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Abstract. A combined dynamics consisting of Brownian motion and Lévy flights is

exhibited by a variety of biological systems performing search processes. Assessing

the search reliability of ever locating the target and the search efficiency of doing so

economically of such dynamics thus poses an important problem. Here we model this

dynamics by a one-dimensional fractional Fokker-Planck equation combining unbiased

Brownian motion and Lévy flights. By solving this equation both analytically and

numerically we show that the superposition of recurrent Brownian motion and Lévy

flights with stable exponent α < 1, by itself implying zero probability of hitting a

point on a line, lead to transient motion with finite probability of hitting any point on

the line. We present results for the exact dependence of the values of both the search

reliability and the search efficiency on the distance between the starting and target

positions as well as the choice of the scaling exponent α of the Lévy flight component.
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Figure 1. Sketch of intermittent search in one dimension: a searcher (blue) proceeds

by a combination of Lévy jumps and Brownian steps until it finds the target (red).

Physically, Lévy jumps decorrelate the motion, leading the searcher to sites not

previously visited. Brownian motion, instead, provides a thorough local search at

the price of oversampling, see text.

1. Introduction

One of the most fundamental questions about any type of motion is whether a moving

particle starting from a point A is able to reach some pre-selected point B [1]. After the

concept of random walks was brought to wide attention by Karl Pearson in 1905 [2],

for simple random walks on a lattice George Pólya gave an answer to this question by

proving that in one and two dimensions random walks are recurrent, which implies that

a walker will visit any lattice site eventually. In three and higher dimensions this motion

becomes transient [3]. For random walks where the jump lengths ℓ are drawn from Lévy

α-stable distributions, p(ℓ) ∼ |ℓ|−1−α with 0 < α < 2 [4, 5], the motion is recurrent for

α ≥ 1, otherwise it is transient [6]. However, even if the motion is transient there might

be a non-zero probability of visiting a certain point. For instance the Brownian motion

is transient in three dimensions, however, there exists a finite probability of return.‡ The

probability of hitting a given point in space can be directly calculated from the density

℘fa(t) of the first arrival time, or hitting time t to a specific point, which conveniently

characterises the hitting process. Integrating ℘fa(t) over time produces the cumulative

probability P of reaching this point, called the search reliability [7, 8].

The search reliability is a useful quantity of a search strategy if one is not interested

in how long the search might take. However it does not provide any information about

the efficiency of a search process in terms of average times for target location. Such

information is crucial to assess real world search scenarios [9] occurring over a wide range

of spatio-temporal scales, from the search of transcription factor proteins for a specific

place on a DNA chain [10, 11, 12, 13, 14, 15] over food search by animals [16, 17, 18]

up to rescue operations [19] or algorithms for finding the minima in a complex search

space [20]. Any good measure of search efficiency must take into account the specific

nature of a respective search process, which a searcher may seek to optimise.

Brownian motion was considered to be the default for a successful random search

‡ On a simple cubic lattice in three dimensions the returning probability is ≈ 0.34 [1].
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strategy in most cases until the 1980ies. In 1986 Shlesinger and Klafter challenged

this dogma suggesting that Lévy flights (LFs) represent a better strategy if a searcher

looks for sparsely distributed targets [21]. Due to the divergence of the mean squared

average of the jump length ℓ the trajectory of LFs has a different fractal dimension

than the trajectory of Brownian motion [1, 22]. This allows one to avoid oversampling,

i.e., revisiting the same point several times, which is typical for recurrent Brownian

motion in one and two dimensions [17, 23]. In the 1990’s Lévy motion was put forward

as an optimal foraging strategy for animals searching for sparse food [17, 24, 25]

and the approach was recently extended to patchy environments [26]. This so-called

LF hypothesis triggered a vivid debate [27, 28, 29] in the field of movement ecology

[17, 18, 30]. It was argued that Lévy-like motion has been observed for many animals

such as albatrosses [31], marine predators [32, 33], terrestrial animals like goats and deer

[34, 35] and even microzooplankton [36]. Heavy-tailed distributions were also reported

to characterise human movement patterns [37, 38].

However, for certain animals the visual perception of their environment becomes

more limited when moving with higher velocity. Observations show that, to remedy

this, in these cases the search process alternates between a slow recognition mode during

which a target can be found, and fast relocation events where the searcher is insensitive

to any target search [16, 39, 40], see Fig. 1. This poses the need for theoretical

modelling to combine saltatory, jump-like, with cruise motion yielding intermittent

strategies, which feature combinations of at least two different types of motion e.g.,

Brownian and ballistic motion, or Brownian motion and LFs [16, 41, 42]. A related

type of intermittent dynamics is that of composite Brownian motion [28, 29], which

was proposed to model the search of a forager or particle in patchy environments. Here

inter and intra patch movements are defined by a combination of Brownian modes with

different mean step lengths, however, the searcher can detect targets in both modes.

