of and dimensions of the irreducible modules for the partition 

algebra in characteristic p. As usual we will use Fitting's Theorem, but 

this time we make use of both results it gives us. 

As in chapter 1, for A E A(n, r) it is standard (see [8], for example) 

to define induced modules MA, or M(A), to be MA = k t~~:~~~. Also, 

for n,r ~ 1 let Hook(r) = {(n- j, I j ) E A+(n)ll ~ j ~ r}. We now see 

how E~T decomposes into a direct sum of permutation modules MO:, 

for a E Hook(r). Now for positive integers u and v we let St(u, v) 

denote the Stirling number i.e. the number of ways of partitioning a 

set of size u into exactly v parts. 

LEMMA 7.12. If n, r ~ 1 then nT = 2:;=1 St(r, j)n!/(n - j)! 

PROOF. Let I(n, r)j = {f E I(n, r) I f takes exactly j values}. 

Then nT = II(n, r)1 = I U;=1 I(n, r)jl = 2:;=1I I (n, r)jl· Now the num

ber of ways of partitioning r into exactly j parts is the Stirling number 

St(r, j), and the number of ways of choosing j values from 1 to n for 

these to take is (j), and there are j! ways of fitting these into the j 

parts. Therefore 

II(n, r)jl = St(r,j) (j)j! = St(r,j)n!/(n - j)! 

so that 

nT = 2:j=1II(n, r)jl = 2:j=1 St(r,j)n!/(n - j)! 

and we are done. D 

Now let a = (n - j, Ii) E Hook(r), and let f(a) E I{n, r) such 

that f(a) takes exactly j different values. Then as every standard 

basis element ej in the cyclic module k Sym(n)eJ(Q) has point stabilizer 

which is conjugate to Sym{n - j), it is easy to see that 
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MO; f'V k Sym(n)ef(O;) , as left k Sym(n)-modules. 

Note that the choice of j(a) is not unique, nor does it lead to a unique 

module. In fact, choosing different values of j(a) leads to St(r,j) 

different but isomorphic modules, as you would expect from the above 

identity involving nr. Then using the same argument as in the lemma 

above we have the following. 

COROLLARY 7.13. For n, r ~ 1 we have that 

E~r = 61;=1 (k Sym(n)ef(Q))$St(r,i) f'V EeJ=1 M(n - j, l i )$St(r,i) 

To apply Fitting's Theorem we just need to know how many iso

morphism types of indecomposable summands there are in E~r. So our 

above decomposition tells us that we can throwaway the multiplicities 

and just count the number of isomorphism types of indecomposable 

summands of the left k Sym(n)-module EeJ=1 M(n - j, Ii). Now it is 

well known (see for example [8], for the q-case) that the indecompos

able summands of the permutation modules for the symmetric group 

are the so called Young modules, which are again labelled by partitions 

of n, and so we will denote them by Young( A), for A E A + (n). So we 

need to work out how the modules MQ, where a E Hook( r), decompose 

into Young modules. Luckily, in [7], Donkin gives us a recipe for doing 

just this. 

LEMMA 7.14. Let a, A E A +(n) and let L(A)Q denote the a weight 

space oj the simple GLn-module L(A). Then 

(MQI Young(A)) = dimL(A)Q. 

In particular let A = ~i=O pi A( i) be the unique p-adic expansion of A, so 

that each A(i) is column p-regular. Then (MQI Young(A)) # 0 if there 

exists an expansion a = ~i=opia(i) where each a(i) is a composition, 

and a(i) ~ A(i) for all i ~ O. 
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We can now prove the following. 

LEMMA 7.15. Let p be a prime which does not divide n. Let A E 

A+(n), and let A = I:i=opiA(i) be the unique p-adic expansion of A. 

Then there exists an a = I:i=opia(i) E Hook(r) with each a(i) a 

composition with a(i) ~ A(i) for all i ~ 0 if and only if A = A(O) + px 

where x ~ 0, A(O) is column p-regular and Al ~ n - r. 

