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Abstract  

Insulin resistance and associated metabolic sequelae are common in Chronic Kidney 

Disease (CKD) and are positively and independently associated with increased 

cardiovascular mortality. However, the pathogenesis has yet to be fully elucidated. 11β-

Hydroxysteroid Dehydrogenase type 1 (11β-HSD1) catalyses intracellular regeneration 

of active glucocorticoids, promoting insulin resistance in liver and other metabolic 

tissues. Using data from two experimental rat models of CKD (subtotal nephrectomy 

and adenine diet) which show early insulin resistance, we found that 11β-HSD1 mRNA 

and protein increase in hepatic and adipose tissue, together with increased hepatic 11β-

HSD1 activity. This was associated with intrahepatic but not circulating glucocorticoid 

excess, and increased hepatic gluconeogenesis and lipogenesis. Oral administration of 

the 11β-HSD inhibitor carbenoxolone to uraemic rats for 2 weeks improved glucose 

tolerance and insulin sensitivity, improved insulin signalling, and reduced hepatic 

expression of gluconeogenic and lipogenic genes. 

Furthermore, 11β-HSD1−/− mice and rats treated with a specific 11β-HSD1 inhibitor 

(UE2316) were protected from metabolic disturbances despite similar renal dysfunction 

following adenine-induced experimental uraemia. Therefore, we demonstrate that 

elevated hepatic 11β-HSD1 is an important contributor to early insulin resistance and 

dyslipidaemia in uraemia. Specific 11β-HSD1 inhibitors potentially represent a novel 

therapeutic approach for management of insulin resistance in patients with CKD.   
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Hypothesis:  

Hepatic 11-βhydroxysteroid dehydrogenase Type 1 activation in uraemia induces hepatic 

gluconeogenesis, contributing to insulin resistance in uraemia.  
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Chapter 1- General Introduction 
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Introduction 

1.1. Chronic kidney disease   

Chronic Kidney Disease (CKD) is a term used to describe abnormal kidney function 

and/or structure. It is common, frequently unrecognised and often exists together with other 

conditions (for example, cardiovascular disease and diabetes). CKD is defined as impaired 

kidney function or raised proteinuria that are confirmed on two or more occasions at least 3 

months apart (1). 

The United Kingdom 'National Service Framework for Renal Services' adopted the US 

'National Kidney Foundation Kidney Disease Outcomes Quality Initiative' (NKF-KDOQI) 

classification of CKD. This classification divides CKD into five stages. Stages 3–5 may be 

defined by Glomerular Filtration Rate (GFR) alone, whereas stages 1 and 2 also require the 

presence of persistent proteinuria, albuminuria or haematuria, or structural abnormalities. The 

National Institute for Clinical Excellence (NICE) has produced guidance on early detection 

and management of CKD (1). 

1.2. CKD and cardiovascular (CV) mortality risk 

 Insulin resistance and associated hyperinsulinaemia are common complications in 

patients with CKD (2, 3), with an insulin resistance-like syndrome occurring even in the earliest 

stage of renal dysfunction, irrespective of the primary aetiology of the renal failure(4). CKD-

induced insulin resistance is positively and independently associated with increased CV 

mortality (5, 6). Furthermore, mortality among haemodialysis patients is higher in those with 

more severe insulin resistance (7). Despite this, the mechanisms responsible for the onset of 

insulin resistance in CKD have yet to be fully elucidated.  

1. 2.1. Historical perspective  

Richard Bright (1789 –1858) was an English physician generally considered now to be 

the father of modern nephrology. He noted in 1836, “The obvious structural changes in the 
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heart have consisted chiefly of hypertrophy...and what is most striking, out of fifty-two 

cases…no valvular disease could be detected in thirty-four…This naturally leads us to look for 

some less local cause”, and “It is observable, that the hypertrophy of the heart seems, in some 

degree, to have kept pace with the advance of disease in the kidneys; for in by far the majority 

of cases, when the heart was increased, the hardness and contraction of the kidney bespoke the 

probability of long continuance of the disease.” Indeed, Bright was the first to report the 

association between CKD and CV abnormalities. He suggested that the altered quality of the 

blood in patients with renal disease affected the peripheral vasculature, particularly the 

capillaries, in a way that required increased force to propel the blood around the body (8, 9). 

By taking the view that renal disease is the primary disorder and CV changes are secondary, 

Bright established the concept of the renal origin of CV disease. Many studies have since 

confirmed and extended these findings, and various mechanisms have been proposed for CV 

risk and disease in CKD. 

1. 2.2. Epidemiology of CV disease risk in CKD  

The association of eGFR and raised albuminuria with CV disease has been established 

over various studies in a variety of populations. Only a handful of studies have, however, 

simultaneously assessed these two measures of chronic kidney damage in this context. 

A meta-analysis with a total patient cohort of 1.4 million (10,11,12) revealed, after 

adjustment for traditional cardiovascular risk factors (for example hypercholesterolemia, 

hypertension and smoking)  and albuminuria, the risk gradient for cardiovascular mortality 

changed little when the estimated glomerular filtration rate by modification of diet in renal 

disease formula ( MDRD eGFR, or eGFR) was higher than 75 mL/min per 1·73 m² and linearly 

increased with decreasing eGFR below this threshold (Figure 1) (10,11,12). CV mortality was 

about twice as high in patients with stage 3 CKD (eGFR 30–59 mL/min per 1·73 m²) and three 

times higher at stage 4 (15–29 mL/min per 1·73 m²) than that in individuals with normal kidney 
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function. In contrast to the non-linear risk relationship for eGFR, the association of albuminuria 

with CV risk has no threshold effect, even after adjustment for traditional cardiovascular risk 

factors and eGFR, Figure 1). The adjusted risk of CV mortality is more than doubled at the 

upper end of the microalbuminuria category (30–299 mg of albumin per g creatinine compared 

with the risk in individuals with normal albuminuria. This lack of a threshold effect indicates 

that albuminuria even at the upper end of the normal range (threshold 30 mg/g) is associated 

with CV risk.  

A wide variety of specific CV diseases (CVD) have been associated with impaired 

kidney function. Heart failure risk is roughly doubled in patients with eGFR lower than 60 

mL/min per 1·73 m² compared to people with preserved eGFR. The risk is similarly increased 

for stroke, peripheral artery disease, coronary heart disease and atrial fibrillation (10, 11, and 

12). The associations between CKD and CVD are largely irrespective of age, sex, and ethnic 

origin; data have been reported for US, European, Taiwanese, and South Korean general-

population cohorts (12). 

1.4. Metabolic syndrome, glucose intolerance and insulin resistance. 

The metabolic syndrome describes the clustering of dyslipidaemia, hypertension, 

glucose intolerance and central adiposity. It was first described by Reaven in 1988 (13) who 

postulated that insulin resistance was the cause of glucose intolerance, hyperinsulinaemia, 

increased VLDL, decreased HDL and hypertension. A body of work, with the concurrent 

observation that certain metabolic and biological characteristics, associated with an increased 

risk of diabetes and atherosclerotic disease, tend to cluster (occur together greater than 

predicted by chance) within individuals, led to the definition of metabolic syndrome. The 

evidence and research on metabolic syndrome is broadly: 

1. Based on the epidemiological studies established to identify risk factors for CVD. 
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2. Clinical and experimental studies concerning the pathogenesis of diabetes and 

atherosclerosis. 

There have been four main criteria published for the diagnosis of the metabolic 

syndrome. The most widely used is the World Health Organization (WHO) criteria . A brief 

summary of each is given overleaf. 
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Figure 1.1: Independent associations of kidney function and proteinuria with CV mortality.  
Relationship of eGFR with mortality. HRs and 95% CIs for all-cause (a) and cardiovascular mortality (c) 
according and to eGFR and HRs and 95% CIs for all-cause (b) and cardiovascular mortality (d) according 
to ACR. HRs and 95% CIs (shaded areas) are adjusted for ACR, age, sex, ethnic origin, history of CVD, 
systolic BP, diabetes, smoking, and total cholesterol. The reference (diamond) was eGFR 95 ml/min/1.73 
m2 and ACR 5 mg/g (0.6 mg/mmol), respectively. Circles represent statistically significant and triangles 
represent not significant. (16) 
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Reaven,1988 ATPIII,2002 AACE, 2003 WHO,1999 

 Glucose 

intolerance, 

hypertension, 

 Low (HDL) 

cholesterol and 

raised triglycerides,  

 Hyperinsulinaemia 

 Abdominal obesity, given 

as waist circumference* 

 Triglycerides** 

 HDLcholesterol*** 

 Blood pressure**** 

 Fasting glucose****** 

 Overweight/obesity

 BMI ≥25 kg/m2 

 Elevated triglycerides

 ≥150 mg/dL (1.69 

mmol/L) 

 Low HDL cholesterol

  

 Men <40 mg/dL (1.04 

mmol/L) 

 Women <50 mg/dL (1.29 

mmol/L) 

 Elevated blood pressure

 ≥130/85 mm Hg 

 2-Hour postglucose 

challenge >140 

mg/dL(7.8 mmol/L) 

 Fasting glucose

 Between 110 and 

126 mg/dL 

 Other risk factors Family 

history of DM2, HTN, 

 or CVD 

o Polycystic ovary 

syndrome 

o Sedentary lifestyle 

o Advancing age 

o Ethnic groups having 

high risk for DM2 or 

CVD 

 Glucose intolerence, 

 Impaired glucose tolerance 

(IGT) or diabetes mellitus 

(DM),  

 and/or insulin resistance 

with two of:  

1)Raised BP i.e., ≥140/90 

mm of Hg 

2)Raised plasma 

triglyceride and/or low 

HDL-C  

3)Central obesity and/or 

body mass index (BMI) 

>30 kg/m2 

4)Microalbuminuria, 

Table 1.1 Four chief definitions of the metabolic syndrome *Men>102 cm (>40 in) 

Women >88 cm (>35 in), **TG ≥150 mg/dL ***HDL Men<40 mg/dLWomen<50 mg/dL 

****BP ≥130/≥85 mm Hg *****Fasting glucose ≥110 mg/dL, 6.1 mmol/L. (16-19). 
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i. Reaven’s original description: In the 1988 Banting Lecture (14), Reaven used the 

term syndrome X to refer to the tendency of glucose intolerance, hypertension, low 

high density lipoprotein (HDL) cholesterol and raised triglycerides, and 

hyperinsulinaemia to occur in the same individual (Table 1). He proposed that the 

common feature of the syndrome is insulin resistance and that ‘... all other changes 

are likely to be secondary to this basic abnormality’. Neither obesity nor abdominal 

obesity was included in Reaven's original description although secondary sources 

often state that they were included. However, Reaven did suggest that avoiding 

obesity and remaining physically active were measures that would protect against 

insulin resistance. 

ii. ATP III: The National Cholesterol Education Program’s Adult Treatment Panel III 

report (ATP III) identified the metabolic syndrome as a multiplex risk factor for 

CVD (15). ATP III viewed CVD as the primary clinical outcome of metabolic 

syndrome.  

a. Atherogenic dyslipidaemia manifests in routine lipoprotein analysis by raised 

triglycerides and low concentrations of HDL cholesterol. A more detailed 

analysis usually reveals other lipoprotein abnormalities such as increased 

remnant lipoproteins, elevated apolipoprotein B, small LDL particles, and small 

HDL particles. All of these abnormalities have been implicated as being 

independently atherogenic. 

b. Elevated blood pressure strongly associates with obesity and commonly occurs 

in insulin-resistant persons. Hypertension thus commonly is listed among 

metabolic risk factors. However, some investigators believe that hypertension 

is less “metabolic” than other metabolic-syndrome components. Certainly, 



- 9 - 
 

hypertension is multifactorial in origin. For example, increasing arterial 

stiffness contributes significantly to systolic hypertension in the elderly 

c. Insulin resistance is present in the majority of people with the metabolic 

syndrome. It strongly associates with other metabolic risk factors and correlates 

univariately with CVD risk. These associations, combined with belief in its 

priority, account for the term insulin resistance syndrome. Even so, mechanisms 

underlying the link to CVD risk factors are uncertain, hence the ATP III’s 

classification of insulin resistance as an emerging risk factor. Patients with 

longstanding insulin resistance frequently manifest glucose intolerance, another 

emerging risk factor. When glucose intolerance evolves into diabetes and 

prevalent hyperglycaemia, elevated glucose constitutes a major, independent 

risk factor for CVD. 

d. A proinflammatory state, recognized clinically by elevations of C-reactive 

protein (CRP), is commonly present in persons with metabolic syndrome. 

Multiple mechanisms seemingly underlie elevations of CRP. One cause is 

obesity because excess adipose tissue causes the release of inflammatory 

cytokines that may elicit higher CRP levels. 

e. A prothrombotic state, characterized by increased plasma plasminogen 

activator inhibitor (PAI)-1 and fibrinogen, also associates with the metabolic 

syndrome. Fibrinogen, an acute-phase reactant like CRP, rises in response to a 

high-cytokine state. Thus, prothrombotic and proinflammatory states may be 

metabolically interconnected. 

iii. American Association of Clinical Endocrinologists (AACE definition): These 

criteria (14) appear to be a hybrid of those of ATP III and WHO metabolic 
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syndrome. However, no defined number of risk factors is specified; diagnosis is left 

to clinical judgment. 

iv. World Health Organization (WHO) definition: WHO, in 1999, suggested a working 

definition of metabolic syndrome (MS), which was improved in due course of time 

(18). WHO defined MS as glucose intolerance, impaired glucose tolerance (IGT) 

or diabetes mellitus (DM), and/or insulin resistance, together with two or more of 

the components listed below: 

1) Raised arterial pressure, defined as ≥140/90 mm of Hg 

2) Raised plasma triglyceride (≥ 150 mg/dl) and/or low HDL-C (<35 mg/dl 

in men and <39 mg/dl in women) 

3) Central obesity, i.e., waist/hip ratio (WHR) >0.9 in men and >0.85 in 

women and/or body mass index (BMI) >30 kg/m2 

4) Microalbuminuria, urinary albumin excretion rate ≥ 20 μg/min or 

albumin/creatine ratio ≥ 30 μg/mg. 

This definition further insisted on a need for a clear description of the essential 

components of the syndrome, along with data to support the relative importance of each 

component. These conditions seem to be highly technical and the definition is rather 

impractical. 

v. The European Group for Study of Insulin Resistance (EGIR) definition: This (19) 

is a modification of the WHO definition (18), focusing more on abdominal obesity 

but excludes diabetes mellitus from the definition. Metabolic syndrome was 

diagnosed as insulin resistance with two of the following:  

1. Abdominal obesity: waist circumference (WC) ≥94 cm in men and ≥80 cm 

in women 

2. Hypertension: ≥140/90 mm of Hg or on anti-hypertensive treatment 
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3. Elevated triglycerides (≥150 mg/dL) and/or reduced HDL-C (<39 mg/dL 

for both men and women) 

4. Elevated plasma glucose: impaired fasting glucose (IFG) or IGT, but no 

diabetes. 

 

1. 4. Insulin 

Insulin is a peptide hormone synthesised by the pancreatic β-cells. High blood glucose 

stimulates its release into the blood where it acts on peripheral tissues to increase glucose 

uptake, suppress hepatic glucose production and prevent lipolysis (20). 

Insulin production involves intermediate steps. Initially, preproinsulin is the single 

polypeptide inactive precursor, which is secreted into the endoplasmic reticulum. Post-

translational processing clips the N-terminal signal sequence and forms the disulphide bridges. 

Cleavage of the signal peptide releases proinsulin into the ER lumen where it is transported to 

the golgi complex, and subsequent cleavage of the C-peptide yields the mature 5808 kDa 

dipeptide hormone (21, 22). Insulin is then transported out of the golgi and accumulates in 

secretary granules in the cytoplasm. 

 

1.4.1. Insulin: Structure 

Insulin gene transcription is normally restricted to the pancreatic β-cells within the islets 

of Langerhans. Insulin mRNA is translated on ribosomes attached to the endoplasmic reticulum 

(ER) as preproinsulin (Figure 1.2.). Structurally, preproinsulin consists of four domains: a C-

terminal A-chain; an N-terminal B-chain; a connecting region known as the C-peptide; and an 

N-terminal signal peptide (20). The signal peptide anchors preproinsulin to the membrane of 

the ER (21). The ER lumen is a highly oxidising environment which facilitates the formation 

of two disulphide bridges between the A and B chains of preproinsulin.   
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Fig 1.2. The major steps of insulin secretion in pancreatic β-cells. 

(http://www.betacell.org/content/articlepanelview/article_id/1/panel_id/1) 
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1. 4.2. Insulin: Secretion  

Insulin secretion is enhanced by a number of stimuli including: glucose (23), amino 

acids (24) and gastrointestinal hormones such as secretin and glucagon-like peptide-1 (GLP-1) 

(25). Since the primary role of insulin is to control glucose homeostasis, glucose is the most 

important of these stimuli. Glucose induces a bi-phasic pattern of insulin release from the β-

cells. Shortly following glucose stimulation, a transient spike in insulin secretion is observed, 

this is followed by a more enduring phase of insulin release (26). The mechanism by which 

glucose stimulates insulin secretion is as follows: glucose, when circulating at high 

concentrations, is able to diffuse into the β-cells through GLUT2 transporters (Figure 1-3) (27). 

Within the cytosol, glucose is metabolised through glycolysis generating pyruvate which is 

further metabolised in the mitochondria generating ATP. The elevated ATP/ADP ratio induces 

closure of cell-surface ATP-sensitive K+ channels - preventing K+ from leaving the cell, leading 

to cell membrane depolarization (28). This in turn leads to an opening of membrane bound 

voltage-gated Ca2+ channels, resulting in an influx of Ca2+ into the cytosol (28). The increased 

cytosolic Ca2+ signals exocytosis of storage vesicles containing insulin (Figure 1.3) (29). 