Recently it was argued that this type of dynamics was observed in the movements

of mussels [43, 44]. Composite Brownian motion can be generalised to an adaptive

Lévy walk, where the Brownian inter-patch movement is replaced by Lévy motion

[45]. Intermittent dynamics consisting of Brownian and Lévy motion has indeed been

observed for a number of biological organisms, such as microzooplankton depending on

the density of the prey [36], coastal jellyfish [46], mussels moving in dense environments

[47] and a variety of marine predators hunting in different environments [48, 49]. Further

generalisations of such models use switching rates [50], or sample the switching times

from one mode to another from different distributions [51]. The latter type of modelling

was motivated by studying the target search of proteins on fast-folding polymer chains,

see Fig. 2. Formally, these models form special cases of distributed order fractional

diffusion equations [52] or diffusion equations whose Laplacian is augmented with a

space fractional term [50]. They have also been derived as long-time approximations for

correlated Lévy walks [53]. An optimal strategy—in the sense of maximising a chosen

efficiency—thus depends at least on the type of motion, the switching distributions and

the dimension of the search space [16, 51]. On a molecular scale the search patterns of
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Figure 2. Target search of a protein, or enzyme, along a fast-folding DNA chain

allowing a dimensional reduction modelled by intermittent motion: Kα and KB denote

the switching rates for performing LFs representing intersegmental transfers through

the bulk due to unbinding and rebinding (arrows), respectively Brownian motion

mimicking 1D Brownian sliding along the polymer chain until the moving particle

(red) finds the target (green) [50].

regulatory proteins for their target binding site on finite DNA chains is an LF with

a cutoff for the jump length distribution, however, the advantage of the combined

search modes through the bulk and along the DNA significantly improve the search

rate [54, 55, 56].

In previous works the search reliability and efficiency for LFs and Brownian motion

were studied separately and compared with each other [7, 8]. Motivated by the

examples of intermittent motion referred to above, we here examine a combined process

consisting of both Brownian and Lévy components. Our paper is structured as follows:

after defining the quantities of interest (the search efficiency and reliability) in section

2, section 3 recalls the results for pure Brownian and LF search. Sections 4 & 5,

respectively, then present our results for the search reliability and search efficiency. In

section 6 we provide a discussion of our results. Details for the analytical calculations

are provided in the Appendix.

2. Quantities of interest

We characterise a search strategy by two different quantities. The first one is the search

reliability, which is the cumulative probability P of ever reaching the target. It can be

expressed through the Laplace image of first arrival time density℘fa(t) as [7]

P = lim
s→0

℘fa(s), (1)

where the Laplace transform of a function f(t) is defined via f(s) =
∫∞

0
f(t)e−stdt. The

search reliability depends on the type of random walk as well as geometrical details

(dimension, distance from the starting position to the target etc.). Thus P = 1 − S ,

where S is the survival probability [58, 59]. The latter quantity can be tackled by

solving a (fractional) Fokker-Planck equation with a sink term [7, 8, 57]. For search in

one dimension by LFs without a bias the search reliability is unity if α > 1 and zero
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otherwise [57], which is consistent with previous results [6]. For search in the presence

of a bias the search reliability can vary between zero and unity [7, 8], which is true

even for Brownian motion [58], where for the case of the bias pushing a searcher from

the target the search reliability is described by an exponential (Boltzmann) factor [58].

A search reliability of unity does not necessarily imply recurrence of the motion. For

instance, LFs with α = 1 in one dimensional and Brownian motion in two dimensions

are recurrent but the search reliability is 0.

The second quantity of interest is the search efficiency. Most of the theoretical

studies consider a probabilistic searcher with a limited radius of perception. Motivated

by [60], in this case two basic definitions of the search efficiency are considered to be

either

Efficiency1 =
visited number of targets

number of steps
, (2)

or

Efficiency2 =
visited number of targets

distance travelled
. (3)

The first definition applies especially to saltatory search, where a searcher moves in a

jump-like fashion and is able to detect the target only around the landing point after

a jump. The second formula is adapted to cruise motion, where the searcher keeps

exploring the search space continuously during the whole search process. An example

for the former scenario is given by a regulatory protein that moves in three dimensional

space and occasionally binds to the DNA of a biological cell until it finds its binding

[11, 12, 13, 14, 15]. The latter scenario would correspond to an eagle or vulture whose

excellent eyesight permits them to scan their environment for food during their entire

flight. For LFs Eq. (2) presents a natural choice while Eq. (3) is better suited for

processes like Brownian motion and Lévy walks [62].

In this paper we focus on the limit of a sparse target density, which is approximated

by the situation when only one target can be found. For a single target and saltatory

motion we argued that the efficiency should be defined from Eq. (2) with a proper

averaging [8]. In our continuous time model the number of steps from (2) is naturally

substituted by the time of the process. Since we have one target, the number of targets

found on average can be less than one. Obviously, a time averaging is needed, and,

hence, we choose

E =

〈

1

t

〉

=

∫ ∞

0

℘fa(s)ds. (4)

Below we use the search reliability & efficiency in the sense of Eqs. (1) & (4) to

characterise search strategy of combined Lévy-Brownian motion.

3. First arrival density from a fractional Fokker-Planck equation

The search properties of a process combining LFs and Brownian motion can be effectively

calculated from a space-fractional Fokker-Planck diffusion equation similar to the one
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considered in [50, 57] for the non-normalised probability density function (PDF) f(x, t),

∂f(x, t)

∂t
= Kα

∂αf(x, t)

∂ |x|α +KB
∂2f(x, t)

∂x2
− ℘fa(t)δ(x), (5)

where without losing generality the target is located at x = 0. We assume that at t = 0

the searcher is placed at x = x0, i.e., f(x, 0) = δ(x−x0). The consequence of the δ-sink

at x = 0 is the condition f(0, t) = 0 [50, 57]. The fractional derivative ∂α/∂xα can be

introduced in terms of its Fourier transform,
∫ ∞

−∞

eikx
[

∂α

∂xα
f(x, t)

]

dx = −|k|αf(k, t). (6)

We should note here that in Ref. [50] a similar but more specific equation was used for

the description of the problem of protein diffusion on a polymer chain. In comparison

with our Eq. (5) it contained additionally two terms, which described the contributions

from an adsorption and desorption of particles modelling the exchange of particles with

the ambient bulk solvent, and was solved for different initial conditions. For this specific

problem the optimal search minimised the mean first arrival time, which is always finite

for that case. In our case this quantity can become infinitely large, hence the analysis

in Ref. [50] is not applicable to the physical situation considered here.