PROOF. Say A = A(O) + px where x ~ 0, A(O) is column p-regular 

and Al ~ n - r, and also say that A2 =I- O. Then if A = A(O) + px put 

,N = (A(Oh, 11,x(O)I-,x(Oh) + px. Then N E Hook(r) with A'(i) ~ A(i) 

for all i ~ 0, and we are done. Now say A2 = 0 so that A = z + px 

where 1 ~ z ~ p - 1. Now N = (n - 1,1) = (z - 1,1) + px so 

N = (n - 1,1) E Hook(r) and N(i) ~ A(i) for all i ~ O. Note this 

works even when z = 1. 

Conversely say A is not of this form. Then either: 

(i) A(O) is not column p-regular; 

(ii) Al < n - r; or 

(iii) A( ih =I- 0 for some i ~ 1. 

We consider each case in turn and show each cannot occur. 

(i) If A = I:i=opiA(i) is a p-adic expansion, we must have that all 

A(i), i ~ 0 are column p-regular. Therefore in particular A(O) must be 

column p-regular. 

(ii) If a(i) ~ A(i) for all i ~ 0 we must have that a ~ A. Since the 

"smallest" a E Hook(r) has al = n - r we must have that Al ~ n - r. 

(iii) All possible expansions of a E Hook(r) must have a(i)j = 0 for 

i ~ 1, j ~ 2, therefore for i ~ 1 each a(i) must be a single part 

partition. Since we require a(i) ~ A(i) for all i ~ 0 we must have 

that la(i}1 = IA(i)1 for all i ~ O. Therefore A(i) = a(i) for all i ~ 0 
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l.e, A(ih = 0 as the only other choices with la(i)1 = IA(i)1 would give 

A(i) < a(i), 0 

Wri te A + (n; r, p) for the subset of A + ( n) consisting of partitions A 

where A(O) + px for some x ~ 0, A(O) a column p-regular partition and 

Al ~ n - r. The above lemma tells us that 

(MaIYoung(A)) i- 0 for some a E Hook(r) and A E A+(n) 

if and only if A E A+(n;r,p), 

and so E~r has I A + (n; r, p) I types of indecomposable summand. Again 

we apply Fitting's Theorem. 

PROPOSITION 7.16. When p, the characteristic of k, does not di

vide n, our algebra Endksym(n)(E~r) has IA+(n;r,p)1 non-isomorphic 

irreducible modules. In particular, when n ~ 2r the partition algebra 

Pr(n) has IA +(n; r, p) I non-isomorphic irreducible modules. 

Dimensions 

We have now shown that there exist irreducible modules U(A) for 

Endksym(n)(E~r) such that {U(A)IA E A+(n; r,p)} is full set of such 

objects. For each A E A +(n; r, p), Fitting's Theorem tells us that the 

multiplicity of Young(A) in the decomposition of E~r into Young mod

ules is exactly dimU(A). We can now show the following. 

PROPOSITION 7.17. Let L(A)a be the a-weight space of the irre

ducible GLn-module L(A). Then for A E A+(n;r,p) we get 

dim U(A) = ~aEHook(r) St(r, j)dim L(A)a 

where each a = (n - j, Ii) for some 1 ~ j ~ r. 

PROOF. Fitting tells us that dim U(A) = (E:rl Young(A)), but we 

10. mr ( . ')est(r ') m M( )est(rJ ) know that E;r = Wi=1 M n - J, 13 ,J = Wa€Hook(r) a , 
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so using the fact that (MOl Young(A)) = dimL(A)O we arrive at the 

above formula. o 

COROLLARY 7.18. When n ~ 2r, and p does not divide n, the 

irreducible modules for the partition ctlgebra, Pr (n), have dimensions 

as given by the formula above. 

Remarks (a) If n ~ r + 1 then Al ~ n - r is no restriction at 

all. So the size of A+(n;r,p) is given by adding up the number of 

column p-regular partitions of n - ip, for each i ~ O. So in this case 

IA+(n; r,p)1 = L:i~O IA+(n - ip)pl and this agrees with our count using 
7 

the Mackey system. -(b) Say p > n/2, and recall that Pr(n) = {A I- nlAI ~ n - r}. Let -A E Pr(n). Then if A is column p-regular, A is also in A+(n; r,p). If A is 

not column p-regular, in this case we must have that A = A(O) +p, with 

A(O) being column p-regular. Therefore A E A+(n; r,p) and so when -p > n/2, we have that IA +(n; r,p)1 = IPr(n)l. Conversely if p ~ n/2 -then the partition (n - p,p) E Pr(n) \ A+(n; r,p) and therefore when -p ~ n/2 we have that IA+(n;r,p)1 < IPr(n)l, as certainly we have that -A + ( n; r, p) C Pr ( n ) . This is the analogue of determining when the 

"Mackey system" is "balanced" for this type of count. 

