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This paper investigates compressed sensing (CS) based methods for reducing data acquisition time in
2-dimensional (2-D) millimeter-wave holographic imaging systems. Specific attention is paid to situa-
tions where the array element spacing does not satisfy Nyquist criterion due to physical limitations. Both
simulation and experimental results demonstrate that CS methods achieve better reconstruction than the
conventional backpropagation method with undersampled data at the cost of increased computational
complexity. Specifically, the definition based CS (D-CS) method derived by discretizing the scattering
model achieves the best image resolution but can produce ghost targets when the sampling interval is
greater than approximately twice the Nyquist sampling interval. On the contrary, the Fourier transform
based CS (FT-CS) method has a relatively lower resolution but performs well in the case of low number of
measurements, large sampling interval and low transmit power. In addition, the D-CS method requires
much higher time complexity and space complexity than the FT-CS method since the 2-D data needs to
be processed in vector form. Particularly, the space complexity of constructing and loading the dictionary
matrix makes the D-CS method extremely inefficient in dealing with real time applications. The overall
algorithm running time of D-CS method can be as high as 50 times of FT-CS method with a 81×81 scan-
ning aperture and 121×121 grid size in reconstruction. An efficient way is to use the FT-CS method for
coarse imaging and then use the D-CS method for specific regions where better precision is required. ©
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1. INTRODUCTION

In the field of security scanning and nondestructive testing,
Millimeter-wave (MMW) technology has recently gained sub-
stantial increase in popularity due to its high resolution and
ability to penetrate common obstructions for imaging con-
cealed weapons and other objects [1–3]. Among many MMW
imaging techniques, holographic imaging is usually adopted
for its better resolution and larger aperture size. MMW holo-
graphic imaging is an active imaging technique that operates by
sampling the amplitude and phase of backscattered field from a
given scene. The sampled hologram is then used for reconstruc-
tion with Fourier based backpropagation (BP) algorithm. How-
ever, due to the relative small wavelength, generating high-
resolution images using Fourier based techniques requires data
acquisition over a uniformly and densely sampled set of points
[3]. For a single transceiver system, the long collection time may
be prohibitively costly. For example, it takes approximately

2 hours to mechanically scan an area of 400 mm × 400 mm at
2 mm spacing using uniform raster scanning. To overcome this
challenge, one would consider more sparsely sampled data col-
lection strategies where the transceiver only samples at a small
fraction of positions on the uniform grid. For instance, under-
sampling with certain trajectory is often adopted in magnetic
resonance imaging (MRI) to save scan duration [4]. However,
when inverse Fourier transform (IFT) is applied to sparsely sam-
pled data with zero-filling, reconstruction quality can be poor
(e.g. aliasing artifacts, low spatial resolution, reduced SNR).

The emerging field of Compressed Sensing (CS) [5, 6] has
offered great insight into how to solve this issue. CS theory
guarantees that sparse or compressible signals can be recov-
ered from far fewer measurements than those were traditionally
thought necessary. To date, this technique has been successfully
applied to a wide range of imaging applications including; tera-
hertz imaging [7–9], MMW imaging [10–13], synthetic aperture
radar (SAR) imaging [14–22], medical imaging [23, 24] and in-
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verse scattering [25–27]. Specifically, in [12], CS was first intro-
duced to single frequency MMW indirect holographic imaging
for 2-D spatial undersampling. Fourier transform (FT) based
forward and backward operators were adopted in the CS frame-
work and 3D object estimation from 2-D measurements was
realized by applying total variation (TV) regularization. The
same strategy was then extended to 2-D direct MMW holog-
raphy where both the amplitude and phase are acquired for
image reconstruction [13]. Three sparsity bases, TV, wavelet
and curvelet were tested for comparison. In [20–22], single
frequency 2-D forward and backward operators have been ex-
tended to multi-frequency 3-D version for three-dimensional
wideband SAR imaging. All these methods rely on existing FT
model of traditional BP method, thus are referred to as Fourier
transform based CS (FT-CS) method for simplicity.

Meanwhile, many CS methods are directly derived from the
imaging scattering model by reformulating the model into a
matrix form. In [15], CS was introduced to stepped frequency
ground penetrating radars (GPSs) for compressed data acqui-
sition both in frequency dimension and spatial dimension. The
same idea was later applied to 2-D SAR imaging in [16] and [17].
Since this definition based CS (D-CS) method is a straightfor-
ward expansion of the scattering model, it can be easily imple-
mented for different scanning apertures, e.g., planar aperture,
circular aperture and cylindrical aperture. However, the main
drawback is the high computational complexity since 2-D data
has to be vectorized before reconstruction. In [18], a low com-
plexity 3-D imaging method was presented. The complexity
reduction is based on small bandwidth and narrow-angle mea-
surement assumption which makes the multi-dimensional scat-
tered data becomes separable and thus can be processed with
Kronecker CS [19]. Another attempt to reduce complexity was
made in [28] for multiple frequency 2-D imaging. A near-field
approximation of the distance from antenna to each scattering
center was proposed to make the angularly sampled data sep-
arable for 2-D FFT operation. Since both two methods rely on
single transceiver to scan with very small angle interval and fre-
quency interval, their use in other scanning apertures are quite
limited.