During stress (defined as trauma, sepsis, emotion, starvation) adrenal secretion of GCs and 

adrenaline increases, which inhibits insulin secretion from pancreatic β-cells (30).  
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Fig. 1.3. Schematic of processes leading to insulin secretion in pancreatic β-cell. (27). Increased 

levels of glucose in the circulation lead to increased glucose uptake into pancreatic beta cells 

through GLUT2, a glucose transporter. Increased intracellular glucose then leads to increased 

production of ATP, and an increase in the ATP/ADP ratio (1); the increased ATP/ADP ratio 

leads to closing of the potassium channel and depolarization of the cell (2); and cell 

depolarization opens a calcium channel (3) which leads to insulin secretion (4). 
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1. 4.3. Insulin: Metabolic actions  

Insulin is an anabolic hormone, important during times of nutrient excess; promoting 

energy storage and decreasing energy release (in the form of glucose from the liver and fatty 

acids and glycerol from adipose tissue). 

 

1. 4.3.1. Carbohydrate metabolism 

 The most important insulin target tissues are liver, adipose tissue and skeletal 

muscle. In the fed state when circulating glucose levels are elevated, insulin enhances glucose 

uptake by the adipose tissue and skeletal muscle (31). Insulin also upregulates glucose storage 

by increasing glycogen synthesis in these three tissues (32). In the fasted state, the liver 

synthesizes glucose via gluconeogenesis from precursors such as glycerol, lactate and amino 

acids. Glucose is also liberated by hydrolysis of hepatic glycogen stores. During the transition 

to the fed state insulin effectively inhibits both hepatic gluconeogenesis and glycogenolysis, 

consistent with its role as an anabolic effector (33). 

 

1. 4.3.2. Protein metabolism 

In addition to insulin’s signalling role when energy is abundant, with regards to protein 

metabolism it acts to increase amino acid uptake from the circulation (34), and incorporation 

into proteins (35), whilst inhibiting protein breakdown (36). This occurs most notably in tissues 

where protein content is high such as in skeletal muscle. 

 

1. 4.3.3. Lipid metabolism  

Insulin promotes lipid storage by increasing lipogenesis - the de novo synthesis of fatty 

acids (37). De novo lipogenesis occurs predominantly in adipose tissue, liver and to a lesser 

extent in the skeletal muscle. Insulin also enhances uptake of fatty acid (38) and their 
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esterification with glycerol generating triacylglycrides (TAG) (39). During fasting (in the 

presence of low insulin), TAG stores are broken down by lipolysis, and the resultant free fatty 

acids are oxidised in the mitochondria yielding ATP. In addition, some of these TAG derived 

fatty acids (particularly from liver) are released into the circulation as lipoproteins which are 

utilised as an energy source by other tissues, including the skeletal muscle. During the fed state, 

insulin inhibits lipolysis and fatty acid oxidation (40), instead promoting the use of 

carbohydrates as a source of energy. 

 

1. 4.4. Insulin Signalling  

1. 4.4.1. Insulin Receptor  

The actions of insulin are mediated through activation of cell surface receptors, in 

particular the insulin receptor (InsR), but also the closely related insulin-like growth factor 

receptor (IGF-IR) (Figure 1.4). InsR mediates metabolic regulation whereas IGF-IR is involved 

in normal growth and development. Both receptors can bind insulin, however, the binding 

affinity of IGF-IR for insulin is ~100-fold lower than for its cognate ligand, IGF-I (41). InsR 

is a disulphide-linked heterotetrameric structure, composed of two identical extracellular α-

subunits, and two identical transmembrane β-subunits that have tyrosine kinase activity (42). 

Upon binding of insulin to the α-subunits, the receptor undergoes a conformational change 

leading to activation of the kinase domain resulting in auto-phosphorylation of specific tyrosine 

residues on the β-subunit (43). 
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Fig. 1.4. The insulin signalling cascade. The insulin receptor is a tyrosine kinase that 

undergoes autophosphorylation, and catalyses the phosphorylation of cellular proteins 

such as members of the IRS family, Shc and Cbl. Upon tyrosine phosphorylation, these 

proteins interact with signalling molecules through their SH2 domains, resulting in a 

diverse series of signalling pathways, including activation of PI(3)K and downstream 

PtdIns(3,4,5)P3-dependent protein kinases, ras and the MAP kinase cascade, and 

Cbl/CAP and the activation of TC10. These pathways act in a concerted fashion to 

coordinate the regulation of vesicle trafficking, protein synthesis, enzyme activation and 

inactivation, and gene expression, which results in the regulation of glucose, lipid and 

protein metabolism. (49). 
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1. 4.4.2. Insulin receptor substrates 

 Upon activation by insulin, the auto-phosphorylated tyrosine residues on InsR 

act as docking sites for numerous proteins including the family of insulin receptor substrate 

(IRS) proteins (Figure 1. 5). To date, six IRS isoforms have been identified (IRS1-6). IRS1 and 

IRS2 are ubiquitously expressed, and are most important in mediating metabolic signal 

transduction (44), whereas the expression of IRS3 is limited to brain and adipocytes and IRS4 

is expressed primarily in embryonic tissue, IRS5 and IRS6 have limited expression and 

function in signal transduction (45). Structurally, IRS proteins share a high degree of 

homology; each containing an N-terminal pleckstrin-homology (PH) domain for phospholipid 

binding; a phosphotyrosine-binding (PTB) domain for docking with phospho-tyrosine sites on 

activated InsR; and a variable C-terminal region containing numerous tyrosine, threonine and 

serine phosphorylation sites which confers IRS activity (46). The association between IRS1 

and 2 and the activated InsR allows the kinase domain of the receptor to phosphorylate various 

tyrosine residues within the C-terminal of these proteins (47). This allows IRS1/2 to act as an 

adaptor; linking InsR to various Src-Homology 2 (SH2) domain containing proteins. For 

example, phosphorylation of IRS1 at tyrosine-612 and 632 (corresponding to 608 and 628 in 

rodents) is required for full activation of phosphoinositide-3 kinase (PI3K) (48). IRS activating 

tyrosine phosphorylation is negatively regulated by the phosphatase SHP2; attenuating the 

metabolic actions of insulin (49) (Figure 1.4). 

In addition to tyrosine phosphorylation, IRS proteins also undergo serine 

phosphorylation (Figure 1.5). With over 70 putative serine phosphorylation sites, IRS1 is by 

far the most characterised isoform. As a general rule, serine phosphorylation inhibits IRS1 

function, with increased serine phosphorylation seen in various insulin resistant states. These 

post-translational modifications could be a major contributor to the pathogenesis of insulin 

resistance (50). Probably the most characterised of these residues is serine-307 (corresponding 
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to serine 312 in humans), which is located adjacent to the PTB-domain (Figure 1.5). From work 

using yeast tri-hybrid assays it was found that phosphorylation at this site inhibits the InsR / 

IRS1 interaction thereby attenuating signal transduction. Other residues associated with 

inhibiting IRS1 function include serine-612 and serine-632 (corresponding to human serine 

616 and serine 636), which are located proximal to the PI3K binding site (Figure 1.5). It is 

thought that phosphorylation here can preclude the association between PI3K and IRS1, 

preventing the former from becoming activated (50). 

Numerous kinases have been implicated in mediating inhibitory serine phosphorylation of IRS 

proteins, and their dysregulation has been implicated in the pathogenesis of insulin resistance 

(50). These include Jun kinase (JNK), inhibitor of nuclear factor κB (NF-κB) and kinase-β 

(IKKβ), p70S6K (S6K1), the mammalian target of rapamycin (mTOR), extracellular signal-

regulated kinase (ERK) and certain protein kinase C (PKC) isoforms. 

 

1.5.1. Hepatic glucose metabolism under normal physiological conditions 

1.5.1.1. Hepatic Glucose uptake 

In health the portal venous glucose concentration after a meal may approach 10 

mmol/L, much higher than is ideal in the systemic circulation. Hepatocytes take up glucose 

independently of insulin via the low affinity GLUT-2 transporter, which facilitates glucose 

entry into cells in the presence of high sinusoidal glucose concentrations. Hence, hepatocytes 

are in a key position to buffer the hyperglycaemic effects of a high carbohydrate meal. It has 

been proposed that hepatic injury in critical illness leads to hyperglycaemia because of 

unregulated glucose uptake by the liver. Hepatocytes are not able to rapidly down regulate 

glucose uptake to protect vital intracellular metabolic functions. Strict control of blood glucose 

concentration during critical illness protects from hepatic mitochondrial injury and may 

therefore contribute to improved outcomes clinically (51).   
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Figure 1.5. The structure of IRS1, highlighting some of the serine phosphorylation residues 

known to negatively regulate its function. Kinases shown in purple mediate signaling events 

that impede IRS-1 localization to the membrane or upstream receptors by disrupting PH 

and/or PTB domain function. Kinases shown in orange mediate signaling events that interfere 

with PI3K recruitment and activation. Kinases shown in pink mediate signaling events that 

result in phosphorylation of S789. Kinases that initiate signaling events that result in 

phosphorylation of S1223 and interfere with SHP-2 binding are unknown (yellow). Exogenous 

stimuli that have been implicated in cancer and inflammation and that can activate kinases to 

regulate IRS-1 serine phosphorylation are indicated. (50). 
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Once taken up by the liver, glucose is rapidly phosphorylated to glucose-6-phosphate (G6P), 

by the hepatic specific hexokinase isoform, glucokinase. This reaction is the prelude to 

glycolysis (resulting in the production of 3-carbon compounds such as lactate and pyruvate). 

Alternatively the glucose flux can be directed towards the direct pathway of glycogen synthesis 

via uridine diphosphate (UDP) - glucose, or the pentose phosphate shunt. 

 

1.5.1.2. Glycolytic flux and gluconeogenesis 

Carbon-3 compounds can enter the tricarboxlylic acid (TCA) cycle and undergo further 

oxidation or serve as substrates for de novo synthesis of glucose and glycogen (G6Pneogenesis 

and the indirect/gluconeogenic pathway of glycogen synthesis) (52). These processes form 

substrate cycles, a system which allows fine regulation of the direction and rates of flux, by 

changes in concentration, gene expression and covalent modification (phosphorylation) of 

effector enzymes (53). Gluconeogenesis substrate cycles are controlled by the enzymes 

phosphoenolpyruvate carboxykinase (PEPCK) and fructose 1,6 biphosphatase, while 

glycolytic substrate cycles are regulated by pyruvate kinase and phosphofructo-1-kinase. 

 

1.5.1.3. Glycogen synthesis and glycogenolysis 

Glycogen synthase and glycogen phosphorylase are involved in another substrate cycle 

that can be active simultaneously, resulting in glycogen cycling. The effect of this is negligible 

in the non-diabetic fasting state. Both enzymes are regulated by phosphatases, kinases and 

allosteric effectors which are dependent on the nutrient and hormonal microenvironment (53). 

Glycogenolysis requires the action of glycogen phosphorylase and a debranching enzyme to 

release glucose-1-phosphate which is in equilibrium with G6P (Figure.1.6). 
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1.5.1.4. Glucose-6-phosphatase and glucose release 

Glucose-6-phosphatase (G6Pase) catalyses the “terminal step” resulting in the release of free 

glucose into the hepatic veins, from either gluconeogenesis or glycogenolysis (Figure.1.6). 

G6Pase catalyses the dephosphorylation of G6P to glucose and is expressed in liver and kidney, 

G6P neogenesis can result in glucose release from these tissues only. In contrast, skeletal 

muscle is devoid of G6Pase and therefore cannot release glucose from glycogen despite muscle 

glycogen depots being four to five fold greater than in liver. Instead lactate is released from 

skeletal muscle which is shuttled back to the liver via the Cori cycle. G6Pase activity is 

deficient in patients with glycogen storage disease Type 1a which is usually diagnosed by the 

detection of profound hypoglycaemia in infancy. 

 

1.5.1.5. Insulin and glucagon, and endogenous glucose production (EGP). 

Insulin, glucagon and hyperglycaemia primarily regulate endogenous glucose 

production (EGP). The cephalic phase of insulin secretion primes the liver to rapidly facilitate 

the hormonal responses to eating before there is any carbohydrate induced hyperglycaemia. 

This, coupled with the direct delivery of pancreatic hormones to the liver sinusoids, allows 

rapid control and response to nutritional stimuli. The ingestion of a mixed meal also results in 

an increase in plasma glucagon concentration, although a pure glucose load can result in it 

being unchanged or even decreased. In both situations however, the plasma insulin/glucagon 

ratio rises due to the more marked rise in plasma insulin (54). 

Under postprandial conditions, the portal vein insulin concentration is around 180 

pmol/L, which is almost 3-fold higher than in the systemic circulation. This concentration of 

insulin is necessary to half maximally stimulate hepatic glycogen production (HGP) and 

suppress HGP during periods of hyperglycaemia, much higher than the concentration required 

in the periphery to stimulate the uptake of glucose by cells (55). 
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Figure 1.6. The fate of glucose in the hepatocyte.  

In the hepatocyte, insulin stimulates the utilization and storage of glucose as lipid and 

glycogen, while repressing glucose synthesis and release. This is accomplished through a 

coordinated regulation of enzyme synthesis and activity. Insulin stimulates the expression of 

genes encoding glycolytic and fatty-acid synthetic enzymes (in blue), while inhibiting the 

expression of those encoding gluconeogenic enzymes (in red). These effects are mediated by 

a series of transcription factors and co-factors, including sterol regulatory element-binding 

protein (SREBP)-1, hepatic nuclear factor (HNF)-4, the forkhead protein family (Fox) and 

PPARγ co-activator 1 (PGC1). The hormone also regulates the activities of some enzymes, 

such as glycogen synthase and citrate lyase (in green), through changes in phosphorylation 

state. (Ref 53). 
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During periods of hypoglycaemia, plasma glucagon concentrations rise causing an immediate 

rise in plasma glucose. Studies using continuous glycogen infusions have shown that the 

immediate rise in EGP is accounted for by hepatic glycogenolysis. Following this there is a 

decline in EGP that is explained by a decrease in glycogenolysis due to decreased glycogen 

stores, and an increase in gluconeogenesis (56). Glycogen stimulates PEPCK expression and 

pyruvate carboxykinase activity as well as inhibiting pyruvate kinase and phophofructo-1-

kinase (57). Even small changes in the portal vein insulin and glucagon concentration affect 

hepatic glycogen synthesis and glycogenolysis, exerting a fine control on glucose homeostasis. 

1.5.1.6. Hepatic amino acid, carbohydrate, and lipid metabolism. 

 

A high protein intake in humans can induce glucose intolerance as well as increasing 

EGP in the fasting state (58). Transamination of unbranched amino acids has also been linked 

to carbohydrate and lipid metabolism. Branched chain amino acids and alanine are often 

elevated in patients with obesity and insulin resistance. This may result from a change in the 

secretion of regulatory hormones and the stimulation of gluconeogenesis by amino acids (59). 

Metabolic studies have shown that the rise in EGP as a result of the gluconeogenic effect of 

post prandial amino acid concentrations and this is only unmasked when insulin secretion is 

impaired. Hence in subjects with normal glucose tolerance, the stimulatory effect of post 

prandial amino acid concentrations on the secretion of insulin and glucagon balances the 

increase in gluconeogenesis with no significant effect on glycaemia (60). 

Hepatic carbohydrate metabolism is closely linked to lipid metabolism. In the fasting 

state, plasma free fatty acid (FFA) concentrations increase and energy is derived from fat 

oxidation. In insulin resistant states, plasma FFA concentrations correlate with the extent of 

hyperglycaemia and EGP (61). The liver is able to synthesise and oxidize fatty acids, but lacks 

the enzymes necessary to complete the metabolism of the ketone bodies resulting from 

mitochondrial beta-oxidation. The balance between glucose and lipid oxidation is coordinated 
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by the enzyme malonyl-coenzyme A through its ability to inhibit the entry of acetylated fatty 

acid derivatives into the mitochondria. Fatty acid synthesis is promoted by insulin. Insulin 

deficiency, with the presence of elevated glucagon levels drives ketogenesis by promoting beta-

oxidation (Figure 1.7). This is the mechanism that drives ketogenesis from fatty acids.  

Adipocytes act in conjunction with the liver to convert excess glucose to triglyceride 

for storage. In the liver, triglycerides are formed from glycerol-3-phosphate (from triose 

phosphate) and fatty acids (from acyl CoA), and are incorporated in very low density 

lipoproteins (VLDL) where they are hydrolysed by lipoprotein lipase. The released FFA are 

re-esterified with glycerol-3-phosphate derived from glucose that has entered the tissue under 

the influence of insulin. The resulting triglyceride is stored in adipose tissue. 

1.5.2. The liver in diabetes mellitus 

Insulinopaenia in type 1 diabetes results in increased hepatic glucose production that 

correlates with the degree of fasting hyperglycaemia.  

In type 2 diabetes, there is evidence for a reduction in glycogen synthesis, implying that 

the increase in hepatic glucose output is mainly a result of increased gluconeogenesis. Isotopic 

tracer dilution studies have shown that there is a loss of auto-regulation in patients with fasting 

hyperglycaemia, as hepatic glucose output rates are either inappropriately normal or elevated 

by 10-25%.  

The increase in hepatic gluconeogenesis is further fuelled by increased rates of lipolysis 

in adipose tissue, due to impaired insulin action, releasing FFA and glycerol which are 

subsequently delivered to the liver. Increased hepatic uptake of non-esterified fatty acids also 

promotes hepatic lipid synthesis as well as increased hepatic secretion of VLDL, resulting in 

the typical type 2 diabetic dyslipidaemic phenotype. 
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A.  

B. 

 

 

Figure 1.7 A. Brief overview of postprandial metabolism of glucose, and, B. Brief overview of 

intermediary metabolism during fasting (61). 
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1. 6. Glucocorticoids, obesity and metabolic disease  

1.6.1. Glucocorticoids  

Glucocorticoids are well characterized ubiquitous hormones that play a key role in 

modulating immune and inflammatory responses, regulating energy metabolism and 

cardiovascular homeostasis and in the body’s responses to stress. Opposing the action of 

insulin, glucocorticoids stimulate production of glucose, switching the homeostatic balance 

towards catabolism. Thus, glucocorticoids promote gluconeogenesis but inhibit beta-cell 

insulin secretion and peripheral glucose uptake (62). They also increase protein breakdown and 

lipolysis with consequent fatty acid mobilization. Patients with endogenous or exogenous 

glucocorticoid excess (Cushing’s syndrome) develop visceral obesity, insulin resistance, 

diabetes type 2, dyslipidaemia, hypertension and increased CV mortality.  