(c) In [26, 5.5] Martin and Woodcock show that the irreducible 

modules for Pr(n) are labelled by the set U;=o A +(n, i) col , so that there 

are L:;=o IA +(n, i)cod of them. Now say that n ~ 2r, so that certainly 

A +(n, i)col = A +(n, i - l)col for all 0 ~ i ~ r. Then we define 

f : U;=o A+(n - 1, i)col -7 A+(n; r,p) 

f(At, A2, ... ,An-l) = (n - i, At, A2, ... ,An-l)' 

Then f is a bijection, so that L:;=o IA + (n, i) col I = IA + (n; r, p) I, and the 

two counts agree, as they should. 



CHAPTER 8 

Conjectures 

In this section we conjecture how some of our results may, or may 

not, extend to complex reflection groups and Ariki-Koike algebras. 

Firstly, we define these and make some comments about them and 

related objects. Our notation for complex reflection groups is based on 

[30, Section 't J . 
Let m, r ~ 1. Then the group G(m, 1, r), sometimes called a gen

eralized symmetric group, is given by generators 80,81, ... , 8 r -1 and 

relations 

80 = 1, 

It is well known that G(m, 1, r) is isomorphic to the wreath product 

:z Z Sym(r), so that G(l, 1, r) is Sym(r), and G(2, 1, r) is our beloved 

hyperoctahedral group. We also wish to know about some subgroups 

of G(m, 1, r). Let t = 8081808I, and then we define 

G(m, m, r) = (t, 81, 82, ... ,8r -1). Then G(m, m, r) is a normal sub

group of G(m, 1, r) of index m, and is isomorphic to (:zY-1 ~ Sym(r). 

Also note that G(2, 2, r) is D(r), the Weyl group of type D. Let aim 

so that m = ba for some b E m , and put u = 8&, so that u has order 

b. Then we define G(m, a, r) = (t, U, 81, 82, ... , 8r -1). Then G(m, a, r) 

is isomorphic to ((;zY-1 x b~) )4 Sym(r), and G(m, a, r) is a normal 

113 
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subgroup of G(m, 1, r) of index a. Of course G(m, 1, r) and G(m, m, r) 

are special cases of G (m, a, r). 

The groups G(m, a, r), where m, a, r ~ 1 with aim, give all the 

infinite families of complex reflection groups. There are also 34 sporadic 

complex reflection groups, but we do not consider them here. See [33] 

for the full classification. 

We can quantize the groups G(m, 1, r) to give us the Ariki-Koike 

(or cyclotomic Hecke) algebras, which are given as follows. Let k be a 

field and let q, Ql, Q2, ... ,Qr be members of k, with q invertible. Then 

the Ariki-Koike algebra .fj (m, r) has generators Tso ' TSl , ... ,TSr _l and 

relations 

(TSi - q) (TSi + 1) = ° for 1 ~ i ~ r - 1, 

(Tso - Ql)(Tso - Q2)'" (Tso - Qr) = ° 
Ts.Ts. = Ts·Ts· if Ii - )'1 > 1, Q~ ,~ J:a 0 .".! 

I J J I 1< ,( r, 
TSi TSHl TSi = TSHl TSi TSHl for 1 ~ i ~ r - 2 

TsOTsl TsoTsl = TSl TsoTsl Tso' 

If w = Sa(1)Sa(2) ..• Sa(b) is a reduced expression for w E (Sb"" Sr-l) 

then we write Tw for TSa(l) TSa (2) ••• TSa(b)' Note that when m = 1 and 

Ql = q we have that .fj(1, r) = Hec(r), the Hecke algebra of type A, 

and if m = 2, Ql = Q and Q2 = -1 we have that .fj(2, r) = 1i(r), 

the type B Hecke algebra. Also note that if ( is an mth root of 1 of 

order m, then putting q = 1 and Qi = (i for 1 ~ i ~ r gives us that 

.fj(m, r) = kG(m, 1, r), the group algebra of G(m, 1, r). 