Due to the enormous advances made in semiconductor tech-
nology over the last few years, highly integrated circuits with
moderate costs are achievable in MMW frequencies [29, 30]. A
practical imaging system for security scanning will undoubt-
edly adopt antenna array over single transceiver for the remark-
ably reduced scanning duration. Although many D-CS meth-
ods claim much better efficiency than traditional Fourier based
method due to their random undersampling feature, this may
not be the case for antenna array imaging systems when com-
pared to FT-CS methods. Applying CS to array imaging sys-
tems is very different from applying CS to single transceiver
systems. Firstly, to realize an antenna array such that the under-
sampling pattern can be completely arbitrary is not practical.
On the contrary, the undersampling pattern should be designed
according to the physical array aperture. Secondly, CS methods
enables sub-Nyquist sampling by randomly undersampling the
locations on a full grid that satisfy Nyquist criterion. However,
due to many physical limitations, the engineering realization of
such an antenna array is quite challenging. Commonly, a trade-
off is to increase the array element spacing, which is to say the
full sampled data already violates Nyquist criterion.

The objective of this paper is to find an efficient method for
near field MMW holographic imaging in terms of less imag-
ing time and better image quality. To the authors’ knowledge,
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Fig. 1. Holographic imaging geometry.

D-CS method that has been extensively studied for wideband
2-D imaging and 3-D imaging is rarely mentioned in single
frequency 2-D holographic imaging and its performance com-
pared to FT-CS method is still unknown, especially in the afore-
mentioned practical situations. More importantly, many pa-
pers only give simple comparison between CS methods and BP
method with qualitative results. Therefore, we derive the D-CS
method for the single frequency case and compare it with the
FT-CS method and the traditional BP method in terms of im-
age quality and computational complexity under various sce-
narios. Both the qualitative and quantitative results demon-
strate that FT-CS method has higher robustness in the case of
low number of measurements and large sampling interval. D-
CS method achieves better resolution with fine grid size setting
but requires more measurements for stable reconstruction and
extremely higher computational complexity.

The remainder of this paper is organized as follows. In sec-
tion 2, we briefly introduce the theoretical background of sin-
gle frequency 2-D holographic imaging. In section 3, two CS
based approaches have been presented and analyzed. Also, we
discussed the choices of sparsity constraints for reconstruction
algorithm with numerical results. Section 4 gives the perfor-
mance evaluation of different methods in terms of reconstruc-
tion quality and computational complexity.

2. SINGLE FREQUENCY 2-D HOLOGRAPHIC IMAGING

A. Theoretical Background
The configuration of an example imaging system is shown in
Fig. 1. Here, we give the formulation of 2-D cross-range imag-
ing based on single frequency. During the imaging process, a
transceiver is scanned over a 2-D planar aperture (hologram
plane) to measure signals reflected from the target plane. It is as-
sumed that the transceiver is at position (x′, y′, 0) and a general
point (x, y, z0) is at the target plane. The reflectivity function
of the target plane is assumed to be characterized by f (x, y, z0).
Under Born approximation and ignoring the amplitude atten-
uation, the scattering field at the transceiver can be approxi-
mately represented by a linear superposition of reflected waves
from each point on the target plane or

s(x′, y′) =
∫∫

f (x, y) exp(−j2kR) dx dy, (1)

where R = [(x − x′)2 + (y − y′)2 + (z0 − 0)2]1/2, k = ω/c is
the wavenumber, ω is the angular frequency and c is the speed
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of light. The most common technique to solve Eq. (1) is BP
algorithm [31] which was originally developed from acoustic
holography based on angular spectrum decomposition [32]. BP
algorithm can be simply summarized as

f (x, y) = FT−1
2D [FT2D[s(x, y)] exp(−jkzz0)], (2)

where kx, ky and kz = (4k2 − k2
x − k2

y)
1/2, according to the dis-

persion relation, are wavenumbers in x, y, and z dimension, re-
spectively. FT2D {·} and FT−1

2D {·} represent 2-D FT operator
and its inverse, respectively. The final image of the target can
be acquired by computing the amplitude of the complex valued
reflectivity function f . The exponential term in Eq. (2) compen-
sates for wavefront curvature of the electromagnetic wave and
thus makes this algorithm suitable for near-field imaging.