The striking similarity of phenotype between the rare Cushing’s syndrome and the 

common metabolic syndrome/idiopathic obesity spectrum has spurred the search for a common 

underlying mechanism. However, plasma cortisol levels are not notably elevated in simple 

obesity or in metabolic syndrome, at least in the absence of marked complications. It has been 

hypothesised that tissue-specific differences in glucocorticoid metabolism and hence increased 

local cellular corticosteroid exposure may explain this apparent paradox. Since most of the 

features of Cushing’s syndrome are reversible by removal of glucocorticoid excess, 

manipulations reducing cortisol action at a local cellular or tissue level might provide a novel 

therapeutic strategy for the metabolic syndrome. 

1.6.1.1 Mechanism of action of corticosteroids 

The conventional view is that corticosteroids (cortisol and aldosterone) exert their 

actions through specific intracellular receptors, glucocorticoid and mineralocorticoid receptors 

(GR and MR) respectively. More recently, evidence has been presented for the existence of 

cell surface steroid receptors, and second messengers inside cells that may result in steroid 
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induced non-genomic actions (63).While there is molecular evidence of the existence of these 

cell surface receptors, detailed information about them is lacking. Steroids are also able to 

facilitate the action of GABA receptors by binding to GABAA receptors. The traditional view 

that steroid receptors exert similar responses for all ligands has also been put into question by 

studies that demonstrate that the oestrogen receptor is able to exert a range of actions, often 

opposing, when activated by molecules with very similar structures (64). These observations 

have led to the awareness that a key component of steroid hormone action involves interaction 

of the ligand with a coactivator known collectively as corepressor molecules. 

 

1.6.1.2. Corticosteroid receptors 

 Historically, glucocorticoids were thought to bind exclusively to GR and aldosterone 

to MR, and regulate carbohydrate and sodium homeostasis respectively. However, following 

in vitro observations that both receptors bind to glucocorticoids with high affinity, they were 

classified as Type 1 ‘high affinity’ GR (corresponding to the MR) and Type 2 ‘low affinity’ 

GR (corresponding to GR). In this discussion, the traditional MR and GR classification will be 

used. Separate receptors for glucocorticoids and mineralocorticoids appear to have occurred 

via gene duplication late in evolution, explaining why they behave in a similar fashion in some 

circumstances. This may also reflect the utility of pre receptor mechanisms in some tissues to 

confer further specificity to these receptors. Both receptors have similar ligand binding 

properties. The MR binds cortisol with an equal affinity to that of aldosterone (Kd for both ~ 

1nM) (65), while the GR binds cortisol and corticosterone with a Kd between 20 and 40 nM and 

aldosterone with a Kd of 25 to 65 nM (66). 

The MR is expressed in target tissues such as the epithelia of renal distal tubules, 

salivary glands and distal colon, as well as within the central nervous system (CNS), in the 

placenta and foetal tissues, and in bone cells. The GR is widely expressed in tissues involved 
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in glucose homeostasis, such as liver, adipose tissue and muscle, as well as bone cells and cells 

in the immune system. 

1.6.1.3 Steroid hormone receptor structure 

The typical domains common to steroid hormone receptors are illustrated in Figure 1.8 along 

with the corresponding domains in the hGR, hMR and other steroid hormones. The DNA 

binding domain is a critical component responsible for binding to the double helix. The N-

terminal region mediates transactivation functions, and the C-terminal is the ligand binding 

domain. In reality this model is rather simplistic and activation functions can also be mediated 

by sequences located throughout the receptor, including NLSs and sequences mediating 

receptor dimerisation. These features are displayed in GR and MR. The cDNAs encoding the 

proteins for human GR and MR are highly homologous and share a conserved DNA binding 

domain with 94% homology and a 57% homology across the ligand binding domain (67) .This 

reflects the promiscuity of ligand binding of aldosterone to the GR and cortisol to the MR. The 

parts of the complex that are responsible for transrepression of genes are currently unclear. 

Specificity upon the MR is conferred by the process of pre receptor metabolism of cortisol by 

11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), which inactivates cortisol and 

corticosterone to inactive 11-keto metabolites, allowing aldosterone to bind to the MR (68). 

 

1.6.1.4 Transactivation of genes by corticosteroid receptors 

 

Transactivation of genes occur when the GR or MR bind to glucocorticoid response elements 

(GREs) – specific regulatory sequences of DNA which are usually located near the promoter 

region of target genes (69). The classic GRE sequence for GR binding is a partially palindromic 

structure with the sequence GGTACAnnnTGTTCT (where n is any nucleotide). The consensus 

sequence for negatively regulated genes is less well conserved. There is a large body of  
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Figure 1.8. Relative lengths of several members of the steroid/nuclear hormone receptor 

superfamily, shown schematically as linearized proteins with common structural and functional 

domains. Variability between members of the steroid hormone receptor family is due primarily 

to differences in the length and amino acid sequence of the amino (N)-terminal domain. Ref.67. 
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investigation into the exact mechanism of transactivation and how the binding of the complex 

to GREs affects gene transcription. Dimerisation of the steroid-GR complex is required for 

transactivation. This has been shown in vitro and in transgenic dimerisation deficient transgenic 

animals (70). 

In addition to the interaction of DNA binding and activation domains of the receptor 

with GREs, gene transcription relies on a number of other vital components. These include 

general transcription factors and coactivator or corepressors that initiate or repress 

transcription. Coactivators are thought to be involved in the linking of the hormone receptor to 

general transcription factors and in chromatin remodelling during assembly of the transcription 

complex (71). 

There is no known classic response element for the MR. However MR is able to bind 

to the GRE and a number of genes appear to be induced by both MR and GR  for example 

serum and glucocorticoid inducible kinase (Sgk), a key gene of mineralocorticoid hormone 

action (73). Some genes respond differently depending on whether GR or MR binds to the 

GRE. These variations are likely to be due to differences in the recruitment of coactivators and 

corepressors. Studies have also shown that GR and MR are able to heterodimerise with each 

other. These heterodimers appear to have different effects to GR or MR homodimers at the 

GREs of several genes.  

 

1.6.1.5. Transrepression of genes by corticosteroid receptors 

Transrepression of genes is critical to restrict gene expression so that only a subset of 

genes are expressed in a particular cell type and to exert a degree of tissue specificity. The 

process of transrepression occurs via protein-protein interactions. GR associates with other 

transcription factors via leucine zipper interactions. Binding of a repressor to the activator can 

mask its transactivational ability. This type of repression is called quenching, an example of 
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which is the interaction of the GR with members of the bZIP FOS and JUN family of 

transcription factors, constituting the AP-1 complex. 

GR acts as a repressor by adjacent binding to the AP-1 factors or tethering to AP-1 

factors bound to the composite element, quenching activation by AP-1(74). This process is of 

particular importance to the anti-inflammatory effects of glucocorticoids, by negative 

regulation of the expression of several genes involved in the inflammatory cascade, by 

interaction with AP-1 and NF-κB. NF-κB is a key regulator of several inflammatory processes 

and can act as an amplifier of inflammatory pathways, and interaction of GR with NF-κB 

effects a significant anti-inflammatory action. MR is also able to interact with AP-1 and NF-

κB, although the relevance of this finding is unclear but has been implicated in the pathogenesis 

of cardiovascular disease via MR activation (75). 

 

1.6.1.6. Effects of glucocorticoids on carbohydrate, protein and lipid metabolism 

The inability of adrenalectomized animals to maintain hepatic glycogen stores was 

noted in 1927 by Cori (76). Replacement of adrenocortical steroids returned hepatic glycogen 

stores to normal and reversed hypoglycaemia. 

Glucocorticoids promote glycogen deposition in the liver by activating glycogen 

synthase (by promoting its dephosphorylation) and inactivating glycogen phosphorylase 

(involved in glycogen mobilisation) (77). 

Glucocorticoids are directly able to increase hepatic glucose production. This occurs by 

activation of key hepatic gluconeogenic enzymes such as glucose-6-phosphatase and PEPCK. 

Interaction of the glucocorticoid receptor complex with a GRE located in the 5‟ flanking region 

of the PEPCK gene mediates glucocorticoid induced gene transcription (78). Glucocorticoids 

also exert a secondary effect by increasing substrate availability to increase hepatic glucose 
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production by promoting the release of glucogenic amino acids from peripheral tissues such as 

skeletal muscle. 

Additionally, glucocorticoids also promote hepatic glucose production by exerting a 

permissive effect upon other gluconeogenic hormones such as adrenaline and glucagon, and to 

increase the sensitivity of target tissues to respond to catecholamines causing an increase in 

substrate for glucose production such as increasing muscle lipolysis (79). Glycerol and FFA 

released from lipolysis provides substrate and energy for hepatic glucose production. 

Glucocorticoids also increase sensitivity to glucagon action but the mechanism for this 

has not yet been elucidated (80). 

The effects of glucocorticoids on peripheral glucose utilization further promote the 

hyperglycaemic state that can often result from glucocorticoid administration. Glucose 

transport into cells and utilisation by peripheral tissues is inhibited. Glucocorticoids affect lipid 

metabolism by directly activating lipolysis in adipose, increasing serum FFA, and hence FFA 

delivery into the circulation. In adrenalectomised animals FFA levels and lipolysis are reduced, 

and return to normal 2 h after glucocorticoid administration. The molecular mechanism for this 

is not yet known but may occur by a permissive effect upon sensitivity to lipolytic hormones 

such as catecholamines. 

The chronic effects of glucocorticoids on lipid metabolism are well known, with the 

marked redistribution of body fat. Deposition of fat is seen over the trunk, anterior mediastinum 

and mesentery, as well as dorsocervical and supraclavicular regions, with sparing fat deposition 

of the extremities. The mechanism underlying this central predisposition is not understood but 

may be related to increased lipogenesis from the hypeinsulinaemia that results from the effects 

of glucocorticoids. 

Glucocorticoids stimulate adipocyte differentiation and adipogenesis via key 

differentiation genes including lipoprotein lipase, glycerol-3-phosphate dehydrogenase and 
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leptin (80). Centripetal obesity and weight gain are extremely common in patients with 

Cushing’s syndrome. Generalised obesity is more common among the general population than 

in patients with Cushing’s syndrome. This predisposition to visceral obesity may also relate to 

the increased expression of GR and 11β-HSD type 1 (generating active cortisol from inactive 

cortisone) in omental compared with subcutaneous tissue (81). 

 

1.6.2.Determinants of tissue sensitivity to glucocorticoids: Pre-receptor metabolism, 

Glucocorticoid receptor variability and post-receptor variation and effects on steroid action 

Studies have failed to show a clear relationship between serum glucocorticoid level and 

the effect on tissues, suggesting that there are factors intrinsic to tissues that are important in 

determining tissue sensitivity to glucocorticoids. These differences could occur at a number of 

levels, including changes in the concentration and affinity of GR or any of the steps involved 

in the formation of the steroid-receptor complex, to translocation to the nucleus and modulation 

of transactivation or transrepression of genes. The action of glucocorticoid transporters may 

also be involved in regulating intracellular glucocorticoid levels. The major part of this thesis 

relates to the expression and activity of hepatic glucocorticoid metabolising enzymes in chronic 

uraemia in rodent and murine models, where very little has been published. However, a great 

deal of mechanistic insight and data are available from work obtained in non-uraemic diabetic 

subjects, from bench to bedside, which has been discussed and used to inform the current work. 

The 11β-Hydroxydehydrogenase (11β-HSD) enzymes are major candidates for 

determining tissue sensitivity to glucocorticoids. While variation in concentration of 

glucocorticoid receptors may underlie differences in glucocorticoid sensitivity, data suggest 

that GR variants are not a major factor. 

Mutations in the GR gene have been associated with glucocorticoid resistance. 

Numerous GR-gene variants have been identified, as well as single nucleotide polymorphisms 
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(SNP) which are relatively prevalent. In particular, one GRβ-variant has been proposed to 

influence corticosteroid sensitivity, with evidence derived from the immune system and 

asthma. Also of relevance are the restriction fragment polymorphism and a substitution of 

Asp363Ser which have been identified to influence the regulation of the HPA axis and are 

associated with changes in metabolism and cardiovascular control. These findings further 

implicate cortisol in the pathophysiology of these disorders.  

Post receptor variation most probably does occur but is difficult to analyse due to sparse 

knowledge of coactivators and corepressors. Of potential importance are post receptor factors 

such as AP-1 and NF-κB, and other transcription factors that directly interact with the GR. An 

example would include the increase in GR-mediated transcription by pro-inflammatory 

cytokines TNFα and IL-1β seen in several cell types (82). Very little is known about the impact 

of variation in coactivator/corepressors molecules in modulating glucocorticoid action. 

 

1.6.2.2. Pre-receptor metabolism and steroid action 

Pre receptor metabolism as a regulator of steroid action has been seen in several tissues, 

and for several different enzymes. Enzymatic conversion of steroid in the target cell cytoplasm 

can interconvert hormone between active and inactive forms. 

One clinical example where pre-receptor hormone metabolism is crucial relates to 

androgen action. Androgens are converted to oestrogens by the action of aromatase. Aromatase 

deficiency has a profound effect on skeletal development, resulting in a eunuchoid habitus with 

low bone mineral density that is treatable with exogenous oestrogens (83). 

Until recently, it was axiomatic that the major determinant of corticosteroid action was 

the level of free cortisol in the plasma and the densities of GR and MR in target tissues. 

However, it has recently become apparent that tissue specific metabolism of glucocorticoids, 

notably by the two isoforms of the enzyme 11β-HSD, 11β-HSD1 and 11β-HSD2, alters tissue 
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glucocorticoid levels and hence receptor access. 11β-HSD catalyses the interconversion of non-

receptor-binding and therefore inert 11-ketosteroids, cortisone and 11-dehydrocorticosterone 

(11-DHC), and their receptor-binding active 11-hydroxy forms, cortisol and corticosterone. 

Inactive cortisone circulates unbound at around 100 nM in humans and therefore its 

concentration is greater than active cortisol, notably during the diurnal nadir. In rats, 11-DHC 

circulating concentrations are also around a mean of 70 nM, though its concentrations in mice 

are lower. 

 

1.7. 11β-hydroxysteroid dehydrogenases  

Two isoforms of 11β-HSD are known, the products of distinct genes (84). 11β-HSD2, 

a high affinity NAD-dependent dehydrogenase, is expressed mainly in mineralocorticoid 

target tissues (kidney, colon, salivary glands). This distribution reflects its role in protecting 

intrinsically non-selective MR from activation by cortisol and corticosterone and therefore 

enabling selective aldosterone binding. Additionally, 11β-HSD2 is highly expressed in the 

placenta and the developing foetus, providing a potent barrier to maternal glucocorticoids. 

In contrast 11β-HSD1 is a lower-affinity NADP (H)-dependent enzyme, which though 

bi-directional in purified preparations and tissue homogenates, acts as a predominant 11-

ketoreductase in intact cells and organs.11β-HSD1 is expressed primarily in tissues with high 

sensitivity to glucocorticoids (liver, adipose tissue, brain and lung). 11β-HSD1 is active as a 

dimer and exhibits cooperative kinetics with cortisone and 11-DHC as substrates. Thus, 11β-

HSD1 dynamically adapts to nanomolar as well as micromolar concentrations of 11-keto 

steroids. Both isozymes contain an N-terminal membrane-insertion sequence, thus enabling 

anchoring in the endoplasmic reticulum (ER) (85). The catalytic moiety of 11β-HSD2 faces 

the cytoplasm, while 11β-HSD1 is directed into the ER lumen (86). This has significant 

implications for cofactor availability (NAD+/NADPH ratio) and potential bi-directionality of 
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11β-HSD1. The co-localization of 11β-HSD1 in the lumenal surface of the ER membrane with 

hexose-6-phosphate dehydrogenase (H6PDH), which catalyzes the first two steps of the 

pentose-phosphate pathway generating NADPH, provides a supply of co-substrate to drive the 

predominant oxoreductase direction of 11β-HSD1 in intact cells. H6PDH-/- mice are unable to 

convert 11-dehydrocorticosterone to corticosterone, but the efficiency of the opposite 

dehydrogenase reaction is unaffected (87).  

 

1.7.1.1.   11β-HSD1 in the liver, and regulatory effects on factors affecting insulin sensitivity 

 11β-HSD1 immunoreactivity is seen in hepatocytes, being particularly intense around 

the central vein (88). In humans the activity of this enzyme activates orally administered 

cortisone to its biologically potent form. Primary cultures of human and rat hepatocytes and 

the 2S FAZA cell line indicate exclusive 11-oxoreductase activity (89). In rat liver, but not 

mouse liver, there is a sexually dimorphic pattern of 11β-HSD1 activity and expression, with 

expression in males being higher than females. 

In clinical studies venous blood draining the liver had increased cortisone to cortisol 

ratios relative to systemic blood indicating the conversion of cortisone to cortisol in vivo. These 

studies are further supported by studies that used isolated perfused livers where activity was 

predominantly reductase (89). 

There is currently intense research in the role of 11β-HSD1 in insulin resistance. The 

regulatory role of 11β-HSD1 can occur at the level of adipose tissue (central and visceral 

obesity), liver (hepatic gluconeogenesis) and muscle. The work presented in this thesis focuses 

on the role of hepatic 11β-HSD1 in this process. An overview of the effect of glucocorticoids 

on hepatic carbohydrate metabolism has been detailed earlier in this introduction (1.6.1.6). 
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1. 7. 2. Inhibition of 11β-HSD1 as a therapeutic target  

 

With its pivotal role in hepatic energy cycling and homeostasis, inhibition of the 

metabolic effects of this enzyme has been of interest to research groups since the early reports 

in the 1980s. A brief review of the development of enzyme inhibitors is given below. 

 

1.7.2.1. Natural 11β-HSD1 inhibitors  

 

Derivatives of the liquorice root (Glycyrrhiza glabra), including glycyrrhetinic acid and 

its synthetic hemisuccinyl ester, carbenoxolone, are potent (IC
50 

nM in vitro), but non-specific 

11β-HSD inhibitors (93).  A variety of endogenous steroids and their metabolites, as well as 

bile acids such as chenodeoxycholic acid, have been reported to have 11β-HSD inhibitory 

properties.  