As in chapter 1, we let .-\ = (.-\(1); .-\(2); ... ; .-\(m)) be an m-tuple 

of compositions of integers in {O, 1, ... , ,. } such that each .-\(i) has at 

most n parts, and such that ~~ll'-\(i)1 = r. Then we call .-\ an m

composition of r, and we denote the set of these by Am (n, r). If each 
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A( i) is a partition then we call A an m-partition and denote the set of 

these by A~(n, r). 

In [6], Dipper, James and Mathas assign to each A E Am(n, r) an 

.f)(m, r)-module M). as follows. Let A E Am(n, r) and put ao = 0 and 

ai = ai-l + IA(i)1 for i ~ O. Then the sequence a = (ao, al, ... , am) 

is called the cumulative norm sequence, or c.n.s, of A. For 1 ~ i ~ r 

we also let Li = ql-iTsi_1 ••• TSI TsOTsl ... TSi _1
• Let x). = 2:

u 
Tu, where 

the sum is over all u E Sym(A(I)) x ... x Sym(A(m)), and also define 

7r). = n;:2 n:~11 (Li - Ql) 

and finally we put m). = 7r).X).. Then our module M). is given by 

M). = m)..f)(m, r). 

Then Du and Rui call the algebra 

S;:(n, r) = End5)(m,r) (EB).EAm(n,r) M).) 

the q-Schurm algebra, as in [10], and Dipper, James and Mathas define 

the cyclotomic q-Schur algebra similarly. Note that when we are back 

in the group case, so that q = 1 and Qi = (i, we write sm(n, r) for the 

Schurm-algebra EndkG(m,l,r) (EB).EAm(n,r) M).). 

8. 1. A tensor space for G(m, 1, r) 

In the hope that we can see EB).EAm(n,r) M). as a genuine tensor 

space, we now generalize the construction of the k Hyp(r)-module y®r 

to the complex reflection group G(m, 1, r). Let k be a field of arbitrary 

characteristic containing m distinct mth roots of unity. Let Xm be the 

k-vector space with basis 

{ xj,b 11 ~ j ~ n , 1 ~ a ~ b ~ m} 

where r ~ n. Let x~r be its rth tensor power, so a typical basis element 

in x~r looks like 
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Then x~r is (n L~l iY -dimensional and we have the following. 

LEMMA 8.1. G(m, 1, r) acts on the right of x~r. The action is as 

follows: 

For i > 0, Si swaps the ith and (i + 1 )th places in 

and for y E x®r-l 
, J' m' 

(xj+l,b ® y) if a < b 

(el( a)xj,a - e2(a)xj-l,a + ... 
. . . + (_l)a+l ea (a)x}a) ® y if a = b 

where for t E {I, ... , a}, et (a) denotes the tth elementary symmetric 

function in the variables {I = (0, (, (2, ... , (a-I}, with ( a primitive 

mth root of unity in k, of order m. 

PROOF. We need to show that the defining relations for G(m, 1, r) 

hold when applied to our tensor space x~r. We already know that any 

of these relations not involving So hold, by [18, 2.6], for example. Also 

note that 

X.SOSi = X.SiSO for i > 1, and x E x~r 

as So only acts on the first coordinate of x~r, whilst the elements Si 

only act on the other r - 1 coordinates, when i > 1. Therefore we just 

need to show that 

(i)so and 

(ii)(SOSl)4 

act trivially on our tensor space. Here we go. 

(i) Since the action of So only sees the first coordinate of X:.r, we 

can just consider the case r = 1 here, and the general case will follow 



C. 1. A TENSOR SPACE FOR G(m, 1, r) 

from that. This means that we need to show 

xj,b. so = xj,b for all j E n, and 1 ~ a ~ b ~ m. 