Integration over the position coordinate of Eq. (5) yields

℘fa(t) = − d

dt

∫ ∞

−∞

f(x, t)dx. (7)

Hence ℘fa(t) is the negative time derivative of the survival probability, i.e. ℘fa(t) is indeed

the probability of first arrival: as soon as a walker gets to the sink it is absorbed.§
Analogously to pure search by LFs [57] it is easy to find a solution f(k, s) of Eq.

(5) in Fourier-Laplace space

f(k, s) =
eikx0 − ℘fa(s, x0)

s+Kα |k|α +KBk2
, (8)

see also [7]. Integration of Eq. (8) over k yields:
∫ ∞

−∞

f(k, s)dk = f(x = 0, s) = 0 = W (−x0, s)−W (0, s)℘fa(s, x0), (9)

where W (x, s) is a solution of Eq. (5) without the sink term. Hence the probability of

first arrival becomes

℘fa(s) =

∫ ∞

−∞

dk
eikx0

s+Kα |k|α +KBk2

∫ ∞

−∞

dk
1

s+Kα |k|α +KBk2

. (10)

Equation (10) can be expressed as a function of dimensionless variables as:

℘fa(s) =

∫ ∞

0

cos k

stB + pkα + k2
dk

∫ ∞

0

1

stB + pkα + k2
dk

, (11)

§ We remind the reader that for Brownian motion first arrival and first passage lead to identical results,

whereas both definitions are conceptually different for LFs [57, 61].



Search reliability and search efficiency of combined Lévy-Brownian motion 7

where tB = x2
0/KB is the time scale set by Brownian motion over the length x0 and

p = x2−α
0 Kα/KB. (12)

According to Eqs. (1) and (4), in order to get the reliability and efficiency of the

combined search, one has to compute, respectively, the limit s → 0 of Eq. (11) and

the integral of Eq. (11) over s from zero to infinity. Before going into this analysis and

its consequences, we recall the results for search by Brownian motion and LFs strategies

separately.

3.1. Brownian search

If the search process proceeds only with Brownian moves, i.e., Kα = 0, the first arrival

density can be computed analytically and in Laplace space reads

℘fa(s) = exp

(

−x0

√

s

KB

)

(13)

or, back-transformed to time,

℘fa(t) =
x0√

4πKBt3
exp

(

− x2
0

4KBt

)

. (14)

This is well known Lévy-Smirnov density [59]. Obviously in this case the search

reliability (1) is P = 1, and the efficiency EB = 2KB

x2

0

.

3.2. First arrival for pure Lévy search

The expression for ℘fa(s) for pure Lévy search can be computed in terms of Fox H-

functions [8]. In the limit of small s corresponding to the long time limit, ℘fa(s) can

be computed in terms of elementary functions (see Appendix A). For α ≤ 1 the search

reliability is P = 0, for α > 1 the reliability is P = 1. By integration of the corresponding

H-function expression in Laplace space one gets the simple equation for the search

efficiency [8] (see also a derivation without use of H-functions in Appendix B),

Eα =

〈

1

t

〉

=
αKα

xα
0

cos
(

π
(

1− α

2

))

Γ(α), 1 < α < 2. (15)

4. Search reliability for combined Lévy-Brownian search

In order to compute the search reliability one has to take the limit s → 0 of expression

(11) as pointed out in Eq. (1). If α ≥ 1, both integrals in (11) diverge at s = 0. The

divergence occurs at k → 0, and only the values of the integral very close to k = 0 (where

cos k ≈ 1) make a contribution to the integral. Hence P = 1, which is understandable

intuitively, because if one combines two processes with search reliability P = 1, then

the combined process should also have this property. Interestingly the search reliability

for a combination of LFs with α = 1 and Brownian motion also has P = 1, while pure

LF search with α = 1 is absolutely unreliable (P = 0) [7].
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The case α < 1 is less trivial. Even if s = 0, both integrals in Eq. (11) are convergent

and the search reliability can be computed in terms of H-functions (Appendix C),

resulting in

P =
sin

(

π
2−α

)

2
√
π

H12
31

[

2

p1/(2−α)

(

1, 1
2

) (

1−α
2−α

, 1
2−α

) (

1
2
, 1
2

)

(

1−α
2−α

, 1
2−α

)

]

, (16)

where the parameter p is defined in Eq. (12). Result (16) is naturally independent of the

time tB, because rescaling of the time should not change the search reliability. In the

case α = 0 the corresponding fractional derivative in Eq. (5) is of zeroth order, which

corresponds to a Fokker-Planck equation with decay term −f(x, t). The result (16)

simplifies to P (α = 0) = exp(−√
p) = exp(−

√

x2−α
0 Kα/KB) in complete agreement

with the solution of diffusion equation with decay term.