Studies using the prototypic drug, carbenoxolone, showed hepatic insulin sensitization 

in lean healthy subjects (94). The insulin sensitization appears due reduced hepatic glucose 

production and glycogenolysis rather than any effect on peripheral glucose uptake, perhaps 

because carbenoxolone fails to inhibit 11β-HSD1 in adipose tissue in rats or humans. Such 

non-selective liquorice-based compounds also potently inhibit 11β-HSD2 causing renal 

sodium retention, hypertension and hypokalaemia. They also have effects on other short-chain 

dehydrogenases, such as 15-prostaglandin dehydrogenase and on gap junctions, though these 

effects occur at higher concentrations than 11β-HSD inhibition.  

Interestingly, while concurrent infusion of carbenoxolone, a non-selective inhibitor, 

made little difference; seven days’ pre-treatment with carbenoxolone significantly reduced 

oxoreductase activity along with decreased expression of both G6Pase and PEPCK (89). 

Studies on healthy humans have supported animal data with a reduction in hepatic glucose 

production with non-selective inhibitor (carbenoxolone) administration (91). Similar studies in 
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type 2 diabetic patients (93) showed that the decrease in hepatic glucose production may be 

due to decreased glycogenolysis rather than a change in hepatic gluconeogenesis. However, in 

one study, carbenoxolone did not improve insulin sensitivity in Zucker obese rats (94); in these 

animals, hepatic 11β-HSD1 was downregulated so that additional inhibition by carbenoxolone 

may have been less effective, and carbenoxolone had no measurable effect on 11β-HSD1 in 

adipose tissue.  

1.7.2.2. Specific 11β-HSD1 inhibitors  

1.7.2.2.1. Specific inhibitors and animal studies. 

 

Several selective 11β-HSD1 inhibitors are being developed with the aim of lowering 

intracellular cortisol concentrations in adipose and liver in patients with type 2 diabetes and 

obesity with promising results (81, 94-96). Biovitrium BVT2733, in several hyperglycaemic 

rodent models, has been shown to reduce fasting blood glucose (with decreased hepatic PEPCK 

and G6Pase expression) and insulin levels and lower cholesterol, FFA, and triglyceride levels 

(95, 96) and was the first specific inhibitor described to have a metabolic effect. The Pfizer 

compound, PF-915275, is selective for primate and human 11β-HSD1, and short-term 

administration in primates was found to inhibit 11β-HSD1 effectively, as assessed by 

conversion of prednisone to prednisolone and also reduced fasting insulin levels. Merck 

compound 544 has similarly been shown to improve insulin sensitivity (94). The specific 11β-

HSD1 inhibitor UE2316 was developed and patented by a team at University of Edinburgh. 

UE2316 has been shown to reverse the metabolic syndrome phenotype in high-fat fed C56BL 

mice and reduce post-myocardial infarction injury size after acute administration (122). 
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1.7.2.2.1. Specific inhibitors and clinical studies. 

1.7.2.2.1.1. Incyte—INCB013739. 

The Incyte selective 11β-HSD1 inhibitor, INCB013739, when administered to patients 

with type 2 diabetes twice daily for 2 weeks, completely abolished all conversion of oral 

cortisone to cortisol (97). Metabolically, hepatic glucose production rates decreased without 

alteration in glucose disposal. Interestingly, the decrease in fasting glucose was most marked 

in the most hyperglycaemic patients. In addition, total and low-density lipoprotein (LDL) 

cholesterol decreased, with no change in high-density lipoprotein (HDL)-cholesterol or 

triglyceride levels (313). INCB013739 has also been trialled in combination with metformin 

(MET) in patients with type 2 diabetes. This double-blind study included over 300 patients 

with inadequate glycaemic control (glycosylated haemoglobin [HbA1c], 7–11%) after MET 

treatment for more than 10 weeks. Patients were randomized to receive 5, 15, 50, 100, or 200 

mg INCB13739 in addition to MET once daily for a 12-week period. Treatment was well 

tolerated, and the frequencies of adverse events were similar across all treatment groups. 

Importantly, no hypoglycaemic events were reported during the trial, and there were no 

differences between treatment groups in electrocardiograms, serum chemistry, haematology, 

or urine analysis. A potential limitation of therapeutic 11β-HSD1 inhibition is the 

compensatory activation of the HPA axis due to reduced cortisol regeneration. Morning plasma 

and evening salivary cortisol levels were unchanged across treatment groups. However, there 

was a dose-dependent increase in ACTH levels, although these remained within the reference 

range and plateaued after 4 weeks. This increase was paralleled by an increase in the ACTH-

dependent androgen precursor, dehydroepiandrosterone sulfate, although this too remained 

within the normal reference range. 

1.7.2.2.1.2. Merck—MK0916 

The Merck Compound MK0916 was used in a double-blind, placebo-controlled study, 

where patients were given a daily dose of 0.5, 2, or 6 mg of MK0916 for a 12-week period 
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(98). MK0916 was well tolerated, with a similar frequency of adverse events reported across 

all treatment groups.  

MK0916 had only very modest effects on metabolic parameters. There was a decrease 

in weight and waist-hip ratio in the 6 mg group, and in this group there was also a small 

reduction in HbA1c (0.3%); however, there was no change in fasting plasma glucose, 2 h 

postprandial glucose, or levels of fasting or postprandial serum insulin. MK0916 increased 

LDL and non-HDL cholesterol; these results were unexpected and they contrast with previous 

studies, and the investigators suggest that this effect may be compound-specific and not related 

to its inhibition of 11β-HSD1. 

1.7.2.2.1.3. Pfizer PF-915275 

Pfizer has developed compound PF-915275, which is an effective 11β-HSD1 inhibitor as 

measured by changes in urinary steroid metabolite ratios and prednisone to prednisolone 

conversion studies (99). 

1.7.2.2.1.4. Salicylates  

Inhibition of 11β-HSD1 also offers some potential mechanistic explanations for the actions of 

other drugs. One such example is the action of salicylates that improve glucose tolerance in 

patients with type 2 diabetes; this class of agent has been shown to inhibit 11β-HSD1 in sc 

adipose tissue (100). 

1.7.2.2.1.5. UE2316  

UE2316 has been shown to reduce post-myocardial infarction injury size after acute 

administration and to reduce obesity and inflammation in diabetic obese rats (109). This drug 

is not orally bioavailable and has to be given subcutaneously via implanted osmotic mini-

pumps. 

 

 



- 42 - 
 

1.7.2.2.2. Transgenic mice  

Studies on mice with targeted disruption of the 11β-HSD1 gene showed a relative 

failure to express glucocorticoid-inducible genes in the liver indicating reduced hepatic 

glucocorticoid generation in these animals. These mice do not display fasting hypoglycaemia, 

but fasting glucose levels after high fat feeding are significantly lower than in wild type 

controls. While they have no difference in baseline expression of G6P and PEPCK upon 

starvation these key enzymes of hepatic glucose induction fail to be induced (88). The animals 

also have a less atherogenic lipid profile then wild type animals which is thought to be due to 

increased expression of hepatic enzymes that are involved in fat catabolism (89) and provided 

strong evidence for the role of glucocorticoid metabolism underlying metabolic disease. 

To explore the role of hepatic 11β-HSD1 in global metabolic homeostasis, mouse 

models with liver-specific overexpression (101) and knockdown (102) have been developed. 

Transgenic mice overexpressing 11β-HSD1 in the liver under the hepatocyte-specific 

apolipoprotein E promoter are hypertensive and dyslipidaemic and develop hepatic steatosis 

due to increased triglyceride accumulation and impaired lipid clearance. Interestingly, they do 

not develop steatohepatitis and have only modest levels of insulin resistance when compared 

to the adipose transgenic 11β-HSD1-AP2 mouse (discussed below). 

 Liver-specific 11β-HSD1 KO mice have a mild metabolic phenotype, with a slight 

improvement in glucose tolerance without significant improvement in insulin sensitivity and 

no changes in hepatic lipid homeostasis, triglyceride accumulation, or serum lipids (102). 

Although circulating corticosterone levels in these mice were unchanged, adrenal size was 

increased, suggesting increased HPA axis activation. 

A mouse overexpressing 11β-HSD1 within adipocytes, under the control of the aP2 

promoter, has allowed the exploration of tissue-specific glucocorticoid activation (103). The 

transgenic mice had a 15–30% increase in adipose corticosterone concentration (without any 
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change in serum levels), increased food intake, and a small increase in subcutaneous adipose 

tissue, and a dramatic increase in visceral adipose tissue mass. Metabolically, animals were 

hypertensive, hyperglycaemic, hyperinsulinaemic, glucose intolerant, and insulin resistant, 

with raised serum fatty acids and triglycerides (104). This model therefore implicates 11β-

HSD1 as having a key role within adipose tissue in regulating global metabolic homeostasis. 

In a comparative study, a mouse overexpressing 11β-HSD2 in adipose tissue caused 

adipose tissue-specific glucocorticoid deficiency (105). These mice had reduced fat mass and 

were resistant to weight gain on a high-fat diet. Unexpectedly, the reduction in fat mass was 

predominantly due to a decrease in the subcutaneous depot, with a less dramatic impact upon 

the visceral adipose tissue. Globally, the mice had improved glucose tolerance and insulin 

sensitivity. 

1.8. 11β-HSD1 & Uraemic insulin resistance  

 There is a large body of data linking 11β-HSD1 to metabolic syndrome in laboratory 

models and in human studies in diabetic and non-diabetic populations. However, the role of 

11β-HSD1 in uraemia and its relation to uraemic insulin resistance has not been well described. 

We aim to assess the expression and activity of hepatic 11β-HSD1 and its relationship to 

uraemic insulin resistance, hepatic gluconeogenesis, and the effect of CBX as well as novel 

11βHSD1 inhibitors on uraemic insulin resistance using rodent and transgenic murine models 

of uraemia. 

On the background presented in the preceding sections, the general aim of the work 

carried out for this thesis was to investigate the impact of hepatic pre receptor glucocorticoid 

metabolism upon hepatic glucose homeostasis in the uraemic rat and mouse models and hence 

hepatic and whole body insulin sensitivity in uraemia. The overall hypothesis was that aberrant 

hepatic pre receptor glucocorticoid metabolism is implicated in the pathophysiology of the 

metabolic syndrome and insulin resistance seen in uraemia. Investigations were planned in 
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vivo, to characterise the expression and activity expression of hepatic 11β-HSD1 in normal 

rodent liver and how this compared with uraemic liver from rodents with either surgical or 

adenine-induced models of renal failure. 

A number of experimental investigations were planned in rodent and murine models of 

uraemia, with the overall aim being to detect any in vivo differences in glucocorticoid 

metabolism between the normal and uraemic groups and correlating these differences with 

makers of metabolic phenotype and hepatic glucose production by gluconeogenesis. These 

studies are described in the following chapters with specific aims and hypotheses detailed in 

relevant sections. 
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2. Materials and Methods 
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2.1. Models of Uraemia 

2.1.1. Animals 

The rat is the most commonly used animal to create animal models for the study of 

renal and cardiovascular disease (Table 2.1.) (106). Types include Wistar, Sprague-Dawley, 

Fawn-hooded, Fisher and Lewis. The advantages of using rat models are that they are 

inexpensive and have short gestation periods (59-72 days), meaning large sample sizes can be 

achieved in a short space of time. The disadvantages are predominantly due to the anatomical, 

physiological and pathological differences between rat and man. However, the chief drawback 

of rat models is the lack of transgenic models  

2.1.1.1. Animal Husbandry 

Experiments were performed on male Wistar rats purchased from Harlan Ltd, Bicester, 

Oxfordshire (Bicester, Oxfordshire OX25 1TP), UK. All animals were kept in accordance with 

the Animals Scientific Procedures act 1986. Mice were housed 6 to a cage at a fixed 

temperature of 21±2oC with 40% humidity and 12 h light /dark cycle. All animals had free 

access to drinking water and rodent chow.  

2.1.2. Rodent models of Uraemia 

A variety of rodent models of uraemia have been described. The differences in models 

are due to differences in the establishment of renal failure, whether an acute impairment (via 

temporary renal artery clamping) or established chronic renal impairment models. While 

models such as Unilateral Ureteric Obstruction (UUO) are more useful for assessment of tissue 

response to obstruction, injury and fibrosis, we selected the Subtotal Nephrectomy (SNx) and 

Adenine-induced diet (Ad) as established models of moderate to severe renal failure. 

2.1.2.1. SNx 

The 4-week SNx model is the most widely used model of chronic uraemia and displays 

many of the common characteristics that define the uraemic phenotype. The model leads to 
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animals that are growth restricted, hypertensive, anaemic, dyslipidaemic, proteinuric, and 

polyuric with a high fractional excretion of sodium and histological evidence of left ventricular 

hypertrophy in the heart. In addition, it has also been shown to lead to hypocalcaemia, 

hyperphosphatemia, and hyperparathyroidism, bioenergetic failure and reduced capillary 

density and myocardial fibrosis (107). 

Uraemia was induced surgically in male Wistar rats using an established two-stage 5/6 

nephrectomy procedure for a period of 4 weeks (108). Alternatively, rats were sham operated 

by removing the renal capsule and replacing the intact kidney. After 10 weeks, carbenoxolone 

(50mg/kg/day; 2 week) was administered to SNx rats by oral gavage, giving 3 groups. (1) SNx 

(uraemic, U), (2) SNx plus carbenoxolone (U+CBX), (3) sham operated (sham, S). After 12 

weeks, animals were killed and blood was centrifuged to obtain plasma whilst the liver was 

snap frozen in liquid nitrogen for protein and mRNA analysis. 

The SNx procedure established renal failure reliably within two weeks, but severe renal 

failure was induced within four weeks of uraemia (Table 2.2.). CBX was administered initially 

for one week with variable results in dynamic physiological testing: the treatment duration was 

increased to two weeks with reliable and reproducible results at baseline and dynamic testing. 

Overall food intake and body weight was not different between the groups (Table 2.3). 

2.1.2.2. Adenine-induced Uraemia  

The rodent adenine diet (Ad) model of CKD is well established (109). All mammals 

with the exemption of rodents produce adenine as a metabolite of the polyamine pathway. 

Unlike rodents, in other mammals, adenine is salvaged by adenine phosphoribosyltransferase 

(APRT).  When functional APRT is absent adenine becomes a substrate for xanthine 

dehydrogenase which oxidises adenine into 2, 8-dihydroxyadenine (DHA) and because DHA 

has very low solubility it precipitates in the renal tubules. Rodents lack APRT and AD treated  
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Table 2.1. Publications on Animal Models of Renal and Cardiovascular Disease on 

PubMed (106). 

 

 

Species Number of References (No Date Limits) 

Rat  1830 

Mouse 416 

Pig 325 

Dog 275 

Rabbit 173 

Cat 28 

Baboon 15 

Cattle 15 

Guinea pig 12 

Hamster 10 
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Table 2.2. Serum and urine parameters at two weeks and four weeks after SNX.  

** P< 0.001significant versus control (2 or 4 weeks SNx). 

 

 

 

 

 

 

 

 

Table 2.3. Body weight and food intake at two and four weeks after SNX.

Laboratory parameters  Sham (n=8) SNx (n=8) 

2 wk 4 wk 

Serum Sodium (mmol/l) 135.9 ± 5.2 136.3±2.3 138.1 ± 3.1 

Serum Potasssium(mmol/l) 4.9 ± 0.9 5.1±3.9 4.8 ± 0.5 

Serum Urea (mM)   5.5 ± 0.3 24.1±6.9** 30.7 ± 3.6 ** 

Serum Creatinine (mM)   38.1 ± 0.9 98.5±8** 139.3 ± 10.9 ** 

Proteinuria (g/l) 0.27 ± 0.04 3.4±1.2 ** 3.6 ± 0.2 ** 

 Sham SNx (n=8) 2 wk SNx (n=8) 4 wks 

Body weight (g) 307±92 309±60 303±48 

Food intake (g) 27 ± 1 25±3 24± 2 

Mean HR (pm) 403 ± 2 401±50 416 ±36 

MBP (mm Hg) 119 ± 26 125±14 152± 13 
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animals demonstrate nephrolithiasis with extensive tubular dilatation, inflammation, necrosis 

and fibrosis with accompanying renal failure. 

Wistar 7 week old rats, which are fed a 0.75% AD over 4 weeks, have been shown to 

demonstrate progressive macrophage and fibroblast infiltration into renal interstitium from 14 

days as well as expression of chemokines and cytokines including Il-1β, Il-6, TNFα, MCP-1, 

CCR-2, and TGF-β (109). Tubular epithelial cells are physically stimulated by DHA crystals 

to produce the above cytokines and chemokines resulting in progressive peri-tubular fibrosis. 

The AD is therefore a model of progressive crystal nephropathy and interstitial fibrosis which 

is the final common pathway of most human chronic renal failure regardless of the original 

disease. APRT deficiency is an autosomal recessive disorder in humans who demonstrate DHA 

urolithiasis and can go on to develop chronic renal failure. We fed rats allocated to experiment 

groups a 0.75% Adenine diet obtained from Special Diets Service.TM All AD fed rats were 

otherwise kept in identical conditions as their sham littermates The diet was identical to 

standard chow (SDS RM1) apart from being pelleted as opposed to expanded and containing 

Adenine. All food was kept within the expiry date of 3 months. The AD reliably produced 

impaired renal function as measured by plasma creatinine (Table 2.4.).  The AD also produced 

weight loss reliably but non-significantly (Table 2.5.) and a criticism of the model is the 

potential confounding effect of weight loss. Against this is the acknowledged positive 

correlation between increasing weight and insulin resistance, a chronic anorexic/starvation 

state being hypoinsulinaemic as befitting its physiological role. 

