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Abstract
The oncolytic adenovirus dl922-947 replicates selectively within and lyses cells with a dysregulated Rb pathway, a 
finding seen in > 90% human cancers. dl922-947 is more potent than wild type adenovirus and the E1B-deletion 
mutant dl1520 (Onyx-015). We wished to determine which host cell factors influence cytotoxicity. SV40 large T-
transformed MRC5-VA cells are 3-logs more sensitive to dl922-947 than isogenic parental MRC5 cells, confirming that 
an abnormal G1/S checkpoint increases viral efficacy. The sensitivity of ovarian cancer cells to dl922-947 varied widely: 
IC50 values ranged from 51 (SKOV3ip1) to 0.03 pfu/cell (TOV21G). Cells sensitive to dl922-947 had higher S phase 
populations and supported earlier E1A expression. Cytotoxicity correlated poorly with both infectivity and replication, 
but well with expression of p21 by microarray and western blot analyses. Matched p21+/+ and -/- Hct116 cells 
confirmed that p21 influences dl922-947 activity in vitro and in vivo. siRNA-mediated p21 knockdown in sensitive 
TOV21G cells decreases E1A expression and viral cytotoxicity, whilst expression of p21 in resistant A2780CP cells 
increases virus activity in vitro and in intraperitoneal xenografts. These results highlight that host cell factors beyond 
simple infectivity can influence the efficacy of oncolytic adenoviruses. p21 expression may be an important biomarker 
of response in clinical trials.

Background
Oncolytic viruses multiply selectively within infected
cancer cells and cause death, with release of mature
viruses that infect neighbouring cells. Upon infection, the
first adenoviral protein to be expressed is E1A, which is
required for the efficient transcription of other viral early
genes [1]. Another function is to drive infected cells into
S phase by disrupting the interaction between pRb and
E2F [2], allowing transactivation of genes necessary for
viral DNA replication. Two E1A conserved regions are
responsible for this disruption: CR2 binds with high affin-
ity to the B-domain of the pRb pocket whilst CR1 dis-
places E2F from the E1A CR2/pRb complex by low
affinity binding with pRb directly at the E2F binding site
[3].

We have shown that the E1A CR2 deleted adenovirus
dl922-947 has considerable activity in ovarian cancer and
induces cell death through a non-apoptotic mechanism

[4]. It is more potent than E1A wild-type adenoviruses
and the E1B-55K mutant dl1520 (Onyx-015, H101) [5,6].
dl922-947 replicates selectively in cells with abnormali-
ties of the Rb pathway and consequent G1-S checkpoint,
findings seen in over 90% of human cancers [7]. We also
showed that dl922-947 activity is associated with deregu-
lation of multiple cell cycle checkpoints and that acceler-
ated cell cycle progression enhances efficacy [8]. In
ovarian cancer, multiple G1-S cell cycle abnormalities are
observed [9,10]. However, it is unclear which of these are
most important for determining sensitivity to dl922-947,
nor is there a simple biomarker assay of virus activity.
Clinical trials of E1A CR2-deleted adenoviruses are
underway (http://www.clinicaltrials.gov reference
NCT00805376), so understanding these factors will aid
identification of patients most likely to respond.

Our data indicate that infectivity is not the only deter-
minant of cell sensitivity, so we have focussed on post-
infection events. There is poor correlation between
extent of viral replication and cell death when comparing
different cell lines. Basal expression of p21 appears an
important factor in identifying cells sensitive to adenovi-
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rus cytotoxicity and correlates with expression of E1A,
death in vitro of malignant and transformed cells and also
with anti-tumour activity in vivo. We also show that p21
is predominantly cytosolic and is targeted for protea-
somal destruction after infection. Knockdown of p21 in
high-expressing cells reduces E1A expression and adeno-
virus activity, whilst re-expression in p21low cells
increases E1A expression and the cytotoxicity of both
dl922-947 and wild-type adenovirus. Finally, we show
that p21 stabilises cyclin D expression and thus promotes
a cellular environment conducive to adenovirus replica-
tion.

Results
Oncolytic adenoviral activity correlates with E1A 
expression and S phase fraction but not infectivity
We wished to determine which host cell factors contrib-
uted to cell sensitivity to the E1A CR2-deleted adenovirus
dl922-947. We first examined normal (MRC5) and SV40
Large T-transformed (MRC5-VA) human lung fibro-
blasts. MRC-VA cells were dramatically more sensitive to
dl922-947 (IC50 > 104 pfu/cell (MRC) vs 2.3 pfu/cell
(MRC-VA)) (Fig 1A) and supported significantly greater
viral replication (Additional File 1). Thus, complete
deregulation of Rb pathway induced by SV40 Large T
antigen has profound effects upon virus activity.