The standard expansion for H-functions [65] can be used to find the leading

behaviour of Eq. (16) in the limit of small p,

P (p ≪ 1) ≈ 1− C1(α)p
1

2−α +
1

2
p

2

2−α − C2(α)p
3−α

2−α , (17)

where the coefficients are defined as‖

C1(α) =
2− α

2
sin

(

π

2− α

)

,

C2(α) =
(2− α) sin

(

π
2−α

)

24−α
√
π

Γ
(

−3
2
+ α

2

)

Γ
(

2− α
2

) . (18)

From Eq. (11) one can also find an expansion for P in the limit of large p, which

reads (for the derivation see Appendix D),

P (p ≫ 1) ≈ 1

π
Γ(1− α) sin

(πα

2

)

(2− α) sin

(

π

2− α

)

p(α−1)/(2−α). (19)

Note that the limiting value of the latter expression for α → 1− is 1, i.e., the divergence

of Γ(1− α) is exactly compensated by the convergence of sin(π/(2− α)) to zero.

In Fig. 3 the search reliability P is plotted as a function of the stable index α. As

discussed above, for α ≥ 1 the value of P is unity, i.e. the combined Lévy-Brownian

search is absolutely reliable. However, when α < 1 the hitting probability is less than

unity and decreases with α until it reaches the values for the diffusion equation with

decay term. The curves were obtained from the numerical computation of the integral

ratio in Eq. (11). The expansion of Eq. (16) in the limit of small p, i.e. Eq. (17) gives

a very good approximation for p . 1 (green, red and black squares). For p & 10 the

expansion Eq. (19) for the limit p ≫ 1 works quite well even for small α. For α close

to unity, it approximates the numerical solution nicely even for p & 1.

Obviously P should depend on the distance between the starting position and the

target through the parameter p defined in Eq. (12). If in the case of Figs. 3 and 4

‖ In the limit of α → 1 the coefficient C1(α) vanishes. However P does not exceed the value unity, as

in this limit we should include the third term in the expansion, as it has the same power. Then C3

exactly cancels with C2 and no contradiction appears.
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Figure 3. Search reliability P as function of the Lévy stable exponent α for various

values of p, Eq. (12). The continuous curves are obtained by numerical computation of

Eq. (11). The squares for the cases p = 0.01 (green), p = 0.1 (black) and p = 1 (red)

are obtained from the approximation (17) for small p. The circles of corresponding

colour are plotted from the approximate expression (19) for large p.
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Figure 4. Search reliability as a function of the parameter p = x2−α

0
Kα/KB for

various stable indices α. Continuous lines were obtained from numerical solution of

Eq. (11). The squares show the analytical approximation (17) for small p. The circles

are plotted from the approximate expression (19) for large p.



Search reliability and search efficiency of combined Lévy-Brownian motion 10
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Figure 5. Search efficiency as function of the parameter p = x2−α

0
Kα/KB. Continuous

curves correspond to numerical results for the efficiency of the Brown-LF strategy for

various values of the stable index α. Dashed lines are asymptotics for the limit p → ∞,

which are derived in Appendix F.

one fixes the diffusion coefficients, for instance, Kα = 1 cmα

sec
and KB = 1 cm2

sec
, then the

dependence on p is essentially a dependence on the initial distance between the searcher

and the target to the power 2 − α. In Fig. 3 this dependence is displayed in the order

of the curves: the higher the value of p the lower is the curve in the plot. In Fig. 4

this dependence is shown explicitly. The larger the initial separation x0 between the

searcher and the target the smaller becomes the value of P . The decrease in α, which

corresponds to the higher fraction of long jumps, leads to a drop in the search reliability.

Circles show the large p approximation (19), while squares correspond to the small p

formula (17). One can see that for α = 0.75 (red symbols/curve) these two limiting

expressions describe the whole curve quite well. Even for the quite low value α = 0.25

(black symbols/curve) the quality of the correspondence of the asymptotic formulas is

still very good.

5. Search efficiency for combined Lévy-Brownian search

One can rewrite the definition of the search efficiency (4) as follows,

E (p) =
EB
2

∫ ∞

0

℘fa(p, s)d(stB), (20)
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where EB is the Brownian efficiency EB = 2KB/x
2
0 of the search process with p = 0

and ℘fa(p, s) is determined by Eq. (11). If p = 0, then
∫∞

0
℘fa(p, s)d(stB) = 2, i.e.

E(p = 0) = EB, as it should be. The value of the integral in Eq. (20) does not depend

on the time tB but only on the value of the parameter p. Hence in Fig. 5 we plot

the ratio of the efficiency of combined Brown-LF search normalised by the efficiency

EB of pure Brownian search as a function of the parameter p. The continuous curves

represent numerical results, and the dashed lines are asymptotes in the limit of large

p (for the derivation see Appendix F). First, we see that in all cases the efficiency

increases monotonically with p. If p is constant then the decrease of α leads to a

monotonic decrease of the efficiency. Secondly, there is a qualitative difference for the

Brownian-Lévy search with α > 1 and α < 1. In the former case (for which, as we

know, LFs without Brownian motion find the target anyway) the efficiency in the limit

of large p is proportional to p. A careful calculation shows that in this case E = Eα
(Appendix F), i.e., the search efficiency is determined only by LFs. This is reasonable,

because if both processes lead to the location of the target, only the one with a very

large noise strength should matter. In the latter case for which pure LFs would not

succeed (Eα = 0) the asymptotic dependence is of power law form p1/(2−α), i.e. even the

smallest fraction of Brownian motion makes the location of the target possible. This

observation is consistent with the fact that the search reliability does not fall off to zero

at α ≤ 1 (cf. Fig. 3) The limiting case α = 1 shows a logarithmic correction. An

interesting point here is that for α = 1 pure LF search is absolutely unreliable, P = 0,

but the smallest contribution of Brownian motion makes the search absolutely reliable,

P = 1.