Hi 

Let 1 ~ b ~ m. As the action of So can't affect the j's, and thinking of 

1· b·· f lIb 2 b b b ( a Inear com InatIOn 0 e ements x j' ,x j' , ... , x/as a row vector or 

b-tuple) then the action of So on such elements can be represented by 

the matrix 

0 0 0 0 ( _l)b+l eb (b) 

1 0 0 0 ( -1 ) b eb-l (b) 

0 1 0 0 ( -1 ) b+ 1 eb-2 (b) 
A= 

0 0 1 0 ( -1)beb_3 (b) 

0 0 0 1 el(b) 

Showing that Am = h will prove this case. Now 

-.A 0 0 0 ( -1 ) b+ 1 eb (b) 

1 -.A 0 0 ( -1 ) b eb-l ( b) 

0 1 -.A 0 ( -1)b+l eb_2 (b) 
det(A - .Ah) = 

0 0 1 0 ( -1)beb_3 (b) 

o 0 0 1 

-.A 0 0 (-l)beb_1 (b) 

1 -.A 0 ( -1)b+Ieb_2 (b) 
= -.A 

0 0 1 el(b)-.A 
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1 

+eb(b) 
0 

0 

-A 0 

1 -A 

-A 

1 

0 

0 0 

-A 0 

0 1 

o (-1)b+l eb_2 (b) 

o (-1)beb_3(b) 

1 - A 0 

o 1 -A 
+ ( - A) eb-l (b) 

o 0 

-A 0 

1 -A 

o 1 

o ( -1) b eb-3 (b) 

o (-1)b+l eb_4 (b) 

1 - A 0 0 

o 0 o 1 
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bearing in mind that the determinant of an upper triangular matrix 

with each entry on the main diagonal being 1 is equal to 1. Continuing 

in this manner gives 

det(A - >..lb) = L~=o( ->..)b-iei(b), 

where we take eo(b) = 1, which can be rewritten as 

det(A - >..lb) = (-l)b(>.. -1)(>" _ ()(>.. _ (2) ... (>.. _ (b-1). 

Therefore A has eigenvalues 1, (, (2, ... , (b-l, and as ( is an mth root 

of unity of order m, and b :::;; m, these eigenvalues are all distinct. So 

A is a b x b matrix with b distinct eigenvalues, and therefore A can be 

diagonalized i.e. we can find a non-singular matrix P such that 

A = p-1 DP, where D =diag(l, (, (2, ... ,(b-1). 

Then Am = (p- 1DP)m = p-1Dmp 

= p-1 diag(lm, (m, ((2)m, ... , ((b-1)m)p 

= p-1 diag(l, 1, 1, ... , l)P 

= p- 1hP = h, 
(since (m = 1) 

so that Am = h, so this relation holds. 

(ii) We must now check that 80818081 = 81808180' It suffices to check 

this for the case r = 2, as 80 and 81 only see the first two coordinates 

of the tensor space. In fact, we can also drop the suffices i and j from 

elements like X:,b ® xj,d, as the action of G(m, 1,2) cannot alter them. 

We must check this holds on all elements X:,b ® xj,d E x~r. There 

are four cases to consider. 

(1) a < b,c < d. We have 

(xo,b ® xc,d)80818081 = (xO+1,b ® xc,d)818081 = (xc,d ® xO+1,b)8081 

= (xc+1,d ® x o+ 1,b)81 = xo+1,b ® xc+1,d, 

and 

(xo,b ® xc,d)81 8 08 18 0 = (xc,d ® xo,b)808180 = (xC+1,d ® xo,b)8180 
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= (Xa,b ® XC+1,d)SO = Xa+1,b ® Xc+1,d, 

so the two expressions are equal. 

(2) a = b, c < d. We have 

(xb,b ® xc,d)SOSlSOSl 

= ((el(b)xb,b - e2(b)xb- 1,b + ... + (-1)b+l eb (b)x 1,b) ®xc,d)SlSOSl 

= (xc,d ® (el(b)xb,b - e2(b)xb- 1,b + ... + (-1)b+l eb (b)x1,b))sOSl 

= (xc+1,d ® (el (b )Xb,b - e2(b)xb- 1,b + ... + (-l)b+l eb (b )x1,b) )S1 

= (( el (b)xb,b - e2(b )Xb-1,b + ... + (-1 )b+leb(b)x1,b) ® xC+1,d) 

and 

(Xb,b ® xc,d)SlSOSlSO = (xc,d ® xb,b)sOSlSO 

= (XC+1,d ® Xb,b)SlSO = (xb,b ® xd,d)so 

= ((el(b)xb,b - e2(b)xb- 1,b + ... + (-1)b+l eb (b)x 1,b) ® XC+1,d), 

so the two expressions are equal. 