The cytotoxicity of dl922-947 was then assessed in a
panel of eight human ovarian cancer cells (Fig 1B). The
panel's sensitivity to dl922-947 varied greatly, with IC50
values ranging from 0.03 pfu/cell (TOV21G) to 51.1 pfu/
cell (SKOV3ip1). We chose the two most sensitive
(TOV21G and IGROV1) and least sensitive (SKOV3ip1
and A2780CP) lines for further evaluation. Since the ade-
novirus life cycle relies upon host cell infection, we analy-
sed infectivity in the 4 cell-lines using two assays: GFP
fluorescence following infection with non-replicating Ad
CMV-GFP (Fig 1B) and qPCR for internalised viral
genomes two hours after infection with dl922-947 (Addi-
tional File 2). Infectivity could not explain differences in
virus efficacy, as there was poor correlation with IC50 and
all 4 lines were infectable. E1A, first adenovirus gene to
be expressed, is an absolute pre-requisite for productive
infection. There was a clear correlation between early
expression of E1A in the 4 lines and their sensitivity to
viral cytotoxicity (Fig 1C) but no complete correlation
between cytotoxicity and infectious virion production
(Fig 1C) in this comparison of four cell lines: virion pro-
duction was initially highest in TOV21G, but was
exceeded in SKOV3ip1 cells at 72 hours. Meanwhile,
IGROV1 cells generated fewer virions than resistant
SKOV3ip1 cells at all time points. Thus, cytotoxicity
appears not to be a direct function of intracellular virion
number.

We chose to investigate host cell factors governing cell
cycle progression and their potential role in determining
viral efficacy. Cell cycle analysis of uninfected, asynchro-
nous cells by propidium iodide flow cytometry demon-
strated a strong correlation between proportion of cells in
S phase and sensitivity to dl922-947 (r2 = 0.91; p = 0.04 -
Additional File 3), although S phase fraction did not
translate into cell growth rate, with A2780CP being the
most rapidly growing line (Additional File 3). We exam-
ined gene expression data of the five members of our
ovarian cancer cells (IGROV1, OVCAR3, OVCAR4,
OVCAR5, SKOV3) that are part of the NCI60 panel.
Using Gene Expression Omnibus data (GEO http://www.
ncbi.nlm.nih.gov/projects/geo/index.cgi), we identified
genes most differentially expressed in the most sensitive
of the five lines (IGROV1) compared with the others. The
two most over-expressed cell cycle genes were CDKN1A
(p21Waf1) and CCND2 (Cyclin D2 - Additional File 4). As
data from MRC fibroblasts (Fig 1A) and our previous
results from immortalized ovarian surface epithelial cells
[6] indicated that Rb pathway status is a strong determi-
nant of cell sensitivity to dl922-947, we examined expres-
sion of components of this pathway in the two sensitive
and two resistant lines (Fig 1D). We observed no obvious
correlation between cell sensitivity and phosphorylation
of pRb at three sites (Ser 612, S780 and Ser 807/811).
However, we did observe that expression of p21, as well as
Cyclin D, p16 and p27, correlated well with cell sensitiv-
ity. Therefore, we investigated the role of p21 in adenovi-
ral activity and whether its expression might act as a
biomarker for dl922-947 activity.

p21 expression in matched Hct116 cells
We first examined matched p21+/+ and p21-/- Hct116
cells. There was no difference in infectivity between the
two cell lines (data not shown), but expression of p21 in
Hct116 cells is associated with significantly increased
sensitivity to dl922-947 and also two E1-wild-type
viruses, Ad5 WT and dl309 (Fig 2A) in 120-hour cytotox-
icity assays, although there was no difference at 72 hours
pi (data not shown). In addition, p21+/+ cells express more
E1A (as detected by immunofluorescence - Fig 2B) and
generate and release significantly more infectious virions
than p21-/- cells (Additional File 5). Following infection
with dl922-947, p21 expression declined significantly
between 24 and 48 hours post infection (pi) (Fig 2C),
which was reversed following treatment with MG132,
indicating that p21 is targeted for proteasomal destruc-
tion (Fig 2C). Sub-cellular fractionation indicated that
p21 was largely cytoplasmic and unlikely, therefore, to
function as a cyclin-dependent kinase inhibitor (Fig 2C).
To examine how Hct116 p21+/+ cells responded to other
forms of genotoxic stress, we exposed them to x-irradia-
tion. Six hours following irradiation, there is a marked
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Figure 1 Activity of dl922-947 in immortalized and ovarian cancer cell lines. 1A: Cytotoxicity in MRC5 fibroblasts. MRC5 and MRC-VA cells 
were infected with dl922-947 (MOI 0.01 - 10000 pfu/cell). Cell survival was assessed 144 hours later. 1B: Cytotoxicity and infectivity in ovarian can-
cer cells. Eight ovarian cancer cell lines were infected with dl922-947 (MOI 0.001 - 1000 pfu/cell). Cell survival was assessed 120 hours later (left). Cell 
infectivity in TOV21G, IGROV1, A2780CP and SKOV3ip1 cells was assessed 24 h following infection with Ad-CMV-GFP (MOI 5 and 50 pfu/cell) using flow 
cytometry. Results are presented as percentage cells GFP positive (right). 1C: Viral protein expression and replication. Ovarian cancer cells were 
infected with dl922-947 (MOI 10) and protein harvested up to 72 hours later. E1A expression was analyzed by immunoblot (left). TOV21G, IGROV1, 
A2780CP and SKOV3ip1 were infected with dl922-947 (MOI 10). Viral replication was assessed up to 72 hours later by and TCID50 assay. Horizontal lines 
represents input dose (right). 1D: Expression of Rb pathway components in ovarian cancer cells. Protein was harvested from asynchronous grow-
ing ovarian cancer cells, separated on SDS-PAGE cells and analyzed by immunoblot.
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Figure 2 p21 expression increases adenovirus activity. 2A: p21 expression increases adenoviral cytotoxicity. Hct116 p21+/+ and p21-/- cells 
were infected with dl922-947 (upper right), dl309 (lower left) and Ad5 WT (lower right) (MOI 0.0001 - 100 pfu/cell). Cell survival was assessed 144 hours 
later. Absence of p21 expression in uninfected p21-/- cells was confirmed by immunoblot (top left). 2B: p21 increases E1A expression. Hct116 p21+/