Although Fig. 5 shows the complete dependence of the efficiency on all original

parameters Kα, KB, x0, and α, which are combined into a single parameter p, the plot

should be interpreted carefully. At first glance it seems that an increase of α leads to

an increase of the search efficiency if p = const, i.e., Brownian motion will be the most

efficient search strategy. However, any change of α implicitly affects the parameter p,

compare Eq. (12). Even if one assumes that KB is constant the fractional diffusion

coefficient Kα will change its dimension with change of α and in order to keep a fixed

value of p one needs to change the distance from the target.

In order to fix the starting position and compare the strategies in this practically

important case we plot the search efficiency as a function of α for fixed x0 = 1, 10,

20, 50 cm and Kα = 1cmα/sec, K2 = 1cm2/sec in Fig. 6. The curve for x0 = 1 cm

monotonically increases with α, i.e., the Brownian strategy is optimal for finding a

nearby target. However, for larger values of x0 a maximum appears, which shows that

the combination of Brownian motion with LFs may perform better for larger initial

separation from the target similar to the case of pure LF search as discussed in Ref. [7].
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0 1 2
0

5

10

15

E/EB  

 

  x0=1 cm
  x0=10 cm
   x0=20 cm
   x0=50 cm

Figure 6. Search efficiency as function of the stable index α for fixed x0, Kα =

1 cmα/sec,K2 = 1 cm2/sec.

6. Discussion and conclusions

To summarise, we found that for complex motion which combines LFs for α < 1 with

Brownian motion, the search reliability can have intermediate values between zero and

unity even if no bias is present. If the Lévy stable exponent α is larger or equal than

unity, then P = 1. For a process which combines two Lévy motions the qualitative

behaviour is the same if one of the exponents is larger than unity. If both of them

are smaller than unity, then the process is transient, P = 0, and a point-like searcher

is unable to find a point-like target. It is interesting to compare our findings with

those for the pure Lévy search for a delocalised target—with power-law absorption

a(x) = 1/(|x|β+1), i.e. the target is discovered with a power-law decaying probability—

in Ref. [63]. In that case, if the stable index α < 1, the search still can be absolutely

reliable (P = 1), if the scaling exponent characterising an absorption probability β ≤ α,

i.e., the target localisation or absorption probability is delocalised stronger than the LF

process.

The search efficiency has a universal behaviour as function of the dimensionless

parameter p, which describes the ratio of the noise intensities of the different modes.

If the characteristic exponent of the LFs is larger than unity—which includes also

Brownian motion—then for large p the efficiency is linear in p reflecting the fact that

only one of the modes defines the properties of the trajectories. Once α becomes unity

a logarithmic correction factor appears and the efficiency grows sublinear with p. If the

Lévy exponent α is less than unity, the efficiency grows with p as a sublinear power

law. The latter case shows that even for high intensity of LF search with α < 1 the

local search provided by Brownian motion matters and quantitatively affects the search
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efficiency.

The optimisation of a combined search strategy of LFs with stable index α and

Brownian motion shows that for targets in the close vicinity of the starting point one

should use more local search strategies, i.e., α should be close to 2, while for distant

targets a larger fraction of long jumps increases the search efficiency. This result is

consistent with the one-mode case in which LFs are confronted with Brownian motion

[7].

It would be interesting to apply our theory to better understand the combined

dynamics of biological organisms such as microzooplankton [36], coastal jellyfish [46],

moving mussels [47] and marine predators hunting in different environments [49, 48].

Appendix A. Long time limit of the first arrival density and the search

reliability for pure LF search

The probability density of the first arrival for pure LF search is

℘fa(s) =

∫ ∞

0

cos kx0

s+Kαkα
dk

∫ ∞

0

1

s+Kαkα
dk

. (A.1)

In the case α < 1 for s = 0 the numerator is finite while the denominator diverges for

any s, i.e., the search reliability becomes P = 0. For α = 1 the numerator is finite for

s 6= 0, whereas the denominator still diverges for all s, thus we have P = 0 again. In the

case α > 1 both the numerator and denominator converge at finite s. Thus, the search

reliability is non-zero. Let us consider the case of small s corresponding to long times.