It should be noted that there exists other similar algorithms
like frequency-wavenumber (F-K) migration [33], from geo-
physics community and, SAR [34], from the radar community.
All these algorithms are actually a simplification of the compli-
cated inverse scattering problem derived from the Maxwell’s
equations. Interested readers are referred to [35] for a detailed
discussion of these algorithms in the inverse scattering point of
view.

B. Nyquist Sampling Interval

To avoid aliasing in image reconstruction, the sampling interval
has to satisfy Nyquist theorem during the acquisition process.
This sampling interval is determined by a number of factors in-
cluding the wavelength λ, antenna beamwidth θa, aperture size
D, target size and distance to the target R. Although there is no
good criterion so far with strict mathematical formulation con-
sidering these physical parameters for near field imaging sys-
tems, Joseph et al. [36] has suggested that the optimal sampling
interval should be smaller than the theoretical resolution in or-
der to achieve it. The theoretical cross-range resolution can be
expressed as

δ ≈ λ

4 sin(θ/2)
|θ = min(θa, θb), (3)

where θb = 2 arctan(D/2R) is the angle subtended by the scan-
ning aperture.

It has been shown in [36], resolution δ and also the Nyquist
sampling interval are inversely proportional to the distance R.
The most restrictive case where the target is very close to the
aperture requires the sampling interval to be on the order of
λ/4. For a practical imaging system that usually has a moder-
ate transceiver-to-target distance, λ/2 sampling interval is suf-
ficient [37].

3. COMPRESSED SENSING BASED APPROACHES

Conventional imaging techniques must follow the Nyquist sam-
pling theorem to avoid image aliasing. CS based approaches,
on the other hand, enable image reconstruction from far fewer
measurements by just randomly measuring a small fraction of
positions on the scanning aperture. In this section, we first for-
mulate the D-CS method for single frequency 2-D planar aper-
ture case, then we give the matrix version of FT-CS method for
the same set-up. Followed by a discussion of the effect of spar-
sity constraint to the complex-valued data.

A. D-CS Model
D-CS model can be directly derived from the signal model in
Eq. (1) by discretizing the target plane into a grid of point scat-
ters and then reshape the 2-D hologram matrix and reflectivity
function matrix into long 1-D column vectors. Therefore, the
2-D imaging problem can be solved with standard 1-D CS re-
construction algorithms. Suppose the target plane reflectivity
function F is discretized as a P × Q matrix and the hologram
matrix S has M × N sampling positions, as shown in Fig. 1. Ac-
cording to Eq. (1), a discrete version of s(x, y) at (m, n) of S can
be represented as

s(m, n) =
P

∑
i=1

Q

∑
j=1

f (i, j) exp(−j2kR(m, n, i, j)), (4)

where R(m, n, i, j) is the distance between the two positions lo-
cated at (m, n) of S and (i, j) of F, respectively. By vectorizing S
and F, e.g., concatenating the columns of a matrix into a single
column, Eq. (4) can be reformulated as

s = A f

s(1, 1)
...

s(M, 1)
...

s(1, N)

...

s(M, N)



=



a(1, 1)T

...

a(M, 1)T

...

a(1, N)T

...

a(M, N)T





g(1, 1)
...

g(P, 1)
...

g(1, Q)

...

g(P, Q)



,
(5)

where

a(m, n) = [exp(−j2kR(m, n, 1, 1)), . . . , exp(−j2kR(m, n, P, 1)

), . . . , exp(−j2kR(m, n, 1, Q)), . . . , exp(−j2kR(m, n, P, Q))]T ,

and A can be seen as a dictionary matrix. Suppose we are using
a single transceiver system, the total number of measurements
can be reduced by programming the transceiver to randomly
sampling a fraction of all the positions on the grid. Mathemati-
cally, this amounts to introducing a binary mask as

Y = M. ∗ S, (6)

where .∗ represents element-wise multiplication, Y is the under-
sampled hologram and S is the fully sampled hologram. Binary
mask M is an M × N sampling matrix which only contains 1
(sample) and 0 (ignore). Suppose the number of sampled points
is K, then the sampling rate can be computed as the ratio of K
to MN. Before applying reconstruction, M needs to be trans-
formed to fit vectorized S. We denote by Ṁ the transformed
version of M. Then the vectorized undersampling process can
be summarized as

y = Ṁs = ṀA f , (7)

where y is the K × 1 vector representation of Y and Ṁ is a K ×
MN matrix.

The resolution of the reconstructed image is directly related
to the discretization of the target plane. Clearly, finer grid size
will provide higher resolution. However, this operation leads to
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significantly increased size of A and thus introduce higher com-
putational complexity. This problem gets more serious when
dealing with 3-D (x−dimension, y−dimension and frequency
dimension) data. The complexity reduction methods that based
on small angular scanning aperture with different approxima-
tions of the scattered data [28, 38] become invalid here since in
the case of planar scanning aperture, the square root phase term
cannot be easily separated.