+ and p21-/- cells were grown on poly-L-lysine-coated coverslips, infected with dl922-947 (MOI 0.5) and fixed up to 72 h pi with 5% formaldehyde. Fol-
lowing permeabilisation, E1A and tubulin expression was assessed by immunofluorescence. 2C: p21 undergoes proteasomal degradation follow-
ing adenovirus infection. Protein was harvested from Hct116 p21+/+ cells up to 72 h post-infection with dl922-947 (MOI 10) and analyzed by 
immunoblot for p21 expression (Ci). Cells were treated with 50 μM MG132 for 6 hours prior to harvest (Cii). Hct116 p21+/+ cells were also subjected to 
cell fractionation 24 h post-infection. C = cytoplasmic fraction, N = nuclear fraction (Ciii). p21+/+ cells were also harvested 6 h following exposure to 
5Gy X-irradiation (X-IR) and blotted for p21 expression (Civ). 2D: p21 expression increases dl922-947 activity in vivo. 5 × 106 Hct116 p21+/+ and 
p21-/- cells were injected subcutaneously in the flanks of CD1 nu/nu female mice. Once tumours reached approximately 100 mm3, dl922-947 or Ad 
CMV GFP was injected intratumorally into (1 × 1010 particles in 50 μl PBS; n = 4-5 per group) on three separate occasions. Tumours were measured 
using callipers. Points represent mean ± s.e.m. *; p < 0.05 by unpaired, one-tailed Student's t test.
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increase in p21 expression, compared to the reduction
seen with dl922-947 (Fig 2C). Finally, we implanted
Hct116 p21+/+ and p21-/- cells in the flank of female nude
mice. Once tumours were approximately 100 mm3,
dl922-947 or Ad CMV-GFP (1 × 1010 particles in 50 μl
PBS) was injected intra-tumourally on three occasions.
Both p21+/+ and p21-/- tumours injected with control
virus continued to grow. However, following dl922-947
injection, p21+/+ tumours were smaller than p21-/-, which
persisted until the end of the experiment and reached sta-
tistical significance (Fig 2D).

p21 expression in transformed ovarian surface epithelial 
cells
We next examined the hTERT-immortalised ovarian sur-
face epithelial cell line IOSE25, which has intact Rb and
p53 function [11]. We have recently identified two spon-
taneously transformed IOSE25 sub-lines, TOSE1 and
TOSE4, which have acquired the ability to grow in soft
agar but do not form tumours within immunocompro-
mised mice and thus are a valuable tool for investigating
early ovarian carcinogenesis (Archibald et al 2010 MS in
preparation). TOSE1 and 4 are greatly more sensitive to
dl922-947 than IOSE25 (Fig 3) and express high levels of
p21.

p21 knockdown prior to infection reduces viral activity
As with the Hct116 p21+/+ cells, we observed a reduction
in p21 expression in the two sensitive ovarian cancer cell
lines (TOV21G and IGROV1) following infection with
dl922-947 (Fig 4A). Using a pool of four siRNA con-
structs, p21 knockdown was achieved in TOV21G cells
for up to 96 hours, which was associated with a signifi-
cant reduction in DNA replication, as detected by BRDU
incorporation (TOV21G + Scr 26.4 ± 0.6% vs TOV21G +

p21 siRNA 22.1 ± 0.6%, p = 0.001; Fig 4B). TOV21G cells
were infected with dl922-947 24 hours following siRNA-
mediated p21 knockdown. The p21 knockdown reduced
E1A expression and infectious virion production signifi-
cantly (Fig 4C). Finally, 24 hours following p21 knock-
down, TOV21G cells were infected with dl922-947 and
cytotoxicity assessed 96 hours thereafter. At all MOI
studied, there was significantly less cell death in the p21
knockdown cells than in those treated with scrambled
siRNA (Fig 4D).

Re-expression of p21 augments S phase fraction and viral 
cytotoxicity in A2780CP cells
We next investigated the effects of re-expressing p21 in a
cell line with intrinsically low levels of the protein and
low sensitivity to dl922-947. A2780CP cells were trans-
fected with a plasmid encoding p21 under CMV immedi-
ate early promoter control. We selected one pool, ACP-
p21 1 (Fig 5A), with stable p21 expression. As control, we
used A2780CP stably expressing GFP (ACP-GFP), which
expressed very low levels of p21, comparable with the
parental cell line.