Male Wistar rats (7 wk old, eight per group) were fed a high-adenine (0.75%) diet for 

2 weeks (Harlan Biotech). Following this, carbenoxolone (50mg/kg/day; 2 week) was 

administered by oral gavage along with adenine or sham diet giving 4 groups. (1) Ad (uraemic, 

U), (2) Adenine plus carbenoxolone (Ad+CBX), (3) sham operated (sham, S), (4) Sham plus 

carbenoxolone (S+CBX). After four weeks on each diet weeks, animals were killed and blood 
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harvested and centrifuged to obtain plasma whilst liver was snap frozen in liquid nitrogen for 

protein and mRNA analysis.  

2.1.3. Dynamic Physiological testing 

A variety of laboratory techniques have been developed to assess insulin secretion and 

dispersal and glucose homeostasis in vivo.  A brief critique of the techniques is presented here 

followed by a description of the techniques chosen in the present study. 

2.1.3.1 Measuring fasting glucose and insulin 

2.1.3.1.1. Principle  

Measurement of fasting glucose and insulin is a simple screening method for detecting 

alterations in glucose metabolism. Typically, a single blood sample is taken from an 

unrestrained mouse by cutting off the tip of the tail or via an arterial catheter (110).  

There are many commercially available kits for measuring plasma insulin levels, either 

by radioimmunoassay or by ELISA. Plasma requirements for these assays range from 5- 25 ul. 

Investigators must be careful not to over-interpret findings from fasting measurements in mice. 

Fasting measurements in humans are used as a surrogate index of insulin sensitivity. Humans 

typically fast overnight and morning glucose and insulin concentrations represent a basal 

‘steady state’. Rats and mice consume food throughout the day and, as such, feeding patterns 

in mice do not mimic human feeding patterns. It is thus possible that fasting glucose and insulin 

levels do not represent a basal steady-state in mice.  

2.1.3.1.2 Method: Accu-Chek™ glucometer for tail capillary glucose measurement. 

 Regular tail-prick capillary samples were taken from sedated animals at regular 

intervals according to dynamic physiological testing using Accu-Chek Aviva ® capillary 

Glucose measurement kits as per manufacturer’s instructions. 
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Table 2.4. Serum and urine parameters at two weeks and four weeks after AD diet; ** 

P< 0.001significant versus control (2 or 4 weeks AD).  

 

 

Table 2.5. The mean body weight of AD rats was not significantly different compared to 

sham-operated group despite CBX gavage.  

Laboratory  parameters Sham Adenine 

2weeks 4 weeks 

Serum Sodium (mmol/l) 136.5 ± 4 138.5±5 135.7 ± 0.2 

Serum Potasssium 

(mmol/l) 

4.4 ± 0.1 5.1±1.2 5.24 ± 0.0 * 

Serum Urea (mmol/l)   7.2 ± 0.4 32±12.8 86.3±8.5   ** 

Serum Creatinine (µmol/l) 39.5± 2 160±24.9 324.5±20 ** 

Proteinuria (g/24 h) 0.06 ± 0 1.2±.8 3.23 ± 0.3** 

 Sham Adenine 

2 weeks 4 weeks 

Body weight (g) 325.4 ±4 309.8±5 308.6 ±4 

Food intake (g/24 h) 25.03 ± 2.1 22±.9 21.5 ± 3.1 

Mean HR (pm) 436±1 425±2 445 ±3 

MBP (mm Hg) 122 ± 27 

 

137 ± 25 

 

129 ± 2 
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2.1.3.2. Glucose tolerance tests 

 oral or intra-gastric dosing (OGTT), intraperitoneal injection (IPGTT) or intravenous 

injection (IVGTT) (111). The results of a GTT are determined by insulin secretion, insulin 

action, and ‘glucose effectiveness’. 

The protocol for carrying out a GTT is simple. Following a fast, a glucose load is 

administered and blood glucose is measured over a span of 2 h. Typically, a blood sample (0.5 

ml or less) is taken prior to the glucose load (for baseline measurements) and then at 15- to 30-

min intervals following the glucose load for the duration of the experiment.  

The standard approach for fasting mice prior to a GTT is an overnight fast (111-113). 

This is likely a procedural remnant from GTTs performed in humans, which are typically 

conducted in overnight-fasted subjects (111). The choice of the route of administration depends 

on a number of variables, including the specific hypothesis being tested and the level of 

expertise of the personnel performing the tests.  

OGTTs represent the most physiological route of entry of glucose. Typically, the 

glucose load is gavaged directly into the stomach via a gavage catheter or administered with a 

feeding needle. Mice can also be trained to consume a small volume of glucose solution in a 

short window of time. Whether administered orally or intragastrically, the clearance of glucose 

during an OGTT is affected by several factors, including the rate of gastric emptying and the 

incretin effect, which is the effect seen in enteric versus non-enteric glucose load. If an 

investigator wishes to circumvent these processes, then an IPGTT or an IVGTT can be 

performed. We chose the IPGTT to avoid the bias introduced by variations in gastric feeding. 

When administering a GTT to humans, a fixed (standard) dose of glucose is given, 

regardless of the weight of the patient. The standard approach in rats and mice is to base the 

dose of glucose on the weight of the animal, usually at 1 or 2 g/kg (111,112). This is reasonable 

as long as the weight and body composition for different cohorts are similar. However, in 
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models with increased weight, which is common in many diabetic models, the increased body 

weight is typically due to a higher fat mass, without a proportionately higher lean mass. This 

is an important consideration, as lean mass (muscle, brain and liver) is the principal site of 

glucose disposal. If a glucose dose is administered based on total body weight, then the dose 

given to an obese mouse will be biased by the increase in fat mass. Therefore, the amount of 

glucose to which the lean tissue is exposed to in an obese mouse will be disproportionately 

high compared with that in a non-obese mouse with a similar lean mass. Obese mice could be 

misdiagnosed as being glucose intolerant simply because they receive more glucose for the 

same lean body mass. Therefore, if body composition data are available, then it is more 

appropriate to base the dose of glucose for a GTT on the lean body mass. However, obesity or 

weight gain was not a consideration in our rodent and murine models. 

The standard presentation of results from GTTs is a description of blood glucose levels 

over time after the glucose administration. Generally, a time course of absolute glucose 

concentrations is presented. This is valid as long as the groups being compared have equivalent 

fasting glucose levels. When fasting glucose levels differ, as is often the case with diabetic or 

insulin resistant models, a time course of absolute glucose levels should still be presented along 

with a calculation of the area under the curve above baseline glucose. Accurate interpretation 

of a GTT can also benefit greatly from presentation of a time course of insulin levels. This 

requires sampling of larger blood volumes than those used for the measurement of glucose. 

Depending on the assay, up to 0.5 ml of blood can be required to measure insulin levels. We 

chose an initial fasting insulin and glucose sample with an insulin profile over the early 

(insulin-secretory) phase of the glucose load. 

The frequency of sample acquisition was influenced by the sampling method (tail vs 

arterial catheter, as arterial catheterization would be a terminal procedure in our models). 
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Typically, samples are obtained at baseline and every 15-30 min following administration of 

the glucose bolus. 

A caveat of the glucose tolerance tests is that it cannot be used to assess insulin action, 

as glucose tolerance and insulin action are not equivalent. 

2.1.3.2.2. Glucose Tolerance test: Method 

On day 28 of adenine treatment or four weeks after stage 2 of SNx, after both groups 

had undergone 14 days of CBX treatment, rats were fasted overnight and injected i.p. with 2 

g/kg body weight of 25% dextrose (Sigma, Poole, UK) prepared 24 h beforehand. Blood 

glucose (tail vein) was measured (Accu-Chek, Roche, UK) at 0, 15, 30, 45, 60, 90 and 120 min 

and additional blood was collected in a heparinized tube at 0,30 and 45 min. Blood was 

centrifuged at 16,000 g for 15 min and the plasma was stored at -800C for analysis of plasma 

insulin concentration. 

2.1.3.3. Insulin tolerance tests 

2.1.3.3.1. Insulin tolerance tests: Principle 

Like GTTs, Insulin Tolerance Tests (ITTs) monitor glucose concentration over time, 

but in response to a bolus of insulin rather than of glucose. The convention is to conduct ITTs 

in mice following a short (5- to 6-h) fast. Glucose concentration is monitored every 15 to 30 

min for 60 to 90 min following a bolus of insulin administered via intraperitoneal or 

intravenous injection. The degree to which glucose falls following the insulin bolus is 

indicative of whole-body insulin action (113-114). 

Differences in body weight and composition influence the dose of the insulin bolus 

(99). An obese mouse (a mouse with increased fat mass) will receive a larger dose of insulin 

than a non-obese mouse even though the mass of insulin-sensitive tissue (lean mass) might not 

differ significantly, or at least proportionately, to the difference in total body mass. Thus, 

normalizing the insulin dose to lean body mass, if such information is available, is a more 
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accurate means of determining the dose of insulin to be given. However, this was not a 

consideration for our model; though fat loss was observed in uraemic rats and mice, total weight 

did not change significantly over the duration of uraemia (maximum four weeks). A longer 

duration of uraemia has previously been associated with high procedural mortality 

(unpublished data, own lab). ITTs are typically conducted following short fasts in order to 

avoid the hypoglycaemia that would likely occur in overnight-fasted animals. As with GTTs, 

results from ITTs should be presented as a time course of glucose levels. In addition, results 

can be expressed as the inverse of the area under the curve below baseline glucose. A common 

method for presenting glucose levels during an ITT is as a percentage of basal glucose. This is 

a valid means of presenting results if the groups being compared have equivalent fasting 

glucose levels. However, if fasting glucose differs among groups, interpretation of a relative 

fall in glucose can lead to an erroneous conclusion. For the same absolute decrease in blood 

glucose following an insulin bolus, a rodent with higher fasting glucose will exhibit a smaller 

percentage fall in glucose. Therefore, if blood glucose is expressed only as a percentage of 

basal, the conclusion would be that the rodent with higher fasting glucose is insulin resistant. 

Although this might be the case, drawing such a conclusion from the ITT results would be an 

over-interpretation of the data. It is also important to note that the half-life of insulin is ~10 

min in rats and mice (99,100). Therefore, differences in the glucose concentration after the 

initial fall (i.e. beyond 30 min after the insulin bolus) might not reflect an effect on insulin 

action. If a particular model exhibits a defect in the counter-regulatory response, this could be 

misinterpreted as enhanced insulin action. We have therefore taken the initial response to 

insulin load to indicate insulin action. 
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2.1.3.3.2. Insulin tolerance test: Method  

On day 28 of adenine treatment or 4 weeks after stage 2 of the S Nx, after both groups 

had undergone 14 days of CBX treatment, rats were fasted overnight and injected i.p. with 2 

units/kg body weight of porcine Insulin (Intervet, Milton Keynes, UK) prepared immediately 

before the procedure. Blood glucose (tail vein) was measured (Accu-Chek, Roche, UK) at 0, 

15, 30, 45, 60, 90 and 120 min and additional blood was collected in a heparinized tube before 

the insulin injection (time 0). These samples were centrifuged at 16,000 g for 5 min and the 

plasma was stored at -800 C for analysis of plasma insulin concentration. 

2.1.3.4. The intraperitoneal Pyruvate Tolerance Test 

2.1.3.4.1. The intraperitoneal Pyruvate Tolerance Test: Principle 

The intraperitoneal Pyruvate Tolerance Test (iPTT, 1-2g/kg body weight) in 15 h 

fasted, awake or sedated mice is a variant of the intra-peritoneal glucose tolerance test (GTT) 

in which pyruvate is injected instead of glucose (114). The pyruvate bolus elicits a glycaemic 

response that reflects hepatic gluconeogenesis. Although the method can be useful in cases of 

severe alterations in hepatic gluconeogenesis, it is highly dependent on the variables that 

influence the outcome of a glucose tolerance test (GTT), including glucose-stimulated insulin 

secretion (GSIS) and insulin sensitivity. It is thus always necessary to analyse results from a 

pyruvate tolerance test in light of data obtained from a GTT, GSIS and ITT.  

2.1.3.4.2. The intraperitoneal Pyruvate Tolerance Test: Method  

On day 28 of adenine treatment or four weeks after stage 2 of the subtotal nephrectomy, 

after both groups had undergone 14 days of CBX treatment, rats were fasted overnight and 

injected intraperitoneally (i.p.) with 2 g/kg body weight of sodium pyruvate (Sigma, Poole, 

UK) prepared 24 hours beforehand. Blood glucose (tail vein) was measured at 0, 15, 30, 45, 

60, 90 and 120 min and additional blood was collected in a heparinized tube at 0, 30 and 45 
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min. Blood was centrifuged at 16,000 g for 15 min and the plasma was stored at -800 C for 

analysis of plasma insulin concentration. 

2.1.3.5. Hyperinsulinemic Euglycemic Glucose Clamp 

The "gold-standard" in assessing insulin sensitivity is a hyperinsulinaemic-euglycaemic 

clamp or insulin clamp (100-114). In this procedure, insulin is infused at a constant rate 

resulting in a drop in blood glucose. To maintain blood glucose at a constant level, exogenous 

glucose (50% Dextrose) is infused into the venous circulation. The amount of glucose infused 

to maintain homeostasis is indicative of insulin sensitivity. Following the induction of 

anaesthesia, a midline incision is made over the neck, and the left common carotid artery and 

right jugular vein are catheterized. Inserted catheters are flushed with heparinized saline, then 

exteriorized and secured. Animals are allowed to recover for 4-5 days prior to experiments, 

with weight gain monitored daily. Only those animals who regain weight to pre-surgery levels 

are used for experiments. On the day of the experiment, rats are fasted and connected to pumps 

containing insulin and D50. Baseline glucose is assessed from the arterial line and used a 

benchmark throughout the experiment (euglycaemia). Following this, insulin is infused at a 

constant rate into the venous circulation. To match the drop in blood glucose, D50 is infused. 

If the rate of D50 infusion is greater than the rate of uptake, a rise in glucose will occur. 

Similarly, if the rate is insufficient to match whole body glucose uptake, a drop will occur. 

Titration of glucose continues until stable glucose readings are achieved. Glucose levels and 

glucose infusion rates during this stable period are recorded and reported. Results provide an 

index of whole body insulin sensitivity. It can be further enhanced by the use of radioactive 

tracers that can determine tissue specific insulin-stimulated glucose uptake as well as whole 

body glucose turnover and contribution of hepatic gluconeogenesis indirectly.  

Logistic considerations precluded the use of this method in the current study. 
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2.1.4    11β-HSD1 -/- mice 

We used an established model of 11b-Hydroxysteroid dehydrogenase type 1 knockout 

mice which demonstrate attenuated glucocorticoid-inducible responses and are resistant to 

hyperglycaemia on obesity or stress (88, 89,115). 

2.1.4.1. Generation, transfer and breeding of 11β-HSD1 -/- mice 

Mice bearing targeted disruption of the 11b-HSD-1 gene were developed by our collaborators 

in Edinburgh and breeding pairs transferred to the Biological Sciences Unit, at our institution. 

Briefly, the replacement vector was based on plasmid pBS-βKnpA16 containing the 

neomycin resistance gene flanked by the human β-actin promoter and the simian virus 40 

polyadenylation signal sequence. (88, 89). Cells from the targeted ES cell clone were injected 

into C57BL/6J blastocysts and transferred into C57BL/CBA foster mothers. In the original 

reports, chimeras were bred to MF1 females, and the progeny was genotyped by Southern 

analysis of BamHI-digested DNA (115). The targeted 11β-HSD-1 transgene was re-derived 

onto the C57BL/6J strain by embryo transfer and then backcrossed with C57BL/6J mice for 10 

generations before the current studies (115). Two breeding pairs of 11β-HSD1 -/- mice were 

transported to our institution, back-crossed into C57BL/6J, re-genotyped by PCR and northern 

blot (performed by Ms Man, Department of molecular endocrinology, University of Edinburgh, 

Edinburgh) and then used in accordance with UK home office regulations. 

 Male progeny of mice with targeted global disruption of the 11β-HSD1-/- gene 

congenic on C57BL/6J were derived as described previously (103). Controls were wild type 

(WT) C57BL/6J, age-matched males. Adult 8-wk old WT and 11β-HSD1-/- (six to eight per 

group) were fed a control or 0.25% AD for 4 wk. Mice were fasted overnight and killed at 

approximately 9:00 am, within 1 min of disturbing each cage, or used in dynamic physiological 

studies. 
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2.1.4.2. 11β-HSD1 -/- murine model of adenine-induced Uraemia   

Male progeny of mice with targeted global disruption of the 11βHSD1−/− gene 

congenic on C57BL/6J were derived as described. Controls were WT C57BL/6J, age-matched 

males. Adult 8-wk old WT and 11βHSD1-/- (six to eight per group) were fed a control or 0.25% 

AD for 4 wk. This diet was based on previous reports in the literature on adenine-induced 

uraemia in mice. 

Mice were fasted overnight and killed at approximately 9:00 am within 1 min of 

disturbing each cage, or used in dynamic physiological studies. 

 No. of groups N  Excluded* N  

SNx IPGTT 4 32 3 29 

SNxIPITT 4 32 2 30 

SNx IPPTT 4 32 2 30 

Ad IPGTT 4 32 4 28 

Ad IPITT 4 32 3 29 

Ad IPPTT 4 32 2 30 

Murine IPGTT 4 32 3 29 

Murine IPITT 4 32 3 29 

Murine:UE2316 3 32 1 31 

 

Table.2.6. Number of groups per experimental model, total number of animals used, and 

excluded in each group. 
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Fig. 2.1. A, B, C. D. Serum Parameters of Adenine-induced uraemia and control diet fed 

C57BL/6J and 11β-HSD1-/- mice. A: serum urea, B, plasma creatinine, C, Cholesterol and 

D. Triglycerides.  Renal dysfunction was determined in adenine-fed (AD) mice (8 per 

group) by measurements of serum levels of creatinine, urea, sodium and potassium. Data 

are expressed as mean ± SEM. *P<0.05 vs. control, ##P<0.05 vs. c56 AD 
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2.2.5 Quantification of Renal Injury  

 Plasma sodium, potassium urea, creatinine and cholesterol were measured 

commercially using IDEXX laboratories. 