In addition to the increased complexity, finer grids will also
weaken the performance of CS reconstruction. Firstly, as can
be seen from Eq. (5), the only difference among the elements in
A is the distance R, which means the closer the adjacent points
on the grid, the more similarities among the columns in A. In
the CS framework, more similar columns means higher mutual
coherence [39], which should always be avoid. Secondly, finer
grids will increase the number of unknowns and thus require
more measurements for stable CS reconstruction.

B. FT-CS Model
FT-CS model is based on the conventional BP algorithm that
takes advantage of FFT. Similar to D-CS model, all data for FT-
CS model must be vectorized before applying recovery algo-
rithms. Such vectorization process introduce unnecessary com-
plexity and memory requirement in algorithm deployment. Ac-
tually, with the knowledge of forward operator and backward
operator, we can directly use matrix formulation in computa-
tion if gradient descent based recovery algorithms are adopted.

Based on the backward process in Eq. (2), the forward pro-
cess can be written as

s(x, y) = FT−1
2D [FT2D[ f (x, y)] exp(jkzz0)]. (8)

To better describe the FT-CS method, we denote forward pro-
cess in Eq. (8) as

S = HF, (9)

where H = FT−1
2D [FT2D[·] exp(jkzz0)] is an operator. Similarly,

the adjoint system model of Eq. (9) (backward process) is

F = H†S, (10)

where H† = FT−1
2D [FT2D[·] exp(−jkzz0)]. Therefore, by adding

the undersampling mask, the FT-CS model can be written as

Y = M. ∗ S = M. ∗ HF, (11)

C. Reconstruction Algorithm
There are many CS algorithms available to solve the underdeter-
mined system in Eq. (7) and Eq. (11). Greedy pursuit [40] and
ℓ1 optimization [6] are the two mainstreams. In comparison,
greedy algorithms are generally much faster but require more
measurements. However, to solve FT-CS model with greedy al-
gorithms, the forward and backward linear operators involving
2D FT and IFT should be transformed into matrix forms, which
requires too much computation and makes the problem more
complicated. Here, we adopt the two-step iterative shrinkage-
thresholding (TwIST) algorithm [41] which belongs to the ℓ1 op-
timization category. TwIST is a variant of iterative shrinkage-
thresholding (IHT) and is significantly faster than traditional ℓ1
algorithms like Basis Pursuit [42]. Moreover, the forward and
backward operators can be applied directly without any modi-
fication.

One of the key requirements for successful CS reconstruc-
tion is the image sparsity or compressibility. Natural images
are compressible by sparse representation such as those from a

(a) (b)

(c) (d)

Fig. 2. The (a) Amplitude, (b) phase, (c) real and (d) imaginary
part of the reconstructed image by BP method.

wavelet transform and discrete cosine transform (DCT). In our
case of study, target recognition is the first priority. Therefore,
total variation (TV) regularization [43] can be adopted since
it can preserve the sharp edges of an image while imposing
smoothness on the solution. TV refers to the integral of the abso-
lute gradient of the signal. The discrete version for a 2-D image
F can be defined as

TV(F) = ∑
i,j

√
|Fi+1,j − Fi,j|2 + |Fi,j+1 − Fi,j|2, (12)

where i and j denote the discrete indices of F. Then the corre-
sponding optimization problem for Eq. (7) and Eq. (11) with TV
regularization can be written as

f̂ = argmin
f

∥∥ṀA f − y
∥∥

2 + αTV(F) (13)

and
F̂ = argmin

F
∥M. ∗ HF − Y∥2 + αTV(F), (14)

respectively. An important part of Eq. (13) and Eq. (14) is the
selection of the regularization parameter α, which controls the
tradeoff between the sparsity of the solution and the closeness
of the solution to the image. For example, if α is too small, then
the solution is close to the conventional least squares solution,
while if α is too large then the bias of the estimation will be
very high. The optimal value of α is inconsistent across different
data sets, and may change slightly for the same data set with
different sampling rate.