There was a significant increase in S phase population
in asynchronous log-growth phase ACP-p21 cells com-
pared to ACP-GFP cells (23.3 ± 0.3% vs 17.7 ± 0.3%
respectively, p < 0.001) (Fig 5A). There was also a corre-
sponding and significant increase in BRDU uptake in
ACP-p21 cells compared to parental A2780CP cells
(Additional File 6). Interestingly, expression of p21
appeared to induce a small, but statistically significant,
inhibitory effect on infectivity (Additional File 7). How-
ever, despite this, ACP-p21 cells supported greater E1A
expression 24 h pi and increased production of infectious
dl922-947 virions and were also more sensitive to both
dl922-947 and Ad5 WT cytotoxicity (Fig 5B). As with

Figure 3 Activity of dl922-947 in non-malignant human ovarian surface epithelial cells. IOSE25, TOSE1 and TOSE4 cells were infected with 
dl922-947 (MOI 0.01 - 10000 pfu/cell). Cell survival was assessed 120 hours later (left). Expression of p21 was analyzed by immunoblot (right).
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Figure 4 p21 knockdown decreases dl922-947 activity in ovarian cancer cells. 4A: p21 is degraded in ovarian cancer cells following aden-
oviral infection. Protein was harvested from TOV21G and IGROV1 cells up to 72 h post-infection with dl922-947 (MOI 10) and analyzed by immuno-
blot for p21 expression. 4B, C and D: siRNA-mediated p21 knockdown reduces dl922-947 activity. TOV21G cells were transfected with 60pmol 
p21 siRNA or scrambled control. Expression of p21 assessed by immunoblot up to 96 hours later (4B left). DNA replication was assessed by BRDU in-
corporation 36 hours following siRNA transfection. ** p = 0.001 (4B right). TOV21G cells were transfected with p21 or scrambled control siRNA and 
infected 24 hours later with dl922-947 (MOI 10). Protein was harvested up to 24 h thereafter and analyzed by immunoblot for E1A and p21 expression. 
Numbers below blots represent E1A:Ku70 ratio (4C left). In addition, intracellular virion production was assessed 48 h pi by TCID50. * p < 0.05 (4C right). 

TOV21G cells (104 cells/well) were transfected with 20 pmol p21 or scrambled control siRNA in 24 well plates. 24 hours later, they were infected with 
dl922-947 (MOI 0, 0.1, 1 and 10). Cell survival was assessed 96 hours later by MTT assay. * p < 0.05. *** p < 0.001.
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Figure 5 p21 re-expression increases adenovirus activity. 5A: Expression of p21 in A2780CP cells increases S phase fraction. A2780CP ex-
pressing p21 cells were generated as described in Materials and Methods. Expression of p21 in one pool (ACP-p21-1) was confirmed by immunoblot 
(left). Cell cycle status in asynchronous ACP-p21-1 and control cells (ACP-GFP) was assessed following propidium iodide staining. Figures represent 
the percentage cells in S phase. 5B: p21 expression increases E1A expression, viral replication and cytotoxicity. 105 ACP-p21 and ACP-GFP were 
infected with dl922-947 (MOI 10). E1A expression was assessed by immunoblot (top left) and intracellular virion production was assessed by TCID50 

(top right) ** p < 0.01. ACP-p21 and ACP-GFP cells were infected with dl922-947 and Ad5 WT (MOI 0.01-1000). Numbers below blots represent 
E1A:Ku70 ratio. Cell survival was assessed 120 hours later (5B bottom left and right). 5C: p21 expression in ACP-p21 cells decreases following 
dl922-947 infection. ACP-p21 cells were infected with dl922-947 (MOI 10). Expression of p21 was analyzed by immunoblot up to 120 h pi. 5D: p21 
expression increases viral activity in vivo. Female Balb C nu/nu mice were inoculated ip with 5 × 106 ACP-p21 or ACP-GFP cells (n = 5 per group). 
One week later, dl922-947 was injected ip (5 × 109 particles daily x3). Blood was taken 24 hours after last virus injection and mice were killed 24 h there-
after. Expression of E1A was assessed by immunohistochemistry (left). All images are x100, S = Small intestine; L = Liver. Virion levels in serum were 
assessed by TCID50 (right). Results represent mean ± sd, n = 5.
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Hct116 p21+/+, TOV21G and IGROV1 cells, p21 expres-
sion diminished 24-48 hours pi in ACP-p21 cells, but rose
again 72 and 120 h pi (Fig 5C).

We then implanted ACP-p21 and ACP-GFP cells intra-
peritoneally (i.p.) in female nude mice. These xenografts
are extremely aggressive, with untreated animals requir-
ing sacrifice after 18-20 days (data not shown). Mice were
inoculated i.p. with dl922-947 on days 8-10 inclusive and
sacrificed 48 hours thereafter. p21-expressing xenografts
supported greater E1A expression within tumour nodules
(Fig 5D). There were also consequent increases in infec-
tious virion titre in serum in ACP-p21 bearing mice com-
pared to ACP-GFP mice, although the differences did not
reach statistical significance - ACP-GFP mean titres 24
and 48 hours pi: 1.74 × 105 +/- 1.36 × 105 and 2.56 × 105 +/
- 1.95 × 105 pfu/ml (mean +/- s.d. n = 5) respectively. For
ACP-p21 cells, the titres at the same time points were
2.52 × 105 +/- 1.42 × 105 and 6.08 × 105 +/- 6.95 × 105 pfu/
ml.