 

2.3. Corticosterone measurements 

Corticosterone concentrations in the media were measured by using a commercial EIA 

corticosterone kit (Cayman Chemicals, Cambridge Bioscience Ltd, Cambridge, UK). This 

assay is based on the competition between corticosterone and a corticosterone - 

acetylcholinesterase (AChE) conjugate (corticosterone tracer) for  a  limited  number  of 

corticosterone -specific  rabbit  antiserum  binding  sites.  Because the concentration of the 

corticosterone   tracer is held constant  while  the  concentration  of corticosterone varies, the  

amount  of Corticosterone Tracer  that  is  able  to  bind  to  the  rabbit  antiserum  will be  

inversely  proportional  to  the  concentration  of corticosterone in  the  well. This rabbit 

antiserum-corticosterone (either free or tracer)  complex  binds  to  the  mouse  monoclonal 

anti-rabbit IgG that has been previously attached to the well. The plate is washed to remove 

any unbound reagents and then Ellman’s Reagent (which contains the substrate to AChE) is 

added to the well. The product of this enzymatic reaction has a distinct yellow colour and 

absorbs strongly at 412 nm. The intensity of this colour, determined spectrophotometrically, is 

proportional to the amount of corticosterone tracer bound to the well, which is inversely 

proportional to the amount of free corticosterone present in the well during the incubation. The 

assay was performed according to the procedure described in the kit (116). Media samples were 

diluted 1:500 for the values to fall within the standard curve of corticosterone (20-20000 

pg/ml). 
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2.4.1    Colourimetric assay for Non-Esterified Fatty Acids 

A commercially available ELISA (Cambridge Biosciences, Cambridge, UK) was used 

for NEFA assay in tissue homogenate and serum. Cell Biolabs’ Free Fatty Acid Assay Kit 

measures non -esterified fatty acids (NEFA) in serum and plasma by a coupled enzymatic 

reaction system (ACS-ACOD Method).  First, Acyl CoA Synthetase (ACS) catalyzes fatty acid 

acylation of coenzyme A. Next, the acyl-CoA product is oxidized by Acyl CoA Oxidase 

(ACOD), producing hydrogen peroxide which reacts with the kit’s colourimetric probe 

(absorbance maxima of 570 nm). The Free Fatty Acid Assay Kit is a simple, colourimetric 

assay that quantitatively measures the free fatty acid concentration (non-esterified) in various 

samples using a 96-well microtiter plate format. The kit contains a palmitic acid standard and 

has a detection sensitivity limit of ~15 μM (117). 

2.4.2. ELISA for IL-6, IL1β, & TNFα 

R&D systems Rat IL-1beta ELISA kit,  RLB00, R&D systems Rat IL-6  ELISA kit,  

and R&D systems Rat TNFα  ELISA kit RTA00 were used according to manufacturer’s 

instructions. In brief, the Quantikine Rat cytokine Immunoassay is a 4.5 hour solid phase 

ELISA designed to measure rat cytokine levels in cell culture supernates, serum, and plasma. 

It contains E. coli-expressed recombinant rat TNF-α, IL1β or IL6, and antibodies raised against 

the recombinant factor. This immunoassay has been shown to quantitate the recombinant rat 

cytokines accurately. Results obtained using natural rat cytokine standard showed dose 

response curves that were parallel to the standard curves obtained using the recombinant kit 

standards.  

 

Before use, all reagents and samples are brought to room temperature before use. All samples, 

standards, and controls were assayed in triplicate.50 µL of Standard, Control, or sample was 

then added to each well of a 96 well plate. The plate was covered with a plate sealer, and 
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incubated at room temperature for 2 hours. Each well was aspirated and washed, repeating the 

process 4 times for a total of 5 washes. 100 µL of Conjugate was then added to each well. The 

microplate was then covered with a new plate sealer, and incubated at room temperature for 2 

hours. This was then aspirated and washed five times, then 100 µL Substrate Solution added 

to each well. This was then incubated at room temperature for 30 minutes while protecting 

from light, then 100 µL of Stop Solution to each well added. The resultant intensity was read 

at 450 nm within 30 minutes, with wavelength correction set to 540 nm or 570 nm . 

2.5. RNA extraction and PCR. 

2.5.1. Isolation of cellular RNA  

RNA is extracted from cultured cell monolayers or tissue explants using a single step 

procedure developed by Chomczynski (118). This is achieved by homogenizing tissue or lysis 

of cultured cells in TRI (Sigma-Aldrich) reagent. This solution contains phenol and guanidine 

thiocyanate, and immediately and effectively inhibits RNase activity. The addition of 

chloroform followed by centrifugation results in the formation of three phases. RNA is present 

exclusively in the aqueous phase, and is subsequently precipitated with isopropanol. 

2.5.2. Method 

For cultured cell monolayers: media was removed and cells washed in PBS before 1mL 

of TRI reagent was added per well (for a 12-well plate) and incubated at room temperature for 

5 min using a mechanical homogeniser. For tissue ~20mg of tissue was homogenized in 1.5mL 

of TRI reagent under liquid nitrogen with mortar and pestle, having being stored according to 

instructions in RNAlater ICE (LifeTechnologies, UK), then homogenised using a mechanical 

ultrasonic homogeniser at 18,000 Hz. For both cultured cell monolayers and tissue explants, 

cell lysates in TRI reagent were transferred to eppendorf ® tubes. 200μL of chloroform was 

added and tubes were shaken vigorously for 30 s, before incubation at room temperature for 15 

min. The mixture was centrifuged at 10,000 g for 15 min at 4˚C.  
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 The Aqeuous phase solution containing the RNA was then purified used with 

RNAeasy mini Kit (Qiagen, Manchester, UK). The aqueous solution was mixed with buffer 

RLT (with β-mercaptoethanol for tissue homogenates). The resulting solution was then purified 

and RNA isolated in 1.5 or 2 ml eppendorf ® tubes and stored at -800C. Isolated RNA was 

further purified by removal of any contaminating genomic DNA by incubation at 30°C with 

DNase I enzyme (Ambion, Warrington, UK). 

 

2.5.3. mRNA detection and quantification  

The quantity of RNA was measured using NanoDrop ND-1000 UV-Vis 

Spectrophotometer (Thermo Scientific, Fisher Scientific, Loughborough, UK). The absorbance 

of 2μl of RNA at 260nm and 280nm was determined where 1 OD260 = 40μg/mL of RNA and 

the OD260/OD280 ratio indicates the RNA purity. Only OD260/OD280 ratios in the range of 1.8- 

2 were used. All measurements were made with respect to a blank consisting of the nuclease 

free water in which the RNA was suspended. 

In addition, the integrity of the RNA was assessed by electrophoresis on a 1% agarose 

gel containing 0.15μg/mL ethidium bromide. The RNA separates down the gel according to its 

molecular mass and the resultant bands were visualized under UV light. Intact RNA shows two 

sharp bands corresponding to the highly abundant 28S and 18S rRNA.   

2.5.4. Reverse transcription: Principles 

Reverse transcription (RT) is the process of converting single stranded RNA to 

complementary DNA (cDNA), using RNA-dependent DNA polymerase. Initially the extracted 

RNA is heated to denature the secondary structure which allows the random hexamers to anneal 

to the RNA template. The reverse transcription process is initiated by increasing the 

temperature further, allowing the RNA-bound primers to be extended generating a 
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complementary DNA copy of the RNA template. Lastly, the reaction is heated to a high 

temperature to inactivate the enzyme and terminate the reaction. 

2.5.5. RT: method 

All RT reactions were carried out using Applied Biosystems Reverse Transcription Kit 

(Applied Biosystems, Warrington, UK). The reagents listed in the table below were combined 

in an eppendorf tube to generate a 2x RT master mix. 

1μg of RNA was diluted with nuclease free water to a volume of 10μl before 10μl of 

2x RT master mix was added giving a final volume of 20μl. Samples were loaded onto a 

thermal cycler (Applied Biosystems, Warrington, UK) and incubated at 25°C for 10 min 

followed by 48°C for 30 min and finally 95°C for 5 min to terminate the reaction. 

 

 

2.5.6. Real-time PCR: principles 

Real-time PCR or relative quantitative PCR is a technique used to monitor the progress 

of a PCR reaction in real-time. Using oligonucleotide primers that are complementary to the 5’ 

and 3’ ends of a region of interest, cDNA can be amplified by PCR. The presence of an 

Component Vol per sample (ml) 

10x RT Buffer  2 

25x dNTP mix (100mM)  0.8 

10x Random Hexemers  2 

Reverse Transcriptase 1 

RNase inhibitor 1 

Nuclease-free H2O 3.2 

TOTAL VOLUME 10 

Table 2.7. Components of RT buffer. 
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oligonucleotide probe complementary to a sequence downstream of one of the primers allows 

quantification of the target transcript by fluorescence (Figure 2.2.). This probe is chemically 

synthesized with a fluorescent reporter dye at the 5’ end and a quencher dye at the 3’ end. Since 

the quencher dye is in close proximity to the fluorescent reporter dye it reduces the fluorescence 

emitted by the latter through a process called Fluorescence Resonance Energy Transfer 

(FRET). During the primer elongation step of the PCR reaction the probe bound downstream 

from one of the primers is cleaved due to the 5’- 3’ exonuclease activity of taq DNA 

polymerase. Removal of the probe allows primer extension to continue and amplification of 

the sequence of interest but it does not inhibit the PCR process. Cleavage of the probe separates 

the quencher dye from the reporter dye, increasing the fluorescence emitted by the latter (Fig 

2.2). Fluorescence intensity is proportional to the amount of PCR product produced. The point 

at which the target sequence is detected is called the cycle threshold (Ct). This threshold is set 

to the exponential phase of the amplification for the most accurate reading. The higher the 

target sequence copy number within the original cDNA sample the lower the cycle number at 

which fluorescence is observed. Real-time PCR is a relative measure of gene expression, 

therefore, the Ct of the target genes is compared to the Ct of a house keeping gene with constant 

expression levels. This is calculated by subtracting the Ct of the house keeping gene from the 

Ct of the target gene, the resultant value is known as the ΔCt. The greater the ΔCt, the greater 

the change in gene expression due to treatment. 

2.5.7. RTPCR: method 

Real-time PCR was carried out using Applied Biosystems reagents and expression 

assays unless otherwise stated. Target gene expression was normalised against the 

housekeeping gene and these measurements were carried out in separate wells from target gene 

expression measurements (singleplex). The 18s rRNA  standard was used as housekeeping 

gene. All reactions were carried out in micro-tubes for Corbett Rotor Gene. For the 18S house 
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keeping gene, the following components were combined per well: 10μl of 2x MasterMix, 18S 

forward and reverse primers and vic labelled probe (final concentration 25nM each), 100ng of 

cDNA and nuclease free water to a final volume of 20μl. For the gene of interest, the following 

components were combined per well: 10μl of 2x MasterMix, 1μl of 20x expression assay, 

100ng of cDNA and nuclease free water to a total volume of 20μl. Plates were sealed with clear 

adhesive film (Applied Biosystems, Warrington, UK) and run on a realtime PCR system 

(Corbett Rotor Gene 6000, Corbett Research, UK). Data was expressed and fold change was 

calculated using the delta-ct and comparative quantification methods. 

2.6.   Protein assay 

Cells were washed with ice-cold phosphate-buffered saline (PBS) and lysed in ice-cold 

modified RIPA lysis buffer (B 50mM Tris HCl, pH 7.5, 150 nM NaCl, 50 mM NaF, 0.5% 

deoxycholic acid, 1% NP-40, 1mM sodium orthovanadate, 0.1% SDS) . Sodium Flouride 

(NaF) and sodium orthovanadate were used as inhibitor for protein phosposeryl-threonyl and 

phophotyrosyl phosphatases, respectively. Insoluble material was removed by centrifugation 

at 16,000 g for 15 min at 40C. The protein concentrations were measured using a bicinchoninic 

acid assay (Fisher Scientific) following the manufacturer’s instructions. Lysates were matched 

for protein, loaded with Lithium dodecyl sulphate (LDS loading buffer, Invitrogen, UK) and 

separated by discontinuous sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-

PAGE) and transferred to a polyvinylidene difluoride (PVDF) microporous membrane  
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Fig 2.2. Enzyme reactions that make real-time PCR possible (119). 

A: PCR is depicted. High temperatures are used to “melt” double-stranded (ds) DNA into its 

top and bottom strands. This mixture is cooled in the presence of sequence-specific primers 

(denoted as forward and reverse) that anneal to their targets, and an optimal temperature is then 

applied to allow elongation of complementary DNA (arrows) by the action of DNA polymerase 

to complete a cycle. This is repeated numerous times, and, if no reagents are limiting, 2n copies 

of the desired DNA fragment can be obtained.  

B: because DNA polymerase does not utilize RNA as a template, the conversion of RNA to 

DNA can be achieved using the enzyme reverse transcriptase. ssDNA, single-stranded DNA. 
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(Millipore, Bedford, MA). The LDS maintains polypeptides in a denatured state once 

the protein sample has been heated at 1000C for 5 min. SDS is an anionic surfactant and a 

detergent. The latter property is due to the amphiphilic nature of the molecule imparted by its 

tail containing 12 carbon atoms attached to a sulphate group. It denatures the protein by 

disrupting the non-covalent bonds (all intra- and intermolecular protein interactions). In 

addition, it also binds to the amino acids thereby, conferring a negative charge to the proteins 

that is significantly greater than the original charge of the protein a, and an identical charge: 

mass ratio. The resultant electrostatic repulsion causes unfolding of the proteins. The denatured 

proteins act like long rods instead of having a complex tertiary structure, the rate at which the 

resulting SDS coated proteins migrate in the polyacrylamide gel is relative only to its size and 

not its charge or shape. The membranes were blocked overnight in cold room (40C) in blocking 

buffer before being probed with the primary antibody. The primary antibodies were detected 

using horseradish peroxidase conjugated IgG (Santa Crux Biotechnology, Autogen Bioclear, 

Calne, UK) and visualised with enhanced chemiluminescence (ECL) system (GE Healthcare, 

Buchinghamshire, UK). All the primary antibodies were obtained from Cell Signalling 

Technology. The densitometric quantifications of relative band densities were performed using 

NIH Image J software. 

 

2.7.1. Reversed phase extraction of steroids. 

Whole rodent livers were snap-frozen and stored at −80 °C, then weighed and 

homogenized in RIPA buffer using a rotary-blade homogenizer. The homogenate was 

deproteinated immediately with 6% perchloric acid (1:1), then centrifuged at 10,000 ×g for 15 

min. The supernatant was then collected separately and neutralized 1:1 with 1 M potassium 

hydroxide. The supernatant after centrifugation (10,000×g,10 min) was then passed through a 

Chromabond C18 column (Macherey-Nagel) using (i) two times 3 mL methanol, (ii)followed 
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by 3mL of H2O, (iii) 3 mL 50 mM HCl, (iv) 6 mL homogenate, (v) 3 mL 50mM HCl, and (vi) 

13 mL H2O. The steroids were collected using 6 mL 80% methanol (vol/vol), evaporated to 

dryness using a vacuum drier and reconstituted using 200 μL 80% methanol.  

2.7.2. HPLC  

Reconstituted hepatic steroids were quantified by HPLC using an apparatus consisting 

of a PU-2089 Quaternary Low Pressure Gradient Pump and MD-2010 Photometric Diode 

Array UV/Vis Detector (195–650 nm) from Jasco Instruments Ltd. The pump was connected 

to an AS-2055 Autosampler. Peak area was calculated by EZChrome Elite software (Agilent 

Technologies UK Ltd). Separations were performed using a reversed-phase ACE C18 column 

(0.46 cm × 15 cm; 5 μm-particle size) from Hichrom Ltd. The column was equilibrated with a 

solvent mixture consisting of 70:30 water: acetonitrile (CH3CN). After injection, the solvent 

mix was adjusted so that at 7 min, the mixture was 60:40 water: CH3CN. 

Between 7 and 9 min the gradient was increased further so that 0:100 water: CH3CN 

was reached. Between 9 and 10 min the solvent mix was maintained at 0:100 water: CH3CN. 

Between 10 and 11 min the original solvent mix of 70:30 water: CH3CN was reapplied. UV 

chromatograms for 220 and 240 nm were analyzed and a 240:220 ratio was obtained and 

compared against steroid standard data. The AUC was analyzed on Prism 5.0 software to 

quantify unknown steroids against calibration curves. HPLC was performed by Dr Steve 

Harwood. 

 

2.8.1. 11β-HSD1 activity measurement 

11β-HSD1“reductase”activity was measured using methods as previously described by 

Hu et al (120). Snap-frozen rodent livers from the experimental groups were lysed with RIPA 

buffer, then treated with 1% Triton X-100 in assay buffer containing 100 mM NaCl, 1 mM 

EGTA, 1 mM EDTA, 1 mM MgCl 2, 250 mM sucrose, and 20 mM Tris ·HCl. Enzyme assays 
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were performed using 50 mg sample protein incubated for 1 h at 37 °C in 600 μL of assay 

buffer containing NADPH (500μM, Sigma Aldrich) and 11-dehydrocorticosterone (2,000 nM, 

Sigma Aldrich). Immediately following incubation, the samples were placed in a boiling water 

bath for 5 min. 11β-HSD1oxoreductase activity was then assessed by measuring corticosterone 

production using a corticosterone EIA kit, and enzyme activity was expressed in units of pg of 

corticosterone produced per milligram of protein per minute activity assay. 

 

2.9 Specific 11β-HSD1 inhibitor 

The specific 11βHSD1 inhibitor UE2316 is developed and patented by the University 

of Edinburgh. UE2316 has been shown to reduce post-myocardial infarction injury size after 

acute administration (122). To ensure delivery, subcutaneous mini-pumps were implanted in 

C5BL6 mice receiving a sham or AD and UE2316 or vehicle was infused subcutaneously. 