The expression (A.1) can be transformed as

℘fa(s) =

∫ ∞

0

1

s+Kαkα
dk −

∫ ∞

0

1− cos(kx0)

s+Kαkα
dk

∫ ∞

0

1

s +Kαkα
dk

= 1−

∫ ∞

0

1− cos(kx0)

s+Kαkα
dk

∫ ∞

0

1

s+Kαkα
dk

. (A.2)

The integral in the denominator can be computed easily (Ref. [65], (2.2.3.5)),
∫ ∞

0

1

s+Kαkα
dk =

1

K
1/α
α

∫ ∞

0

1

s+ yα
dy =

π

α sin (π/α)

s1/α−1

K
1/α
α

. (A.3)

Since the integral in the numerator converges at s → 0, we can simply put s = 0 while

looking at small s (long time) behaviour. Thus we have
∫ ∞

0

1− cos(kx0)

s+Kαkα
dk =

xα−1
0

(α− 1)Kα

∫ ∞

0

dy
sin y

yα−1

=
Γ(2− α)

α− 1
sin

(πα

2

) xα−1
0

Kα

. (A.4)
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Hence we get:

℘fa(s) ≈ 1− Λ(α)xα−1
0 K1/α−1

α s1−1/α, (A.5)

where

Λ(α) =
αΓ(2− α)

π(α− 1)
sin

(πα

2

)

sin
(π

α

)

. (A.6)

We see that in this case P = lims→0 ℘fa(s) = 1. In order to get the long-time limit with

a small-s expansion we note that

− ℘′
fa(s) ≈ Λ(α)xα−1

0 K1/α−1
α

(

1− 1

α

)

s−1/α. (A.7)

The latter expression is the Laplace transform of t℘fa(t). Hence, according to Tauberian

theorems

t℘fa(t) ≈ Λ(α)xα−1
0 K1/α−1

α

(

1− 1

α

)

t−1+1/α

Γ(1/α)
. (A.8)

Thus,

℘fa(t) ≈ C(α)xα−1
0 K1/α−1

α t−2+1/α, (A.9)

where

C(α) =
Γ(2− α)

πΓ (1/α)
sin

(πα

2

)

sin
(π

α

)

. (A.10)

Appendix B. Efficiency of pure LF search

The search efficiency in this case becomes

E =

∫ ∞

0

ds℘fa(s) = Kα

∫ ∞

0

ds

∫ ∞

0

cos kx0

s+ kα
dk

∫ ∞

0

1

s+ kα
dk

. (B.1)

The denominator was computed in expression (A.4). We rewrite the expression for the

efficiency using the notation for α-stable density as lα(x) as well as new variables,

E =
Kαα sin (π/α)

π

∫ ∞

0

dss1−1/α

∫ ∞

0

cos kx0

s+ kα
dk

=
Kαα sin (π/α)

π

∫ ∞

0

dss1−1/α

∫ ∞

0

cos(kx0)dk

∫ ∞

0

dτe−(s+kα)τ

= Kαα sin (π/α)

∫ ∞

0

dss1−1/α

∫ ∞

0

dτe−sτ

∫ ∞

0

cos(kx0)

π
e−kατdk

= Kαα sin (π/α)

∫ ∞

0

dττ−1/αlα

( x0

τ 1/α

)

∫ ∞

0

dss1−1/αe−sτ

= Kαα sin (π/α) Γ

(

2− 1

α

)
∫ ∞

0

dττ−2lα

( x0

τ 1/α

)

=
∣

∣y = x0/τ
1/α

∣

∣
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= −Kαα
2 sin (π/α) Γ

(

2− 1

α

)

x−α
0

∫ ∞

0

dyyα−1lα (y)

=
1

2
Kαα

2 sin (−π/α) Γ

(

2− 1

α

)

x−α
0

〈

|y|α−1
〉

, (B.2)

where 〈|y|α−1〉 is the (α − 1)-st moment of a standard α-stable distribution, which is

given by [64]

〈|y|q|〉 = 2

πq
sin

(πq

2

)

Γ (1 + q) Γ
(

1− q

α

)

, 0 < q < α. (B.3)

After plugging the latter expression in (B.2) we get the final result

E =
αKα

xα
0

∣

∣

∣
cos

(πα

2

)
∣

∣

∣
Γ(α), 1 < α < 2. (B.4)

Appendix C. Derivation of the Fox function solution for α < 1 at s = 0

The search reliability is

P = ℘fa(s = 0) =

∫ ∞

0

cos k

pkα + k2
dk

∫ ∞

0

1

pkα + k2
dk

, (C.1)

and we have [65]
∫ ∞

0

1

pkα + k2
dk =

π

2− α

p−
1

2−α

sin
(

π
2−α

) . (C.2)

Since

1

p+ k2−α
=

1

p

1

2− α
H11

11

[

k

p
1

2−α

∣

∣

∣

∣

∣

(

0, 1
2−α

)

(

0, 1
2−α

)

]

, (C.3)

we can compute the search reliability in terms of a Fox H-function

1

p(2− α)

∫ ∞

0

k−α cos kH11
11

[

k

p
1

2−α

∣

∣

∣

∣

∣

(

0, 1
2−α

)

(

0, 1
2−α

)

]

dk

=

√
π2−α

p(2− α)
H12

31

[

2

p
1

2−α

∣

∣

∣

∣

∣

(

1+α
2
, 1
2

)

,
(

0, 1
2−α

)

,
(

α
2
, 1
2

)

(

0, 1
2−α

)

]

. (C.4)

Thus

P =
2−α sin

(

π(1−α)
2−α

)

√
πp

1−α

2−α

H12
31

[

2

p
1

2−α

∣

∣

∣

∣

∣

(

1+α
2
, 1
2

)

,
(

0, 1
2−α

)

,
(

α
2
, 1
2

)

(

0, 1
2−α

)

]

=
sin

(

π
2−α

)

2
√
π

H12
31

[

2

p
1

2−α

∣

∣

∣

∣

∣

(

1, 1
2

)

,
(

1−α
2−α

, 1
2−α

)

,
(

1
2
, 1
2

)