As mentioned previously, the data in our direct holographic
imaging system is complex-valued. Fig. 2 gives an exam-
ple of the amplitude, phase, real and imaginary parts of a
gun-shape target recovered by BP algorithm from experimen-
tal data. It is important to note that most sparsifying trans-
forms for real-valued images become invalid or less effective
for complex-valued data since only the amplitude of the im-
age can be treated as sparse. Many CS based papers have ig-
nored this fact by directly applying the sparsity constraint to
the complex-valued signals or only use sparse point-like tar-
gets for simplicity. Nevertheless, there has been some attempts
to solve this problem. In [44], the TV regularization is applied
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Fig. 3. MSE of reconstructed images of different sparsity con-
straints. (a) FT-CS and (b) D-CS.

to the amplitude only, but the phase is ignored, since in SAR
images the phase is usually assumed to be random. On the con-
trary, the phase information for MRI and terahertz imaging is
considered to be smooth and not vary rapidly. In [45], a phase
smoothness constraint is introduced by controlling the similar-
ities of the phase intensities among the image pixels. In [46], it
was suggested that sparsity can be enforced separately in the
real and imaginary parts. Both methods have shown to be ef-
fective in dealing with complex-valued image. In our case, the
phase information of the acquired data can be seen as between
random and smooth varying. How to find an optimal sparsity
constraint shall be an object of further research.

For simplicity, we adopted TV regularization to both the real
and imaginary data presented in this paper. Fig. 3 compares the
proposed scheme to some other sparsity constraints by calculat-
ing their mean squared errors (MSEs) for the same experiment
data as shown in Fig. 2. The MSEs are averaged over the re-
sults of 20 independent trials for each sampling rate. For FT-CS
methods, the reconstructed image using full sampling rate with
our scheme is used as reference image. Same configuration also
applies to the D-CS method. The regularizations to the imagi-
nary part only, phase part only and both amplitude and phase

Fig. 4. Simulation model in FEKO. All dimensions are in mm.

parts do not always converge thus are not shown here. As can
be seen from Fig. 3, TV regularization to the amplitude only
scheme (pink curve) actually does not perform well in our case.
Moreover, our scheme (red curve) always achieves lower MSE
than regularization applied directly to the original data scheme
(blue curve) in both FT-CS and D-CS methods.

Finally, the modified optimization model with TV regular-
ization to both real and imaginary parts for Eq. (13) and Eq. (14)
can be written as

f̂ = argmin
f

∥∥ṀA f − y
∥∥

2 + α[TV(Fr) + TV(Fi)] (15)

and

F̂ = argmin
F

∥M. ∗ HF − Y∥2 + α[TV(Fr) + TV(Fi)], (16)

respectively, where F = Fr + jFi.

4. NUMERICAL ANALYSIS

This section presents the performance analysis and comparison
of two CS based methods using simulation results. The simu-
lated data can be acquired using either simplified signal model
in Eq. (1) (synthetic data) or full wave electromagnetic (EM)
solver that follows rigorous Maxwell’s equations. In many CS
SAR imaging literature, point scatters are assumed and syn-
thetic data is used for simplicity. However, in practice, the
target area might be very complex and thus full wave simu-
lation should be adopted to better approximate the real sce-
nario/environment. We use FEKO EM software [47] to generate
input data (measured hologram data) for the algorithms.

For fair comparison, we ensure that firstly all the methods
use the same sampling pattern; secondly, the regularization pa-
rameter for both CS methods are adjusted appropriately so that
the reconstructed images for all methods are optimized; and
thirdly both CS methods share the same stopping criterion, that
is the optimizations cease when the relative change in the objec-
tive function falls below 1 × 10−4 or the number of iterations
reached 10000. All the evaluations were implemented using
Matlab 2014b (x64) on a Windows 7 operation system, with an
Intel I7-4770 processor and 16 GB of memory.

The 3-D system geometry is illustrated in Fig. 4. An
x-polarized dipole antenna working at 100 GHz is used as
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(a)

(b)

Fig. 5. Four random undersampling masks under (a) λ/2 ele-
ment spacing and (b) 3λ/4 element spacing. From left to right,
sampling rates of four masks are 80%, 60%, 40% and 20%, re-
spectively.

transceiver to scan an area of 60 mm × 60 mm. The target plane
is parallel to the scanning aperture with a height of 30 mm. Two
identical targets which both consist of three metallic rectangu-
lar cuboids are placed perpendicularly to each other. The back-
ground medium is free space. During the simulation, the re-
flection scattering parameter (S11) of the antenna is acquired
at each sampling position and is calibrated by subtracting the
background S11 as described in [48].