p21 stabilizes cyclin D
Finally, we investigated the mechanism by which p21
expression could be associated with increased adenoviral
activity. We first examined endogenous activity of the
PI3kinase/AKT pathway in the four ovarian cancer cell
lines. Phosphorylation of p21 at Thr145 by AKT reduces
the binding of p21 to cdk2 and promotes cell cycle pro-
gression [12]. Thus, it remained possible that any p21
expressed in TOV21G and IGROV1 cells was unable to
exert cell cycle inhibitory effects. Levels of activated AKT
(Ser 473 phospho-AKT) in uninfected cells were highest
in TOV21G cells, but were largely similar in the other
three lines (Additional File 8), whilst knockdown of p21
in TOV21G cells had no effect on upstream PI3kinase
activation (data not shown). However, we did observe
that basal cdk2 kinase activity was greatest in p21-
expressing TOV21G and IGROV1 cells, as determined by
phosphorylation of Histone H1 in asynchronous cells
(Additional File 9), in keeping with the greater rates of S
phase seen as detected by flow cytometry. In addition,
there was a reduction in cyclin D expression in unin-
fected Hct116 p21+/+ and TOV21G cells following p21
knockdown (Fig 6A), suggesting that cyclin D stability is
at least partially p21-dependent in these cells. Conversely,
we also observed an increase in cyclin D expression in
ACP-p21 cells compared to ACP-GFP (Fig 6B), and, when
cyclin D was knocked down in TOV21G cells by pools of
siRNA directed against all three isoforms, there was a
parallel reduction in p21 expression and a significant
reduction in dl922-947 cytotoxicity (Fig 6C). Thus, p21
and cyclin D appear to be stabilise each other and co-
operate to promote virus activity.

Discussion
A key step in development of novel cancer therapies is the
identification of biomarkers that can predict which
patients might respond to treatment. Our results suggest
that expression of p21 may be a predictive biomarker for
the oncolytic adenovirus dl922-947. Many investigators
have focused on expression of CAR (Coxsackie Adenovi-
rus Receptor), the primary receptor for Group C adenovi-
rus, as the most important determinant of adenovirus
function [13]. Undoubtedly, the ability of virus to infect
the host cell is vital for subsequent activity. However, the
largest study of primary ovarian cancers reveals that the
majority retain expression of CAR [14], whilst primary
ascitic cells can show demonstrable CAR and αvβ3/5 integ-
rin expression [15]. We show that infectivity alone is a
poor predictor of cell sensitivity to virus-induced death. It
is also clear that the process of adenovirus infection
involves receptors and co-receptors other than classical
CAR and αvβ3/5 integrins, [16,17].

The first adenoviral gene to be expressed is E1A, which
relies upon host cell transcription factors, including EF-
1A, E2F and Sp1 [18,19]. As E1A expression correlates
directly with overall virus efficacy, the ability of the host
cell to permit expression will profoundly influence all
subsequent parts of the lifecycle. We show that p21
expression in uninfected cancer cells is associated with
such a permissive state in cancer cells. One function of
E1A is to induce infected cells into S phase, the phase
most conducive to viral DNA replication. The two cells
lines that were most sensitive to viral efficacy expressed
p21 prior to infection and had the highest rate of S phase
in uninfected asynchronous populations, although this
did not correlate with rate of growth in vitro or in vivo or
the state of pRb phosphorylation. pRb is phosphorylated
on multiple sites by cyclin/cdk complexes [20], with indi-
vidual complexes preferentially phosphorylating different
residues to alter function [21-23]. Hyperphosphorylation
of pRb late in G1 heralds transcription of genes necessary
for host cell (and viral) DNA replication. However, there
is now evidence that pRb can be phosphorylated by
kinases other than cdks [24] and that p21 itself can bind
to pRb and alter phosphorylation [25], rendering patterns
of pRb phosphorylation in asynchronous cells a poor pre-
dictor of virus activity. In addition, p21 binds to the same
A/B pocket in pRb as E2F and may thus displace E2F
independently of pRb phosphorylation [25].

p21 has a multiple roles within cells. Whilst it is a cdk
inhibitor (CKI) and a single molecule can completely
inhibit cyclin A/cdk1 activity [26], it functions as far
more than a pure CKI; firstly, members of the p21 family
act as assembly factors, promoting the formation of
active cyclin D/cdk4 complexes at low concentrations,
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Figure 6 p21 stabilizes cyclin D prior to infection. 6A: p21 knockdown reduces cyclin D expression. Protein was harvested from Hct116 p21+/