(

1−α
2−α

, 1
2−α

)

]

. (C.5)
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In the important particular case α = 0,

lim
α=0

P =
1

2
√
π
H12

31

[

2√
p

∣

∣

∣

∣

∣

(

1, 1
2

)

,
(

1
2
, 1
2

)

,
(

1
2
, 1
2

)

(

1
2
, 1
2

)

]

=
1

2
√
π
H02

20

[

2√
p

∣

∣

∣

∣

∣

(

1, 1
2

)

,
(

1
2
, 1
2

)

]

= exp (−√
p) . (C.6)

Appendix D. Search reliability in the p ≫ 1 limit

In order to find the expansion for P in the limit of large values of p we start from

Eq. (11), where s = 0. The upper integral can be expressed as
∫ ∞

0

cos kdk

pkα + k2
= Re

∫ ∞

0

eikdk

pkα + k2
= ReI, (D.1)

where

I = χ−1

∫ ∞

0

eiχκdκ

κα + κ2
= χ−1

∫ ∞

0

dκ
1

1 + κ2−α

eiχκ

κα
, (D.2)

such that
1

χ
=

∫ ∞

0

eiχκκ−αφ(κ)dκ, (D.3)

with φ(κ) = 1
1+κ2−α and χ = p

1

2−α . Since χ is large, eiχk is a highly oscillating function.

In addition, we have an integrated divergence of the integrand at zero. Due to these two

reasons the main contribution to the integral will be given by the contribution around

κ ≈ 0. Therefore (and using the expression 2.3.3.1 from [65])

I =
1

χ

∫ ∞

0

eiχκκ−αφ(κ)dκ ≈ χ−1

∫ ∞

0

eiχκκ−αφ(0)dκ

= χ−(2−α)

∫ ∞

0

eiξ

ξα
dξ

= χ−(2−α)Γ(1− α)(−i)α−1 = −Γ(1− α)

p
e−

iπ

2
(α−1). (D.4)

And thus
∫ ∞

0

cos kdk

pkα + k2
=

1

p
Γ(1− α) sin

(πα

2

)

. (D.5)

The integral in the denominator of Eq. (11) can be computed analytically for any p and

the result is given by Eq. (C.2). Hence one gets Eq. (19).

Appendix E. The case α = 1

For α = 1,

℘fa(s) =

∫ ∞

−∞

dk
eikx0

s+Kα |k|+KBk2

∫ ∞

−∞

dk
1

s+Kα |k|+KBk2

. (E.1)
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Obviously the integrals can be simplified due to the symmetry in k. Then

℘fa(s) =

∫ ∞

0

dk
cos(kx0)

s+Kα |k|+KBk2

∫ ∞

0

dk
1

s+Kα |k|+KBk2

=
I2
I1
, (E.2)

where I1 and I2 can be computed or taken from Prudnikov [65]

I1 =
1

KB(k2 − k1)
ln

∣

∣

∣

∣

k2
k1

∣

∣

∣

∣

, (E.3)

I2 =
1

KB(k2 − k1)
[ci(x0k2) cos(x0k2)− ci(x0k1) cos(x0k1)

+ si(x0k2) sin(x0k2)− si(x0k1) sin(x0k1)] , (E.4)

where k1,2 =
K1∓

√
K2

1
−4KBs

2KB

, ci(z) and si(z) are integral cosine and sine, respectively,

defined via si(z) = −
∫∞

z
sin y
y
dy and ci(z) = −

∫∞

z
cos y
y

dy. Thus, for α = 1, v = 0 and

℘fa(s) =
1

ln
∣

∣

∣

k2
k1

∣

∣

∣

[

ci(x0k2) cos(x0k2)− ci(x0k1) cos(x0k1)

+ Si(x0k2) sin(x0k2)− Si(x0k1) sin(x0k1)

+ π cos

(

k1 + k2
2

)

sin

(

k2 − k1
2

)

]

=
1

ln
∣

∣

∣

k2
k1

∣

∣

∣

[

ci(x0k2) cos(x0k2)− ci(x0k1) cos(x0k1) (E.5)

+ si(x0k2) sin(x0k2)− si(x0k1) sin(x0k1)
]

.

In the first expression an alternative way to represent results is used (which corresponds

to Mathematica) with

Si(z) =

∫ z

0

sin y

y
dy =

π

2
+ si(z). (E.6)

Appendix F. Asymptotical behaviour of the search efficiency for p → ∞

In the limit p → ∞ the search efficiency can be expressed through the Brownian

efficiency EB (i.e., for p = 0) in the form

E (p) =
EB
2

∫ ∞

0

℘fa(p, s)d(stB), (F.1)

where ℘fa(p, s) is determined by Eq. (11).

Appendix F.1. α > 1

For α > 1 LFs have a finite search reliability. In the limit p → ∞ the LFs dominate the

search process, and we thus necessarily recover expression (B.4).



Search reliability and search efficiency of combined Lévy-Brownian motion 18

Appendix F.2. α < 1.

In the case α < 1 convergence at infinity is due to the term k2 and we cannot neglect it

so easily as we did for α > 1. Let us change the variables in (F.1) as stB = pνu, k = pµκ,

where ν and µ will be specified below. Then from (F.1) we get

2
E(p)
EB

= pν
∫ ∞

0

du

∫ ∞

0

cos(pµκ)

pνu+ p1+αµκα + p2µκ2
pµdκ

∫ ∞

0

1

pνu+ p1+αµκα + p2µκ2
pµdκ

. (F.2)

We choose ν and µ such that

ν = 1 + αµ = 2µ, (F.3)

i.e.