A. CS with Sub-Nyquist Sampling Interval

A practical implementation of concealed weapon detection sys-
tem requires a scan in about 1-2 s which is only possible with
electronically switched antenna array. However, physical con-
siderations like antenna gain, beamwidth and mutual coupling
between antennas make engineering realization of such an an-
tenna array that satisfy Nyquist sampling interval very difficult
in MMW frequency range. Generally, a tradeoff is to increase
the antenna spacing, for example, 2λ/3 [37] or even higher. Un-
der such circumstances, if we use a linear array to perform 1-
D mechanical scanning and 1-D electronic scanning, then the
Nyquist criterion can be satisfied only in the mechanic scan-
ning dimension; if we use a rectangular array to perform 2-D
electronic scanning, Nyquist criterion will be violated in both
dimensions. In the first case, there is a trade-off between im-
age quality and scan duration on how to choose the sampling
rate in each dimension. Normally, undersampling in the me-
chanical scanning dimension can save more time since skipping
one position means abandoning one line of measurements in
the electronic scanning dimension. However, the highly under-
sampled data plus randomness reduced sampling pattern will
greatly impair the reconstruction. In the second case, under-
sampling can be completely random in both dimensions. The
already fast scanning time can be further reduced to enable real
time imaging with CS methods. For the following discussions,
we only consider the second case for simplicity.

A.1. Qualitative Results

Since the transceiver-to-target distance is 30 mm, the Nyquist
sampling interval is approximately 0.35λ according to Eq. (3).
Therefore, we acquired two sets of data with uniform under-
sampling interval (element spacing) of λ/2 and 3λ/4. These
uniformly sampled data are then randomly sub-sampled by
80%, 60%, 40% and 20%, as shown in Fig. 5, to simulate the

random undersampling process. Here, the white pixels repre-
sent selected locations to sample. It can be noticed that since all
cases have the same scanning region, small sampling interval
case has denser pixels. Based on these sampling masks, con-
ventional BP method and two CS based methods are employed
for image reconstruction.

As mentioned previously, the gird size of the target plane
has a crucial influence on the performance of D-CS reconstruc-
tion. Therefore, we also adopt three different grid spacings of
λ/8, λ/4 and λ/3 for D-CS method. It is important to note that
due to the differences in size of reconstructed image and mea-
surement matrix, two CS methods have different optimal regu-
larization parameters. For instance, in the following example,
the regularization parameter is around 0.01 for D-CS method
and 0.001 for FT-CS method.

Fig. 6 shows the corresponding reconstructed images based
on the two sets of undersampled data. As we can see from Fig.
6(a), different grid sizes lead to different image resolutions in
reconstruction. The number of pixels of the three grid sizes are
161 × 161, 81 × 81 and 61 × 61, from left to right, respectively.
It can be noticed that finer grid size does not actually give bet-
ter image reconstruction, especially when the sampling rate is
low. This agrees with our analysis in section 2 since the λ/2 ele-
ment spacing case is already highly undersampled compare to
the Nyquist rate, reducing the grid size will require more mea-
surements to mitigate effect of the increase of the mutual coher-
ence, as well as the number of unknowns to be reconstructed.
However, this does not mean that larger grid size always gives
better results. Grid size should be carefully chosen because if it
is too large that leads to very low resolution and grid mismatch
[49] may also occur at this case. The optimal grid size should
consider both the sampling rate and the array element spacing
such that the number of measurements are well above the mini-
mum requirement posed by the CS theory. On the contrary, the
FT-CS method and BP method cannot freely choose the image
size during reconstruction. This is because either 2-D FT or 2-D
IFT of a matrix does not change its size, which makes the re-
constructed image the same resolution as the sampled aperture.
It should be noted that although some conventional smoothing
techniques like zero-padding and interpolation can also be used
within the FT-CS method, they do not really increase the spatial
resolution, thus are not discussed here.

Fig. 6(b) shows the results based on 3λ/4 element spacing
which is about twice the Nyquist sampling interval. Compare
to Fig. 6(a), FT-CS method and BP method have blurrier im-
ages since larger element spacing results in less pixels in the
reconstruction. Interestingly, all D-CS methods with different
grid sizes fail to reconstruct the image correctly as ghost targets
can be observed in all cases. The FT-CS method, on the other
hand, can still reconstruct the contour of the targets under very
low sampling rate. This interesting result indicates that FT-CS
method is much more robust to random undersampling than D-
CS method. Here, we believe FT and IFT in each iteration helps
to retrieve the target information in the spatial domain.

A.2. Quantitative Results

While Fig. 6 only considers reconstructions with certain under-
sampling masks, Fig. 7 quantitatively summarizes the effect of
random undersampling on the MSEs of reconstructed images
of different methods. Since D-CS method fails to reconstruct
images with 3λ/4 element spacing, Fig. 7 only shows the re-
sult based on element spacing of λ/2 and λ/4. For the ease
of annotation, we use H81 and I161 in the legend to indicate
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Fig. 6. Simulation results showing the reconstruction quality of three methods based on (a) λ/2 element spacing and (b) 3λ/4 ele-
ment spacing. In each figure, from left to right, D-CS methods with grid size of λ/8, λ/4 and λ/3, FT-CS method and BP method.
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Fig. 7. MSE trend of three methods with element spacing of
λ/2 and λ/4.