+ and TOV21G cells up to 48 h followed treatment with 60 pmol p21 or scrambled control siRNA. Expression of p21 and cyclin D was assessed by im-
munoblot. Numbers represent Cyclin D:actin ratio, normalised to Scr-treated controls. 6B: p21 re-expression increases cyclin D. Protein was har-
vested from 105 ACP-p21 and ACP-GFP cells. Cyclin D and p21 expression was assessed by immunoblot. Numbers represent Cyclin D:Ku70 ratio, 
normalised to ACP-GFP controls. 6C: Cyclin D knockdown reduces p21 expression and reduces cytotoxicity. Protein was harvested from TOV21G 
cells 24 h followed treatment with 60 pmol cyclin D or scrambled control siRNA. Expression of p21 and cyclin D was assessed by immunoblot. Num-
bers represent p21:actin ratio, normalised to Scr-treated controls. TOV21G cells (104 cells/well) were also transfected with 20 pmol cyclin D or scram-
bled control siRNA in 24 well plates. 24 hours later, they were infected with dl922-947 (MOI 0, 0.1, 1 and 10). Cell survival was assessed 96 hours later 
by MTT assay. * p < 0.05. ** p < 0.01.
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also stabilising cyclin D [27,28]. Our results show that
p21 knockdown causes loss of cyclin D expression in
uninfected TOV21G and Hct116 cells, whilst its re-
expression in ACP-p21 cells increases cyclin D levels.
Conversely, knockdown of cyclin D causes a reduction in
p21 levels, confirming the interdependency of the two in
the absence of genotoxic stress. Secondly, binding of p21
to cyclin D/cdk4 complexes titrates p21 away from cyclin
E/cdk2, thus promoting S phase entry [29]. Our data
show that p21 is predominantly cytoplasmic, and thus is
titrated away from cyclin E/cdk2 to facilitate viral activity.
In addition, the two sensitive ovarian cell lines demon-
strated greater phosphorylation of histone H1 in basal
conditions. This histone is phosphorylated by cdk2 at G1/
S transition [30] and is thus a marker of cdk2 kinase activ-
ity. Previous studies have indicated that Akt-mediated
p21 phosphorylation can result in p21 localizing to the
cytoplasm in Her2-positive cancer cells [31] and also
inhibit p21 binding to cdk2 [12]. Our results indicate that
the most sensitive line, TOV21G, had higher levels of
basal AKT (S473) phosphorylation than the other lines,
but there was no overall correlation between cell sensitiv-
ity and PI3kinase/AKT activity. Finally, p21, when phos-
phorylated at Thr57 by cdk2, has a role in promoting
association between cdc2 (cdk1) and cyclin B and hence
facilitates G2/M progression [32]. We have previously
shown that dl922-947 is capable of over-riding multiple
cell cycle checkpoints in sensitive cells. This ability is aug-
mented by nuclear expression of survivin, which acts to
augment cyclin D activity [8].

In response to genotoxic stress, p21 translocates to the
nucleus where it causes cell cycle arrest and promotes
nucleotide excision repair following association with
PCNA [33]. We show that p21 expression falls following
adenovirus infection, with evidence of proteasomal deg-
radation. Expression of E1A alone increases p21 expres-
sion through direct transactivation of the p21 promoter
[34]. However, any increase in p21 significantly above
basal levels would promote its ability to arrest the cell
cycle, to the detriment of adenoviral function. Thus, p21
levels fall post-infection. The adenovirus proteins E1B-
55K and E4orf6 form the core of an E3 ubiquitin ligase
complex that targets cellular proteins, including p53,
Mre11 and DNA ligase IV, for proteasomal destruction
[35]: p21 may also be a target for this complex. Interest-
ingly, expression of p21 fell only transiently in the ACP-
p21 cells, where expression is under the control of a con-
stitutive promoter, suggesting that some p21 loss in
Hct116 and TOV21G cells may result from reduced tran-
scription following the destruction of p53 by E1B55K/
E4orf6.

Two recent publications have suggested that p21
expression might reduce oncolytic adenovirus activity in
cancer cells, including Hct116. Like us, Höti et al [36]

found that there was greater expression of E1A in Hct116
p21+/+ cells than in p21-/-. However, they found that treat-
ment of cells with valproic acid, a pan-HDAC inhibitor,
reduced oncolytic adenovirus activity and was associated
with an increase in p21 expression. Recent evidence sug-
gests that the number of genes responsive to valproic acid
is at least 100 and may exceed 1000 [37,38], whilst the
pathways inhibited by valproic acid in myeloma cells
include not only cell cycle progression, but also DNA rep-
lication and gene transcription [39], all of which are
required for adenovirus function. In addition, valproic
acid will inhibit HDAC3, which has a critical role in S
phase progression [40]. Together, these findings suggest
strongly that the effects of valproic acid are not mediated
purely by p21. Finally, Höti et al indicated that co-infec-
tion of Hct116 p21-/- cells with an oncolytic virus and a
non-replicating virus expressing p21 reduced oncolytic
virus replication compared to co-infection with a control
virus. However, such treatment will force an increase in
p21 expression after infection (and thus block cell cycle
progression), which is the opposite of the natural expres-
sion pattern - like us, Höti et al and others [41] have
shown that p21 expression falls after infection; we wish to
show in our experiments that it is expression of p21 prior
to infection that is relevant. In the second manuscript
[42], Hct116 p21+/+ and p21-/- cells were infected with a
variety of oncolytic adenoviruses, including another E1A
CR2-deleted virus Δ24. Results suggested that there was
greater anti-tumour efficacy in p21-/- cells or in cells in
which p21 was knocked down via siRNA. However, dose
response experiments were performed only at a single
early time point (72 hours) after infection and the lowest
MOI employed is 1 pfu/cell: in our experiments, the dif-
ference in efficacy of both dl922-947 and the wild-type
viruses became evident 120-144 hours post-infection and
the IC50 values of 0.01-0.1 were seen; thus Shiina et al will
have missed significant differences at lower doses and/or
later time points. Also, following siRNA-mediated p21
knockdown, cells were re-seeded prior to infection with
adenoviruses, which could significantly alter expression
of a cell cycle-related gene even after RNAi; survival is
then assessed after exposure to only a single dose of virus,
rather than a formal dose response range. There is no
assessment of virus protein expression, change in p21
expression following infection or in vivo assessment of
the role of p21, nor any demonstration of the effect of p21
re-expression in cells with low endogenous expression.
Finally, Δ24 was generated using the adenovirus plasmid
pBHG10 [43], which lacks the entire E3 region, including
E3-11.6 Adenovirus Death Protein (ADP), whilst dl922-
947 has intact ADP. Although the mechanism by which
ADP promotes cell death late after infection is unclear,
we and others have shown that deletions or mutations
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within ADP certainly alter the kinetics of adenovirus-
induced death [4,44] and also impair virus spread [45].
Thus we believe that our thorough examination both in
vitro and in vivo does support a role for basal p21 expres-
sion in cancer cells prior to infection in promoting an
environment conducive to viral replication.