The 2-wk adenine-fed rats were administered UE2316 (20 mg·kg−1·d−1) or vehicle 

(50:50 DMSO/PEG-400) equivalent for 2 wk to create three groups [(i) CON + vehicle, (ii) Ad 

+ vehicle, and (iii) Ad + UE2316]. 
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3. Characterization of hepatic gluconeogenesis, lipogenesis 

and 11β-HSD1 expression, content and activity in uraemic 

rodent liver and response to treatment with CBX. 
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3.1. Introduction 

We investigated the possibility that 11β-HSD1 mediates abnormal elevation of 

gluconeogenesis and lipogenesis in uraemia, using two experimental rodent models with 

entirely distinct mechanisms of development of chronic renal failure. To investigate a potential 

causal role for 11βHSD1 in uraemia-induced insulin resistance, sham and uraemic rats were 

administered carbenoxolone (CBX), a derivative of glycyrrhetinic acid and a potent inhibitor 

of 11β-HSD1 activity which also lowers 11β-HSD1 mRNA and protein levels in rodents. 

3.2. Rodent models 

3.2.1. SNx  

Uraemia was induced surgically in male Wistar rats (Charles River, London, UK) using 

an established two-stage Subtotal nephrectomy (SNx) procedure for a period of 4 weeks (43). 

Alternatively, rats were sham operated by removing the renal capsule and replacing the intact 

kidney. After 2 weeks, carbenoxolone (CBX, 50mg/kg/day; 2 weeks) or vehicle was 

administered to SNx rats by oral gavage, giving 4 groups. (1) SNx, (2) SNx plus carbenoxolone 

(SNx+CBX), (3) sham operated (sham) and (4) sham operated plus carbenoxolone 

(sham+CBX). After 4 weeks, animals were killed between 8.00 and 10.00, while minimizing 

animal handling and stimulation, blood obtained immediately via cardiac puncture and 

centrifuged (1600 g, 10 min) to obtain plasma whilst liver was snap frozen in liquid nitrogen 

for protein and mRNA analysis.  Immunoblots in Fig 3.24 were performed by Dr  P Caton. 

3.2.2. Adenine-induced uraemia  

Alternatively, uraemia was induced using dietary manipulation. Male Wistar rats were 

fed a high-adenine (0.75%) diet for 2 weeks (Lillico Biotechnology, Surrey, UK). Following 

this, carbenoxolone (50mg/kg/day; 2 week) or vehicle was administered by oral gavage along 

with adenine or sham diet giving 4 groups. (1) Adenine (Ad), (2) Ad plus CBX (Ad+CBX), (3) 

sham operated (sham), (4) sham plus carbenoxolone (sham+CBX). After four weeks on each 
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diet weeks, animals were killed between 08.00 and 10.00. Taking care to minimize stimulation, 

blood was obtained immediately via cardiac puncture and centrifuged to obtain plasma (1600 

g, 10 min) whilst liver was snap frozen in liquid nitrogen for protein and mRNA analysis. Data 

for sham + CBX was statistically insignificant from the Sham groups in both the models and 

has not been reported in this study, with the exception of IPITT and IPGTT data. 

3.3. Markers of uraemia 

Plasma and urine levels of urea, creatinine, Na+ and K+ along with urinary protein were 

measured to determine levels of renal dysfunction (IDEXX Laboratories, Horsham, West 

Sussex, UK). 

Serum creatinine was elevated 3.6 fold in SNx and 8.1 fold in Ad rats, while serum urea 

was elevated 5.5 fold and 11.8 fold respectively (Table.3.1). Further markers of chronic renal 

injury are shown in Table 3.1. Body weights, mean food intake and average heart rate were not 

significantly different between the uraemic and sham groups. Mean blood pressure, though 

numerically higher in CBX treated groups but were not significantly different because of wide 

variability (Table 3.2). 
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Table 3.1. Serum Markers of Renal Failure. Renal dysfunction was determined in SNx 

and Ad rats (8 per group) by measurements of serum levels of creatinine, urea, sodium 

and potassium and urine levels of protein at 4 weeks.  Data are expressed as mean ± 

SEM. *P<0.05 vs. sham. 
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Table 3.2. Measurements of body weight (g), Food Intake (g/24 h), heart rate (bpm) 

and blood pressure (mmHg) in experimental models of uraemia (8 per group) was 

measured on day 26 and 27 of treatment. Data are expressed as mean ± SEM. 
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3.4. Hepatic 11β-HSD1 is elevated in CKD 

Hepatic 11β-HSD1 mRNA and protein levels were significantly elevated in SNx (Fig. 

3.1, A and 1B) and Ad rats (Fig. 3.1, C and D) compared to sham animals. Similarly, intra-

hepatic 11β-HSD1 activity was also markedly elevated in SNx and Ad (Fig. 3.2.1 and 3.2.2), 

as was hepatic corticosterone levels (3.3.A. and 3.3.B) when compared to sham animals. 

However, consistent with the notion that 11β-HSD1 determines tissue-specific 

‘intracrine’ glucocorticoid levels this occurred in the absence of elevated systemic serum 

glucocorticoid levels (Fig. 3.4.A. and 3.4.B.).  

Administration of CBX (50 mg/kg/day; 2 weeks) normalized hepatic 11β-HSD1 

mRNA and protein levels, suppressed 11β-HSD1 reductase activity and lowered hepatic 

corticosterone levels in SNx and Ad rats. In contrast, CBX had no effect on serum 

glucocorticoid levels, demonstrating that CBX selectively influences intra-hepatic 

glucocorticoid levels. Similar to observations in liver, white adipose tissue levels of 11β-HSD1 

mRNA and protein were increased in uraemia, an effect that was reversed by CBX (Fig. 3.5). 

In contrast, 11β-HSD1 mRNA and protein levels in skeletal muscle were unchanged across all 

four experimental groups (Fig. 3.6). 

Consistent with recent evidence demonstrating induction of 11β-HSD1 transcription by 

pro-inflammatory cytokines, serum levels of IL-1β TNF-α and IL-6 were elevated in the 

chronic-phase of SNx and adenine-induced uraemia (Fig. 3.7), but were unaffected by CBX, 

suggesting a possible uraemia-dependent mechanism upstream of 11β-HSD1 induction and 

hepatic glucocorticoid metabolism, involving elevated pro-inflammatory cytokine levels.   
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Fig 3.1 Hepatic 11β-HSD1 mRNA and protein are elevated in SNx (3.1 A, B) and Ad (3.1 C, D) 

rats. Data are expressed as mean ± SEM (8/group). Statistically significant differences between 

sham/control and Ad or SNx are indicated by * P<0.05, *** P<0.01. Statistically significant 

effects of CBX treatment are indicated by # P<0.05, ### P<0.01. 
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Fig 3.2. Hepatic corticosterone production (pg/min/mg liver protein), measured in 

hepatocyte homogenate in SNx (3.2.A. and Ad (3.2.B.) models reveal increased 

enzyme activity in Uraemic animals. This rise in activity is attenuated by two weeks 

of CBX gavage at 50 mg/kg /day. Data are expressed as mean ± SEM (8/group). 

Statistically significant differences between sham/control and Ad or SNx are 

indicated by * P<0.05, ** P<0.01. Statistically significant effects of CBX treatment 

are indicated by # P<0.05. 
 

Fig 3.2.B. 

Fig 3.2.A. 
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Fig 3.3.A. 

Fig 3.3.B. 

Fig 3.3. Hepatic corticosterone levels measured in hepatocyte homogenate in SNx 

(3.3.A. and Ad (3.3.B.) models reveal increased enzyme activity in Uraemic animals. 

This rise in activity is attenuated by two weeks of CBX gavage at 50 mg/kg /day. Data 

are expressed as mean ± SEM (8/group). Statistically significant differences between 

sham/control and Ad or SNx are indicated by * P<0.05. Statistically significant effects 

of CBX treatment are indicated by # P<0.05. 
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Fig 3.4. Circulating (plasma) corticosterone levels remain unchanged in SNx (3.4.A. 

and Ad (3.4.B.) Data are expressed as mean ± SEM (8/group).  
 

Fig 3.4.B. 

Fig 3.4.A. 
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Fig 3.5. . White adipose tissue (WAT) HSD1 protein (3.5.A.), total AKt is loading 

control,   and mRNA (3.5.B.) in SNx uraemia and the effect of CBX treatment. 

Sham/control and SNx are indicated by ** P<0.05. Statistically significant effects of 

CBX treatment are indicated by # P<0.05. 
 

Fig 3.5.A 

Fig 3.5.B 
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Fig 3.6. Muscle HSD1 protein (3.6.A.) and mRNA (3.6.B.) in SNx uraemia and the 

effect of CBX treatment. Data are expressed as mean ± SEM (8/group). There was no 

statistically significant difference between the groups.   

Fig 3.6.A 

Fig 3.6.B 

Total -AKT 
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Fig 3.7. Plasma levels of IL-1β (A and D), TNFα (B and E) and IL-6 (C and F) were 

measured in SNx and Ad models using ELISA respectively. Statistically significant 

differences between sham/control and SNx are indicated by * P<0.05.  
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3.4. Uraemic rats develop impaired glucose tolerance and reduced insulin sensitivity. 

After an overnight fast serum insulin levels were found to be markedly elevated in SNx 

(Fig. 3.8) and Ad rats (Fig. 3.9). However, fasting serum glucose concentrations in blood were 

unchanged (Fig. 3.10 and 3.11), suggestive of uraemia-induced insulin resistance.  

To further analyse potential uraemia-induced changes in systemic glucose tolerance and 

insulin sensitivity, we conducted IPGTT tests. During the GTT, blood glucose concentrations 

were significantly higher in SNx and Ad rats compared to sham up to 60 min post-glucose 

administration (Fig. 3.12 and 3.13 respectively). In addition, serum insulin levels were elevated 

during a GTT, remaining elevated 45 min post-glucose administration in SNx and Ad rats 

compared to sham (3.14 and 3.15 respectively). Moreover, impairment in insulin’s ability to 

lower blood glucose levels in an ITT was observed in SNx and Ad rats, with blood glucose 

levels remaining significantly elevated in both models 30 min-post insulin administration (Fig. 

3.16 and 3.17 respectively) during an ITT. 

 Taken together, these data demonstrate the presence of insulin resistance in both of the 

models of uraemia used for this study. To determine whether uraemia-induced insulin 

resistance may be linked to elevated hepatic glucose production, we conducted a pyruvate 

tolerance test (PTT).  Consistent with abnormally elevated hepatic glucose production, SNx 

and Ad rats displayed significantly increased blood glucose levels up to 90 min post-pyruvate 

administration (Fig. 3.18 and 3.19 respectively).  

Collectively, these data demonstrate significant insulin resistance associated with 

abnormally elevated hepatic glucose production, in both SNx and adenine-feeding models of 

CKD. 

Administration of CBX did not improve markers of renal failure in any group (Table 

3.2). Despite this, CBX completely prevented uraemia-induced increases in serum insulin 

levels in both models (Fig. 3.12-3.19). Moreover, 11β-HSD1 inhibition with CBX resulted in 
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a significant improvement in insulin sensitivity and glucose tolerance, as well as reduced 

hepatic glucose production following a PTT. Taken together, these data demonstrate that 

abnormally elevated 11β-HSD1 plays a crucial role in mediating insulin resistance in uraemia. 
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Fig 3.8. Circulating rat insulin was measured using ELISA in SNX and the effect of 

CBX treatment. Statistically significant differences between sham/control and SNx 

are indicated by * P<0.05. Statistically significant effects of CBX treatment are 

indicated by # P<0.05. 
 

Fig 3.9. Circulating rat insulin was measured using ELISA in AD and the effect of 

CBX treatment. Data are expressed as mean ± SEM (8/group). Statistically significant 

differences between sham/control and SNx are indicated by * P<0.05. Statistically 

significant effects of CBX treatment are indicated by # P<0.05. 
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Fig 3.10. Fasting rodent glucose measured using Accu-Chek Aviva device in SNx and 

the effect of CBX treatment. Data are expressed as mean ± SEM (8/group). The 

means were not statistically different. 

Fig 3.11. SNx Rodent glucose was measured using Accucheck Aviva device in AD 

and the effect of CBX treatment noted. Data are expressed as mean ± SEM (8/group). 

The means of the groups were not significantly different. 
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Fig 3.12. SNx IPGTT. Data are expressed as mean ± SEM (8/group). Statistically 

significant differences between sham and SNx are indicated by * P<0.05. Statistically 

significant effects of CBX treatment are indicated by # P<0.05. 
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Fig 3.13. Ad IPGTT. Data are expressed as mean ± SEM. Statistically significant 

differences between control and Ad are indicated by * P<0.05; ** P<0.01. Statistically 

significant effects of CBX treatment are indicated by #P<0.05. 
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Fig 3.14. Plasma insulin during SNx IPGTT. Statistically significant differences 

between sham and SNx are indicated by * P<0.05. Statistically significant effects of 

CBX treatment are indicated by # P<0.05. 

 



- 93 - 
 

Fig 3.15. Plasma insulin during Ad IPGTT. Data are expressed as mean ± SEM. 

Statistically significant differences between control and Ad are indicated by * P<0.05. 

Statistically significant effects of CBX treatment are indicated by # P<0.05. 
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Fig 3.16. Plasma glucose response to SNx ITT. 1u/kg body weight Insulin was injected 

IP and plasma glucose measured. Data are expressed as mean ± SEM (8/group). 

Statistically significant differences between sham and SNx are indicated by * P<0.05; 

Statistically significant effects of CBX treatment are indicated by # P<0.05. 
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Fig 3.17. Plasma glucose response to Ad ITT. 1u/kg body weight Insulin was injected 

IP and plasma glucose measured. Data are expressed as mean ± SEM (8/group). 

Statistically significant differences between sham and Ad are indicated by * P<0.05. 

Statistically significant effects of CBX treatment are indicated by # P<0.05. 
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Fig 3.18. SNx Plasma glucose response to PTT. Statistically significant differences 

between sham and SNx are indicated by * P<0.05. Statistically significant effects of 

CBX treatment are indicated by # P<0.05. 
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Fig 3.19. Ad plasma glucose response to ITT. Statistically significant differences 

between sham and Ad are indicated by * P<0.05. 
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3.5. 11β-HSD1 inhibition suppresses hepatic gluconeogenic gene expression and markers of 

impaired insulin signalling in uraemia. 

Since uraemia-induced insulin resistance was associated with elevated blood glucose 

levels following a PTT, we examined for alterations in hepatic gluconeogenic enzymes.  

Levels of PCK1 mRNA and protein and G6Pase protein were elevated in SNx (Fig 

3.20.) and Ad rodent livers (Fig.3.21) compared to sham animals. PGC1-α mRNA and protein 

levels were also increased in SNx (Fig.3.22) and Ad rodent livers (Fig.3.23).  

Similar to effects observed on systemic insulin resistance, CBX administration reversed 

these effects on gluconeogenic enzymes in both models of uraemia. To assess whether the 

changes that increased hepatic gluconeogenesis occur in association with impaired insulin 

signalling, we measured phosphorylation of AKT at serine 473. Protein levels of phospho-

(Ser473)-AKT were reduced in liver and also in skeletal muscle and white adipose tissue of 

uraemic rats. In all three tissues, this effect was reversed by CBX administration (Fig. 3.24). 

Taken together, these data demonstrate that 11β-HSD1 mediates insulin resistance in uraemia 

through abnormal elevation of hepatic gluconeogenesis and dysregulation insulin signalling.  
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Fig 3.20. Gluconeogenic enzymes in SNx rodent liver. (A, B) SNx; PCK1 mRNA, and 

protein (C) SNX. Data are expressed as mean ± SEM. Statistically significant 

differences between sham and Ad or SNx are indicated by, ** P<0.01. Statistically 

significant effects of CBX treatment are indicated by # P<0.05 
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Fig 3.21. Gluconeogenic enzymes in Ad rodent liver. (A, B) Ad; PCK1 mRNA and 

protein. (C) Ad; G6Pase protein. Data are expressed as mean ± SEM. Statistically 

significant differences between sham and Ad or SNx are indicated by *** P<0.05. 

Statistically significant effects of CBX treatment are indicated by ### P<0.05 

 

C. 

 D. 
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 B. 
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Fig 3.22. SNx; hepatic PGC1α mRNA and protein. Data are expressed as mean ± SEM. 

Statistically significant differences between sham and SNx are indicated by * P<0.05. 

Statistically significant effects of CBX treatment are indicated by # P<0.05 
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Fig 3.23. Ad hepatic PGC1α mRNA and protein. Data are expressed as mean ± SEM. 

Statistically significant differences between sham and Ad are indicated by * P<0.05, 

statistically significant effects of CBX treatment are indicated by # P<0.05 
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Fig 3.24 Uraemia induced changes in peripheral insulin signalling and 11β-HSD1 

levels. (A) Hepatic phospho(Ser473)-AKT and total-AKT protein, (B) Skeletal 

muscle protein levels of phospho(Ser473)-AKT, total-AKT and 11β-HSD1, (C) 

skeletal muscle 11β-HSD1 mRNA, (D) Epididymal white adipose tissue protein levels 

of phospho(Ser473)-AKT, total-AKT and 11β-HSD1, (E) Epididymal white adipose 

tissue 11β-HSD1 mRNA. Western blots are representative (n=4). Data are expressed 

as mean ± SEM. Statistically significant differences between sham and SNX are 

indicated by ** P<0.01. Statistically significant effects of CBX treatment are 

indicated by # P<0.05 
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3.6. Uraemia-induced dyslipidaemia is corrected by 11β-HSD1 inhibition. 

Consistent with previous reports in experimental models of uraemia, SNx and Ad rats 

showed elevated serum levels of cholesterol, triglycerides and non-esterified fatty acids 

(NEFA), (Fig. 3.25 A – C; Fig. 3.26 A – C). Hepatic mRNA expression of HMGCR was 

elevated in both uremic models (Fig.3.27A, B) suggesting increased de novo hepatic 

cholesterol biosynthesis.  

Moreover, mRNA and protein levels of ACC1 (Fig.3.28), FAS (Fig. 3.29) and mRNA 

levels of SREBP1c (Fig. 3.30) were markedly increased in SNx and Ad rats, indicative of 

increased hepatic de novo lipogenesis. Importantly, in both CKD models abnormally elevated 

serum levels of cholesterol, triglycerides and NEFA were ameliorated following administration 

of CBX, demonstrating that uraemia-induced dyslipidaemia, like gluconeogenesis, may occur 

in part through an 11HSD1-mediated mechanism (Fig. 3.1., Fig 3.2.). Consistent with this, 

mRNA and protein levels of ACC1, FASN, SREBP1C and HMGCR were also partially 

normalized by CBX in SNx and Ad rats (Fig.3.28. – 3.30.).  