the hologram (scanning aperture) has 81 × 81 samples (λ/4 el-
ement spacing) and the reconstructed image has 161 × 161 pix-
els (λ/8 grid spacing). The MSE of each method is calculated
with respect to its own full sampling rate result and is aver-
aged over the results of 40 independent trials for each sampling
rate. An MSE curve with slow variation against sampling rate
means the corresponding method is robust to random under-
sampling. Clearly, FT-CS achieves the best robustness in both
element spacing cases which agrees with our qualitative results.
More importantly, each method behaves distinctly in two ele-
ment spacing cases. The MSE of D-CS method starts to vary in-
tensively when the sampling rate is below 50% in λ/2 element
spacing case but a similar variation only happens under 20%
sampling rate in the λ/4 element spacing case. On the contrary,
the BP method and FT-CS method have relatively small differ-
ences in the two cases. This indicates D-CS method is very sus-
ceptible to the element spacing or uniform undersampling inter-
val. Increasing the number of measurements is recommended
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Fig. 8. Entropy of D-CS methods with gird size of 61× 61, 81×
81 and 161 × 161.

for stable reconstruction.

However, it is not quite straightforward to compare the im-
age quality among different methods since firstly, it is difficult
to find an appropriate reference image for all methods with dif-
ferent element spacings and grid sizes, and secondly, different
regularization parameters of CS algorithm result in distinct esti-
mation biases and thus render the MSE metric ineffective to rep-
resent the true quality of the reconstruction. Hence, for simplic-
ity, we only compare the image quality of D-CS method among
different grid sizes. Minimum entropy is often used as a quality
objective to focus image in SAR imaging algorithms [50] and
thus is adopted here as the metric to approximately represent
the image quality. As we can see from Fig. 8, the D-CS method
with larger grid sizes achieves lower entropy, especially in the
case of high sampling rate. When the sampling rate goes below
30%, the randomness of three schemes start to dominate as also
can be seen from Fig. 6.
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Table 1. Complexity Comparison of D-CS Methods

Configuration Computing time (s) Loading time (s) Storage

M = 41, N = 81 15.03 1.67 72 MB

M = 41, N = 121 33.61 3.84 221 MB

M = 81, N = 121 140.67 17.28 1.04 MB

M = 81, N = 161 224.36 27.12 1.37 GB

M = 134, N = 134 1.45 × 103 88.65 2.94 GB

M = 134, N = 178 4.58 × 103 717.72 8.23 GB

B. Computational Complexity

Next, we consider the computational complexities of both CS
methods. The BP method is the fastest among all three meth-
ods as CS based methods need multiple iterations until con-
vergence. In general, the FT-CS method is more computation-
ally efficient than the D-CS method due to the adoption of the
FFT algorithm. Since both CS methods use the same reconstruc-
tion algorithm, we can compare the D-CS model and the FT-CS
model for simplicity. Suppose the full scanning aperture is of
size M× M, the number of actually sampled points is K, the dis-
cretization of D-CS method is N × N. D-CS model in Eq. (7) con-
sists of two matrix multiplication thus has time complexity of
order O(KM2N2 + KN2). If we keep M fixed, then the number
of gird points N contributes most to the time complexity while
the number of sampled points K has less contribution. For FT-
CS model in Eq. (11), it includes two 2-D FFT/IFFT operations
and two element-wise matrix multiplication. Considering the
O(M log M) complexity of 1-D FFT and O(M2) complexity of
element-wise matrix multiplication, the total time complexity is
then about O(2M2 + 4M2 log M) for FT-CS method. Since the
grid size of target plane is usually set to be finer than the sam-
pling interval (N > M), the D-CS method will always has much
higher time complexity than the FT-CS method.

As the time complexity quantifies the amount of time that
one algorithm needs to run, the space complexity is a mea-
sure of the amount of working storage an algorithm needs.
The space complexity of D-CS method mainly comes from the
dictionary matrix A which contains the distance information
from all pixels (voxels for 3-D case) in target area to all sam-
pling points in the aperture plane. According to Eq. (5), an
M × M scanning aperture with N × N grid points will lead to
an M2 × N2 complex-valued A. Table 1 gives the computing
time, loading time and required storage of A based on different
scanning apertures and grid sizes. Note the data processed in
Matlab is set as double precision. While it is quite normal for
any practical imaging system to deal with sampling aperture as
large as 200 × 200, the D-CS method will be incredibly slow in
such cases.