There are conflicting data on p21 in ovarian cancer. In
the serous sub-type, p21 expression is frequently lost [46]
and this appears to be a poor prognostic factor [47].
However, in clear cell carcinoma, which has low response
rates to chemotherapy and poor overall prognosis [48],
p21 expression is frequently seen [46,49]. It is noteworthy
that TOV21G, our most sensitive line and which
expresses high levels of p21, was derived from a clear cell
tumour [50]. In addition, low malignant potential (bor-
derline) ovarian tumours are characterized by p21
expression [51], and our results with TOSE cells, which
are transformed but cannot form tumours in nude mice,
are consistent with this finding.

Although there are likely to be many potential biomark-
ers of adenoviral activity, these results indicate that basal
expression of p21 in ovarian cancer prior to infection is
associated with an environment conducive to oncolytic
adenoviral activity and might have use as a biomarker in
future clinical trials.

Methods
Cell Culture and Cell Viability Assays
All cancer cells were maintained at 37°C with 5% CO2, in
Dulbecco's modified Eagle's medium, supplemented with
10% foetal calf serum (FCS), penicillin/streptomycin and
fungizome. Details of cell line origin and authentication
are found in Additional File 10. IOSE25, TOSE1 and
TOSE4 cells were maintained in NOSE-CM medium, as
previously described [52]. A2780CP-p21 (ACP-p21) cells
were generated following transfection of A2780CP cells
with pCEP-WAF1 (AdGene, Cambridge, MA) using
FuGene6 (Roche) followed by selection in 200 μg/ml
hygromycin. For viability assays, 2 × 104 cells were
infected in serum-free medium at multiplicities of infec-
tion (MOI) 0.001-1000 plaque-forming units (pfu)/cell.
After 2 hours, cells were re-fed with medium containing
5% FCS. Cell viability was assayed by MTT assay using a
Victor3 plate reader (Perkin Elmer, Beaconsfield, UK). All
viability assays were done in triplicate and experiments
repeated at least twice. For siRNA experiments, cells were
transfected with ON-TARGETplus SMARTpool siRNAs
or scrambled siRNA control (Dharmacon, Lafayette, CO)
using DharmaFECT1. 24 hours after addition of RNAi,
knockdown was confirmed by immunoblotting. Virus
infection took place 24 hours after knockdown. For cyclin
D siRNA, cells were transfected with equal quantities of
ON-TARGETplus SMARTpool siRNAs directed against
CCND1, 2 and 3. Cells were exposed to 5 Gy X-irradia-

tion using an Hs-X-Ray System (A.G.O. Installations Ltd.,
Reading, UK).

Cellular Fractionation
Cells were washed in PBS and re-suspended in ice-cold
buffer I (0.3 M sucrose, 150 mM NaCl, 5 mM MgCl2, 0.1
mM EGTA, 15 mM Tris.HCl pH7.5, 0.5 mM DTT, plus
protease inhibitors). An equal volume of buffer II (buffer
I plus 4% IGEPAL) was added and the mixture incubated
on ice for 10 mins before layering onto sucrose (buffer I
containing 1.2 M sucrose). Samples were centrifuged at
10,000 × g for 20 min at 4°C. Supernatant (cytoplasmic
fraction) was harvested, and nuclei lysed in RIPA buffer
(20 mM Tris (pH 8.0), 137 mM NaCl, 0.5 mM EDTA, 10%
glycerol, 1% nonidet-P40, 0.1% SDS, 1% deoxycholate,
plus protease inhibitors, Benzonase and 2 mM MgCl2).