(3) a < b, c = d. We have 

(Xa,b ® xd,d)sOSlSOSl = (Xa+1,b ® Xd,d)SlSOSl = (xd,d ® xa+1,b)sOSl 

= ((el(d)xd,d - e2(d)xd- 1,d + ... + (-1)d+l ed(d)x1,d) ®xa+1,b)Sl 

= Xa+1,b ® (el(d)xd,d - e2(d)xd- 1,d + ... + (-1)d+l ed (d)x1,d) 

and 

(Xa,b ® Xd,d)SlSOSlSO = (Xd,d ® xa,b)sOSlSO 

= ((el(d)xd,d - e2(d)xd- 1,d + ... + (-1)d+l ed(d)x1,d) ® Xa,b)SlSO 

= (xa,b ® (el(d)xd,d - e2(d)xd- 1,d + ... + (-1)d+l ed(d)x1,d))so 

= Xa+1,b ® (el(d)xd,d - e2(d)xd- 1,d + ... + (-1)d+l ed(d)x1,d), 

so the two expressions are equal. 

(4) a < b, c < d. We have 

(Xb,b ® xd,d)sOSlSOSl 

= ((el(b)xb,b - ... + (-1)b+l eb(b)x1,b) ®xd,d)SlSOSl 

= (xd,d ® (el(b)xb,b - ... + (-1)b+l eb(b)x1,b))sOSl 

120 

= (el (b)Xb,b - ... +( -1)b+leb(b)x1,b)®(edd)xd,d_ . .. + (-1)d+led{d)x1,d) 
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and 

(xb,b ® xd,d)SlSOSlSO = (xd,d ® Xb,b)sOSlSO 

(( el (d)Xd,d - ... + ( -1 )d+led( d)x1,d) ® xb,b)Sl So 

(xb,b ® (el(d)xd,d - ... + (-1)d+l ed(d)X1,d))SO 

= (el (b)xb,b - ... + (-1)b+l eb (b)x1,b) ®el (d)Xd,d - ... + (-1)d+l ed(d)x 1,d) 

so the two expressions are equal, and the proof is complete. 0 

Extending this action linearly makes x~r into a right kG(m, 1, r)

module. We now come to our first conjecture. 

CONJECTURE 8.2. As right kG(m, 1, r)-modules 

X®r rv ffi M>" 
m - W>"EAm(n,r) . 

This would also tell us that 

sm(n, r) rv EndkG(m,l,r)(X~r). 

This would extend all our results of chapter 3 to the generalized 

symmetric groups G(m, 1, r). However all attempts to quantize this 

action to give us a genuine tensor space for the Ariki-Koike algebras 

n(m, r) were fruitless. 

t.2. The Mackey system of Young subgroups for G(m, a, r) 

As G(m, 1, r) is isomorphic to the wreath product :z 1 Sym(r), we 

have from chapter 6 that the set of Young subgroups 

y = {S(A)9 I 9 E G(m, 1, r), A E A(n, r)} 

of G(m, 1, r) is a Mackey system for G(m, 1, r), and moreover if p f m 

then we know that Y is a balanced p-Mackey system for G (m, 1, r). 

Recall from chapter 1 that Grabmeier shows that if H is a subgroup 

of a finite group G, and if M is a p-Mackey system for G, then 

M -l.H= {A n HIA E M} 

is a p-Mackey system for H. So we have that 
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Y {.G(m,a,r)= {S(A)9 n G(m, a, r) I S(A)9 E Y} 

is a p-Mackey system for G(m, a, r) when p f m. We make the following 

claim. 

CONJECTURE 8.3. If p f m then Y {.G(m,a,r) is a balanced p-Mackey 

system for G(m, a, r). 
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