To verify the above analysis, we evaluate the overall algo-
rithm running time of each method against the sampling rate
as shown in Fig. 9. The test data has a 81 × 81 scanning aper-
ture with 81× 81 and 121× 121 grid sizes adopted for the D-CS
method. The running times are averaged over the results of
10 independent trials for each sampling rate. The dark colored
curves show the superiority of FT based methods over D-CS
methods. For example, the D-CS method with N = 121 has
a running time nearly 50 times of the FT-CS method when the
sampling rate is 50%. Further, the dashed curves give a bet-
ter illustration of the FT-CS method and the BP method with
a smaller scale. Both methods have little variation in running
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Fig. 9. Averaged running time of different methods versus
random undersampling.
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Fig. 10. System setup: (a) measuring equipments and (b) two
identical targets with metallic stripes.

time as sampling rate increases. However, for the D-CS method,
the variation becomes obvious when N is bigger. This is ex-
pected as the number of grid points contributes more to the
time complexity.

In summary, for the D-CS method, the constructing and load-
ing time of the dictionary matrix A is non-negligible since the
target distance might be unknown in reality. The high memory
requirement of this matrix will extremely slow down the D-CS
reconstruction in real time calculation. An efficient way is to
use the FT-CS method for coarse imaging and then use the D-
CS method for the specific small areas where higher resolution
is required.

5. EXPERIMENTAL RESULTS

To validate the simulation, we conducted several experiments
in an anechoic chamber. In Fig. 10(a), two corrugated conical
horn antennas with frequency multipliers are connected to a
vector network analyzer (VNA) to work as transmitter and re-
ceiver, respectively. Both antennas have a flare angle of 15◦. The
normal transmit power is between 5 dBm and 10 dBm. Our tar-
gets are two wooden plates with metallic stripes as shown in
Fig. 10(b), with a distance of 1.6 m to the scanning aperture. As
it is not easy to do raster scan with the bulky frequency multi-
pliers, the measuring equipments are kept still while the target
is mounted on the scanner instead. The two targets are placed
perpendicular to each other to scan an area of 400 mm× 400 mm
with 100 GHz radiation.

According to Eq. (3), the required Nyquist sampling interval
is approximately 1.9λ. Here, we adopt 2.25λ, 3λ and 3.75λ sam-



Research Article Applied Optics 9

Fig. 11. Experimental results showing the reconstruction quality of three methods based on element spacing of (a) 2.25λ, (b) 3λ and
(c) 3.75λ.

pling interval (element spacing) for comparison. The grid spac-
ing of the target plane is fixed at λ. Fig. 11 shows the results
of D-CS method, FT-CS method and BP method under differ-
ent sampling rates. Similar to the simulation results, the D-CS
method can achieve better resolution than the FT-CS method
but has serious ghost image problem in the reconstruction un-
der approximately twice the Nyquist sampling interval. The FT
method is more resistant to high random undersampling which
can be very useful when fast scanning is needed. Both two CS
methods perform better than the BP method with reasonable
sampling intervals.

To investigate the robustness of CS methods over different
transmitting power, we manually reduce the power by connect-
ing an attenuator between the transmitting antenna and fre-
quency multiplier. The transmitting power is attenuated by 25
dB, 35 dB, 45 dB and 50 dB. Two random undersampling masks
of 100% sampling rate and 60% sampling rate are tested with
data under 2λ uniform sampling interval. From Fig. 12, we can
see the number of speckles begin to increase as the attenuation
increases. CS based methods show a good noise reduction over
BP method. Particularly, the FT-CS method is the most robust to
the imaging system with low transmitting power. The compar-
ison between Fig. 12(a) and Fig. 12(b) indicates more measure-
ments can help produce a better image under low transmitting
power.

6. CONCLUSION

In this paper, CS based holographic imaging techniques have
been thoroughly studied. The D-CS method for 2-D planar
scanning imaging system has been derived and compared
with the existing FT-CS method and the conventional BP
method. For the optimal reconstruction of CS methods,
sparsity constraint and regularization parameter should be
carefully calibrated with respect to different undersampling
rates and targets. When the data is randomly undersampled to
save scanning time, CS based methods outperforms BP method
with better image reconstruction. Particularly, for practical
antenna array imaging systems where element spacing does
not satisfy Nyquist criterion, D-CS method achieves better

resolution than other methods at the cost of much higher
computational complexity. However, it should be noted that
D-CS method starts to show ghost targets in reconstruction
when the element spacing is too large (greater than twice the
Nyquist sampling interval in our simulation and experiment).
On the other hand, the FT-CS method are more stable than
the D-CS method in the case of large sampling interval, low
number of measurements and low transmit power. Therefore,
for a practical array imaging system, FT-CS method and D-CS
method are complimentary techniques and can be used either
together or separately depending upon the situation. For
example, the FT-CS method can be used to significantly reduce
number of samples for a fast but coarse view of the scene. The
D-CS method can be later used for higher resolution in the area
of interest.

The authors would like to thank Dr. Massimo Candotti
for his assistance in the experimental setup.
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