Immunoblotting and immunofluorescence
Protein lysates were electrophoresed on SDS-polyacryl-
amide gels and transferred onto nitrocellulose mem-
branes by semi-dry blotting. Antibody binding was
visualized using enhanced chemiluminescence (GE
Healthcare, Buckinghamshire, UK). Antibodies used were
anti-E1A (Santa Cruz Biotechnology), anti-p21, anti-p27,
anti-cyclin E, anti-cyclin D, anti-cdk4 (all BD Biosci-
ences), anti-phosphorylated pRb (Ser807/811 New Eng-
land Biolabs; Ser780 and Ser612 Abcam), anti-adenovirus
(Abcam), anti-Ku-70 and anti-actin (Santa Cruz Biotech-
nology). For immunofluorescence, Hct116 cells were
grown on poly-L-lysine-coated coverslips, infected with
dl922-947 (MOI 0.5) and fixed with 5% formaldehyde.
Cells were permeabilised with 0.15% Triton X-100 and
primary antibody binding visualized with Texas red or
Fluorescein-conjugated secondary antibodies (Vector
Laboratories). Coverslips were mounted in 4',6-diamid-
ino-2-phenylindole (DAPI)-containing Vectashield and
viewed using a Zeiss Axioplan2 fluorescence microscope
with a 10× objective lens and digital camera (Hamamatsu,
Orca-ER). Data were processed using Simple PCI soft-
ware.

Flow Cytometry
For infectivity assays, cells were infected with Ad CMV-
GFP (MOI 5 and 50), typsinised 24 h pi, washed twice in
ice cold PBS and re-suspended in 500 μl PBS. For cell
cycle analyses, cells were infected with dl922-947,
trypsinised, washed twice in ice cold PBS and fixed in
70% ethanol. Cells were then washed with PBS and re-
suspended in 200 μl typsinised propidium iodide and 100
μg/ml RNase A (MP Biomedicals, UK). For BRDU analy-
sis, cells were incubated with 10 μM BRDU for 1 hour,
harvested, washed and fixed in ice cold 70% ethanol.
After incubation with primary anti-BRDU mAb (Becton
Dickinson) and FITC-conjugated anti-mouse secondary
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for 20 minutes each at 37°C in the dark, cells were coun-
terstained with PI. Cells were analyzed using a flow
cytometer (BD FACSCalibur™, BD Biosciences) with
FlowJo software 8.8.4 (Tree Star, Ashland, OR) or a Fluo-
rescence Activated Cell Sorter (FACSCanto, BD Biosci-
ences) with FACS Diva software.

In vivo analyses and immunohistochemistry
5 × 106 Hct116 cells were inoculated subcutaneously onto
the flank of female CD1 nu/nu mice on day 1. Once
tumours reached approximately 100 mm3, dl922-947 was
injected intra-tumorally (1 × 1010 particles daily on days
1, 4 and 7). Tumour size was measured weekly using calli-
pers and tumour volumes calculated as follows: Volume =
(l2 × w)/6 × Π, where l = longest length of the tumour and
w = perpendicular width. For A2780CP xenografts, 5 ×
106 cells were inoculated intraperitoneally (ip) into female
Balb C nu/nu mice. On day 8, dl922-947 was injected ip
(5 × 109 particles daily for 3 days in 400 μl 20% icodex-
trin). 100 μl blood was taken 24 hours following the last
virus injection and mice were killed 24 hours thereafter.
Tumour and livers were harvested and fixed in 10% form-
aldehyde. 4 μm sections were cut and processed. E1A
expression was detected using a rabbit anti Ad2 E1A Ab
(Santa-Cruz).

Quantitative PCR and TCID50 assays
Real-time PCR was performed on an ABI Prism 7700
(Applied Biosystems, Foster City, CA, USA). Oligonucle-
otides and probes designed for the E1A region were as
follows: Sense primer: 5'-CCACCTACCCTTCACGAA
CTG; Anti-sense primer: Anti-sense Primer: 5'-GCCTC-
CTCGTTGGGATCTTC; Probe ATGATTTAGACGT-
GACGGCC. PCR conditions were: 50°C for 2 minutes,
95°C for 10 minutes, followed by 40 cycles of 95°C for 15
seconds and 60°C for 60 seconds. A standard curve using
103-109 viral DNA genomes was used for quantification.
For TCID50 assays, 105 cells were infected at MOI 10 pfu/
cell. Cells were harvested into 0.5 ml 0.1 M Tris pH 8.0
and subjected to three rounds of freeze/thawing (liquid
N2/37°C), after which they were centrifuged. The super-
natant was titred on JH293 cells by serial dilution. To
assay viral release from infected cells, culture medium
was removed from cells every 24 hours and titred sepa-
rated on JH293 cells.

Microarray analysis of cells in NCI60 panel
NCI60 ovarian cancer data (GEO accession numbers:
GSM35955 (IGROV1), GSM35956 (OVCAR3), GSM35957
(OVCAR4), GSM35958 (OVCAR5), GSM35960
(SKOV3)) were analyzed using Bioconductor http://www.
bioconductor.org/ packages within the open source R sta-
tistical environment http://www.r-project.org. After
intra-array loess normalization, Limma [53] was used for
differential expression analysis. Genes differentially regu-

lated in the most sensitive line (GSM35955 IGROV1) ver-
sus the others were identified.

Statistical analyses and image analysis
All graphs and statistical analyses were generated using
Prism4 for Mac (GraphPad, La Jolla, CA). Unless other-
wise stated, all results are presented as mean+/-sd, n = 3
and all statistical analyses are unpaired, two-tailed Stu-
dent's t test, where p < 0.05 is considered statistically sig-
nificant. Immunoblot images were scanned and band
density of defined regions of interest in inverted jpg
images was measured using ImageJ software.
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