µ =
1

2− α
, ν =

2

2− α
. (F.4)

Then Eq. (F.2) takes the form

2
E(p)
EB

= pν
∫ ∞

0

du

∫ ∞

0

cos(pµκ)

u+ κα + κ2
dκ

∫ ∞

0

1

u+ κα + κ2
dκ

. (F.5)

The integral in the denominator converges at all positive u, does not depend on p and

has an upper bound at u = 0,

f(u) =

∫ ∞

0

1

u+ κα + κ2
dκ ≤ f(0)

=

∫ ∞

0

1

κα + κ2
dκ. (F.6)

As for the integral in the numerator, since p ≫ 1 the main contribution comes from small

κ. We thus neglect κ2 in comparison with κα and use the approach from Appendix B.

Hence, for the efficiency we get

2
E(p)
EB

≈ pν
∫ ∞

0

du

f(u)

∫ ∞

0

cos(pµκ)

u+ κα
dκ

∼ pν
∫ ∞

0

du

f(u)

∫ ∞

0

dτe−uτ 1

τ 1/α
lα

(

pµ

τ 1/α

)

, (F.7)

where

y = pµ/τ 1/α, τ = pµα/yα, dτ = − 1

α

pµα

yα+1
dy.

Thus

2
E(p)
EB

∼ pν−µ+µα

∫ ∞

0

du

f(u)

∫ ∞

0

dy exp

(

−upµα

yµα

)

y−αlα (y)

= pν−µ+µα

∫ ∞

0

dylα (y) y
−α

∫ ∞

0

du

f(u)
exp

(

−upµα

yµα

)
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= pν−µ

∫ ∞

0

dylα (y)

∫ ∞

0

e−tdt

f

(

yαt

pµα

)

∼ pν−µ ∼ p1/(2−α), @p → ∞, (F.8)

due to relation (F.6), i.e., for α < 1

E(p) ∼ p
1

2−α . (F.9)

Appendix F.3. α = 1

The case α = 1 requires a special treatment. The efficiency in this case is

2E(p)
EB

=

∫ ∞

0

d(stB)

∫ ∞

0

cos kdk

stB + pk + k2
∫ ∞

0

dk

stB + pk + k2

. (F.10)

Making the same change of variables as in Appendix F.2, we get (cf. (F.5))

2E(p)
EB

= p2
∫ ∞

0

du

∫ ∞

0

cos(pκ)dκ

u+ κ+ κ2
∫ ∞

0

dκ

u+ κ+ κ2

. (F.11)

To proceed we start with the evaluation of the integral in the denominator

f(u) =

∫ ∞

0

1

u+ κ + κ2
dκ =

∫ ∞

0

1
(

κ+ 1
2

)2
+ u− 1

4

dκ

=























f1(u) =
1

2
√

1/4−u
ln

∣

∣

∣

∣

1/2+
√

1/4−u

1/2−
√

1/4−u

∣

∣

∣

∣

, u < 1/4,

f2(u) =
1√

u−1/4

(

π/2− arctan 1

2
√

u−1/4

)

, u > 1/4,

2, u = 1/4,

. (F.12)

For the integral in the numerator similar to the case α < 1 (Appendix F.2) the

main contribution comes from small κ values due to p ≫ 1. Hence we can neglect κ2 in

comparison with κ. Thus

f(u) =

∫ ∞

0

cos(pκ)

u+ κ+ κ2
dκ ≃

p≫1

∫ ∞

0

cos(pκ)

u+ κ
dκ = g(pu), (F.13)

where g(z) can be expressed through sine and cosine integrals Si(z) and Ci(z)

g(z) = −Ci(z) cos(z)− (Si(z)− π/2) sin(z). (F.14)

Eq. (F.11) can be rewritten as

2E(p)
EB

= p2
∫ 1/4

0

du

f1(u)
g(pu) + p2

∫ ∞

1/4

du

f2(u)
g(pu). (F.15)

For the second term in the latter expression one can use an asymptotic of g(z) ∼ 1/z2

for pu ≫ 1 since p ≫ 1 (see Eq. 5.2.35 in [66]). This implies that the contribution from

the second term does not grow with increasing p at large p values.
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The first term can be rewritten as

p2
∫ 1/4

0

du

f1(u)
g(pu) = p

∫ p/4

0

dy

f1(y/p)
g(y). (F.16)

The upper bound of this term is given by

p

∫ p/4

0

dy

f1(y/p)
g(y) <

p

f1(1/4)

∫ ∞

0

dyg(y), (F.17)

as g(y) is integrable on [0,∞) and we can replace the upper limit p/4 of the integral

with ∞ at p ≫ 1. Thus, the first term in Eq. (F.15) does not grow faster than p. To

get a lower bound for the growth limit of large p we use the first mean value theorem

[67] and a small argument asymptotic f1(u) ∼ − ln u, yielding

p

∫ p/4

0

dy

f1(y/p)
g(y) =

p

f1 (y∗/p)

∫ p/4

0

dyg(y) ∼ p

− ln (y∗/p)

∫ ∞

0

dyg(y), (F.18)

where 0 < y∗ < p/4. Hence

E(p)
EB

∼ p

ln p
, (F.19)

which is confirmed by numerical simulations.
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