We also assessed liver and skeletal muscle lipid content by measuring triglyceride 

levels in SNx rats. Despite observed changes in lipogenic gene and protein levels, hepatic 

triglyceride content was unchanged between sham and uremic rats (Fig. 3.31.A), In contrast, 

uraemia did increase skeletal muscle triglyceride levels, but these increases were not reversed 

by CBX (Fig 3.31.B). Liver and muscle lipids were measured using a colourimetric TG assay 

by Dr Paul Caton.   

Taken together, these data demonstrate that uraemia-induced dyslipidaemia occurs 

through a11HSD1-dependent mechanism and may contribute to insulin resistance in these 

models. 

  



- 105 - 
 

Fig 3.25. SNx. (A) Plasma cholesterol, (B) plasma triglycerides, (C) plasma NEFA, Data 

are expressed as mean ± SEM. Statistically significant differences between sham and 

SNx are indicated by * P<0.05, statistically significant effects of CBX treatment are 

indicated by # P<0.05 

 

A 
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Fig 3.26. Ad (A) Plasma cholesterol, (B) plasma triglycerides, (C) plasma NEFA, Data 

are expressed as mean ± SEM. Statistically significant differences between sham and 

Ad are indicated by * P<0.05. Statistically significant effects of CBX treatment are 

indicated by # P<0.05 
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Fig 3.27. Hepatic HMGCR mRNA. Data are expressed as mean ± SEM. Statistically 

significant differences between sham and SNx are indicated by, * p< 0.001 *** 

P<0.005. Statistically significant effects of CBX treatment are indicated by # P<0.01, 

### P<0.05 

 

A 

B 



- 108 - 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

A B 

ACC1 

-actin 

ACC1 

-actin 

C 
D 

A B 

Fig 3.28. SNx and Ad hepatic ACC1mRNA (A, C) and protein (B, D) Data are 

expressed as mean ± SEM. Statistically significant differences between sham and SNx 

are indicated by * P<0.05, *** P<0.001. Statistically significant effects of CBX 

treatment are indicated by # P<0.01, ### P<0.05 
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Fig 3.29. SNx and Ad hepatic FAS mRNA (A, C) and protein (B, D) Data are expressed 

as mean ± SEM. Statistically significant differences between sham and SNx are 

indicated by * P<0.05, *** P<0.001. Statistically significant effects of CBX treatment 

are indicated by # P<0.01, ### P<0.05. 
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Fig 3.30. SNx and Ad hepatic Srebp1c mRNA (A, B). Data are expressed as mean ± 

SEM. Statistically significant differences between sham and SNx are indicated by ** 

P<0.01, Statistically significant effects of CBX treatment are indicated by #, ## 

P<0.05 
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Fig 3.31.  Uraemia induced changes in liver and skeletal muscle triglyceride levels. (A) 

Hepatic triglyceride levels, (B) Skeletal muscle triglyceride levels. Data are expressed 

as mean ± SEM. Statistically significant differences between sham and SNx are 

indicated by ** P<0.01.  
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3.7. Discussion 

The data presented, in this chapter demonstrate that elevated hepatic 11β-HSD1 mediates 

impaired glucose tolerance, reduced insulin sensitivity, hyperinsulinaemia and dyslipidaemia in two 

distinct male rat models of CKD.  

Importantly, increased hepatic 11β-HSD1 as measured by mRNA expression, protein amount, 

and activity, was associated with elevated hepatic corticosterone content without changes in systemic 

corticosterone. Rats rendered uraemic were glucose-intolerant, insulin-resistant and dyslipidaemic in 

accordance with previously published literature. This was associated with an up-regulation of PGC-1α 

associated gluconeogenic enzymes. Normally, the gluconeogenic pathway would be supressed in the 

presence of hyperglycaemia and/or hyperinsulinaemia, however, as demonstrated in the insulin-

stimulation of hepatic insulin signalling, hepatocyte insulin signalling is also impaired in uraemia, 

leading to inappropriate gluconeogenesis with circulating hyperinsulinaemia. Use of CBX at the dose 

used in this study (50mg/kg for 2 weeks) has been reliably shown to reduce 11β-HSD1 mRNA as well 

as activity in the past. Treatment of uraemic rodents with CBX resulted in a reversal of changes in 

hepatocyte insulin signalling, reduction of hepatic gluconeogenesis (as measured by gluconeogenic 

pathway enzyme expression and dynamic physiological tests) and amelioration of insulin resistance and 

glucose intolerance, with a beneficial lipid profile. This suggests that impaired glucose tolerance and 

dyslipidaemia in CKD is closely associated with enhanced intrahepatic corticosterone production. 

Whilst these studies require confirmation using female rats, improvements in metabolic profiles 

following 11β-HSD1 inhibition occurred without corrections in renal dysfunction, indicating that 

selective inhibitors of 11βHSD1 may be a plausible therapeutic approach to insulin resistance and its 

complications in CKD.  

 Previous studies have reported elevated hepatic glucose production in chronically 

uraemic patients (123). Furthermore, increased hepatic gluconeogenesis in acute experimental uraemia 

is reversed by the glucocorticoid receptor antagonist RU 38486 (124). Elevated hepatic gluconeogenesis 

can cause insulin resistance and hyperinsulinaemia (125), whilst knockdown of gluconeogenic genes 

and cofactors have resulted in the correction of insulin resistance and improvement in insulin sensitivity 
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in murine models (125,126,127,128) . This suggests that 11β-HSD1-mediated increases in hepatic 

gluconeogenesis via up-regulation of PCK1 and PGC1α may represent a likely cause of 

hyperinsulinaemia and insulin resistance in uraemia. 

Dyslipidaemia is also a common complication of CKD. We observed abnormally elevated 

plasma lipids and cholesterol in uraemic rats, with parallel increases in lipogenic gene and protein 

expression. 11β-HSD1 inhibition corrected systemic dyslipidaemia, in association with reduced hepatic 

lipogenic gene and protein expression. These observations are consistent with glucocorticoid induction 

of triglyceride synthesis and fatty liver in rats, whilst mice over expressing hepatic 11β-HSD1 display 

increased hepatic lipogenesis (101). However, it is unclear in our model, whether increased hepatic 

lipogenic gene expression occurs via direct induction by glucocorticoids or through elevated insulin-

mediated SREBP1c induction as would be anticipated because of undesirable metabolic consequence 

of hyperinsulinaemia (129,130).  

The mechanism underlying elevated 11βHSD1 in uraemia have not been fully elucidated, but 

may involve inflammation. Consistent with observations in CKD patients, serum levels of IL-6, TNFα 

and IL1β were elevated in both models of uraemia, likely as a result of decreased renal cytokine 

clearance and increased systemic oxidative stress (131,132). TNFα and IL1β induce transcription of 

hepatic and adipose 11βHSD1, via a mechanism mediated by p38 and C/EBPα signalling, suggesting a 

potential mechanism for upregulation of 11βHSD1 in uraemia. Pro-inflammatory cytokines can also 

impair insulin signalling. However, since CBX corrects insulin resistance without changes in plasma 

cytokine levels, this rules out a direct role for pro-inflammatory cytokine induced insulin resistance. 

Whilst our data point to a crucial role for hepatic 11β-HSD1 as a key mediator of insulin 

resistance in uraemia, we also observed increases in 11β-HSD1 expression and parallel impairment of 

insulin signalling in adipose tissue, changes which were reversed by CBX treatment. These changes 

may also contribute to uraemia-induced insulin resistance, for example via glucocorticoid mediated 

increases in circulating NEFA levels, as observed in our models, which may account for the impaired 

insulin signalling observed in uraemic liver, through ectopic lipid deposition in liver and skeletal 

muscle. This may be particularly plausible given the lack of increased triglyceride levels in the uraemic 

liver. Interestingly, studies have suggested that CBX may not act directly on adipose tissue, raising the 
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possibility that a secreted hepatokine produced during hepatic CBX metabolism may impact on adipose 

tissue 11β-HSD1.  Similar to adipose tissue and liver, insulin signalling was also impaired in uraemic 

skeletal muscle, whilst skeletal muscle lipid levels are increased, suggesting a potential contributory 

role for muscle ectopic lipid deposition in uraemia-induced insulin resistance. However, uraemia-

induced increases in skeletal muscle triglyceride were not reversed by CBX, whilst we did not observe 

changes in skeletal muscle 11β-HSD1 levels across all four experimental groups. Despite this, skeletal 

muscle insulin signalling was improved by CBX. This data suggest- that the insulin sensitising effects 

of CBX in skeletal muscle are indirect, and are not mediated through reversal of skeletal muscle 

triglyceride levels, instead occurring through direct CBX effects on liver and adipose tissue. Thus, both 

hepatic and adipose tissue 11β-HSD1 contribute to onset of insulin resistance in uraemia. However, 

without conducting longitudinal studies of uraemia, it is not possible to deduce in which tissue insulin 

resistance initially manifests.  
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4. Characterization of insulin resistance in uraemia, in 11β-

HSD1 -/- mice and the response to treatment with the 

specific inhibitor UE2316 in Ad fed rodents. 
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4.1. Introduction 

The liver is a key organ with respect to insulin resistance in that contributes to its pathogenesis 

through increasing glucose output, as well as being the primary metabolic target of 

glucocorticoid action. Specific inactivation of hepatic GRs has been shown to reduce elevated 

glucose output and ameliorate hyperglycaemia and hyperlipidaemia in streptozotocin (STZ)–

induced diabetes (131) and in type 2 diabetic animal models (132,133). Glucocorticoid-induced 

alteration in hepatic glucose metabolism involves an increase in hepatic glucose output and 

reduction of glucose utilisation (134).  

Treatment with dexamethasone (DEX) has been shown not to change insulin receptor and 

Insulin Receptor Substrate type 1 (IRS-1, 135), but decreases PI 3-kinase activity in the liver. 

Following glucose uptake and glycolysis, the PDH complex (PDC) facilitates entry of pyruvate 

into the mitochondria for subsequent oxidation. PDK inactivates PDC through phosphorylation 

of this enzyme (135). In cultured hepatoma cell lines, DEX treatment significantly increases 

PDK-4 gene and protein expression, which can be reversed by insulin. More recent studies 

have also demonstrated that PPARα coactivator (PGC-1α) might also be involved in the 

activation of PDK (136). However, unlike diabetes and fasting (where the GC-induced PDK-4 

gene expression stimulation is through recruiting PGC-1α on the portion of the promoter), GCs 

stimulate PDK-4 gene via FOXO1. PDK inhibits glucose utilisation via inactivating PDC and 

switches the liver to synthesize glucose and store glycogen.  This elevation in hepatic 

gluconeogenesis is associated with effects of glucocorticoids on the rate-limiting enzymes, like 

phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6- phosphatase (G-6-Pase) (137). 

Glucocorticoids enhance the gene expression of PEPCK and G-6-Pase, resulting in increased 

glucose output from the liver, which contributes to whole body insulin resistance (137). 

Activation of PPARγ also plays a key role in glucocorticoid-regulated gluconeogenesis. 

Following DEX treatment, knockout of PPARγ shows unchanged hepatic PEPCK and G-6-
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Pase, whereas reconstitution of PPARγ increased those enzymes (138). PGC-1α is another 

important regulator of gluconeogenesis, which is transcriptionally regulated by PPARα. 

Overexpressed PGC-1α in liver caused hyperglycaemia in mice with PPARα expression but 

not in PPARα null mice (138). Additionally, GCs promote hepatic TG storage.  Normally, the 

TG levels reflect the balance between lipogenesis and lipolysis. While some early studies have 

suggested that hepatic stored TG undergoes lipolysis to release FA which is re-esterified to 

form TG in the ER. The role of TG storage in lipotoxic IR and on promotion of lipoprotein 

secretion is still controversial.  

Carbenoxolone (CBX) is a derivative of the liquorice ingredient glycyrrhetinic acid and has 

been shown to be a potent inhibitor of both 11β-HSD1 and 11β-HSD2. The beneficial effect of 

11β-HSD1 inhibition on insulin tolerance has been previously reported in both healthy men 

and type 2 diabetic patients using CBX treatment despite impaired cortisol inactivation within 

MR target tissues via inhibition of 11β-HSD2 as discussed in chapter 3. Similarly, CBX 

attenuated hepatic insulin tolerance and improved lipid metabolism in rodents, although it did 

not reduce insulin resistance in obese Zucker rats.  

Work presented in Chapter 3 demonstrates that uraemic rodents are hyperinsulinaemic on 

fasting, are glucose intolerant, and insulin resistant. Both the SNX and Ad rodents 

demonstrated increased in vivo hepatic gluconeogenesis as measured via an IPPTT, and up-

regulation of the key transcriptionally regulated hepatic gluconeogenic enzymes (PCK1, G-6-

Pase) as well as upregulation of upstream PGC1α. These changes were ameliorated by CBX. 

A possible major criticism of the data presented so far in this thesis is that it does not address 

the question of specificity. The enzyme 11β-HSD1 has been previously reported as having bi-

directional activity and CBX is a non-specific inhibitor. The presence of hepatic and adipose 

insulin resistance, along with hepatic gluconeogenesis and dyslipidaemia in the rodent models 
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of uraemia was therefore further investigated using a 11β-HSD1-/- murine model, as well as 

using UE2316, a specific inhibitor of 11β-HSD1 in the Ad fed uraemic rodent model. 

4.2. Murine models 

 

Male progeny of mice with targeted global disruption of the 11β-HSD1gene congenic on 

C57Bl/6J were derived as described previously (22). Controls were wild-type (WT), C57Bl/6J, 

age-matched, males. Adult 8-week old WT and 11β-HSD1-/- (6 – 8/group) were fed a control 

or 0.25% Ad for 4 weeks. Mice were fasted overnight and killed at ~9:00 a.m., within 1 min of 

disturbing each cage, or used in dynamic physiological studies.   

For specific 11β-HSD1 inhibitor studies, 2-week Ad-fed rats were administered UE2316 

(20mg/kg/day) or vehicle (50:50 DMSO/PEG-400) equivalent for 2 weeks by subcutaneous 

mini-pump (Alzet, CA, USA) to create three groups (1) CON + vehicle, (2) Ad + vehicle, (3) 

Ad + UE2316. Mini-pump insertion was performed by Mr J Kieswich,WHRI. 

 

4.3. Adenine-induced murine uraemia  

Serum creatinine was elevated 3.5 fold in Ad-fed 11β-HSD1-/- mice, while serum urea was 

elevated 4.5 fold, respectively (Table.4.1). Further markers of chronic renal injury are shown 

in Table 4.1. Body weights, mean food intake and average heart rate were not significantly 

different between the uraemic and sham groups. 
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Laboratory 

parameters  
WT - CON WT - Ad 11β HSD1-/- 

CON 
11βHSD1

 -/- Ad 

Serum Sodium 

(mmol/l) 148.1 ± 3.2 147.2 ± 3.6 145.1 ± 4.1 142.8 ± 2.6 

Serum Potassium 
(mmol/l) 5.6 ± 0.7  5.4 ± 1.2 5.6 ± 0.9 5.3 ± .09 

Serum Urea 

(mmol/l)     11.4 ± 2.5  43.7 ± 1.5*     10.6 ± 3.3 44.86 ± 2.6* 

Serum Creatinine 

(µmol/l) 22.2 ±2.2 68.6 ±4.3* 23.0 ± 3.1 67.74 ± 3.7* 

 

 

  

Table 4.1. Serum markers of renal failure in Ad-fed 11β-HSD-/- mice. Renal 

dysfunction was determined in Ad mice (8 per group) by measurements of serum 

concentrations of creatinine, urea, sodium and potassium. Data are expressed as mean 

± SEM. *p<0.05 vs. control diet. 
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4.4. Dynamic Physiological testing in 11β-HSD1 -/- mice 

 

For GTT, animals were fasted overnight and injected i.p. with 2 g/kg body weight of 25% 

dextrose (Sigma, Poole, UK). Blood glucose (tail vein) was measured (Accu-Chek, UK) at 0 – 

120 min and additional blood was collected in a heparinized tube at 0 – 45 min for measurement 

of insulin concentration. For ITT, animals were fasted overnight and injected i.p. with 2 

units/kg body weight of porcine insulin (Intervet, Milton Keynes, UK). Blood glucose (tail 

vein) was measured (Accu-Chek, UK) at 0 – 45 min. 

4.5. 11β-HSD1-/- mice are protected from uraemic insulin resistance. 

Following consumption of an Ad both 11β-HSD1-/- and wild type (WT) mice developed similar 

levels of dyslipidaemia (raised systemic triglyceride levels) associated with renal dysfunction 

(Fig. 4.1). Similar to the phenotype observed in rats, uraemic WT mice developed 

dyslipidaemia, impaired glucose tolerance and reduced insulin sensitivity (Fig. 4.1 - 4.4). In 

marked contrast, 11β-HSD1-/- mice were protected against uraemia-induced insulin resistance 

and dyslipidaemia, displaying a lipid profile similar to control animals as well as improved 

glucose tolerance and insulin sensitivity comparable to that in WT controls.  
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Fig. 4.1. Total plasma cholesterol. Experimental uraemia was induced in mice by the 

administration of a 0.25% Ad (8 per group). Data are expressed as mean ± SEM. 

Statistically significant differences between sham and Ad are indicated by, * p<0.01. 

#p<0.01, 
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Fig. 4.2. Total plasma Triglyceride. Experimental uraemia was induced in mice by 

administration of 0.25% Ad (8 per group). Data are expressed as mean ± SEM. 

Statistically significant differences between sham and Adenine diets are indicated by 

# p<0.05, * * p<0.01. 
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Fig. 4.3. Murine Intra-Peritoneal Glucose Tolerance Test (IPGTT). 25mg/kg of 25% 

dextrose was injected intraperitoneally as described. Experimental uraemia was 

induced in mice by administration of 0.25% Ad (8 per group). Data are expressed as 

mean ± SEM. Statistically significant differences between sham and Ad are indicated 

by * p<0.01. 
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Fig. 4.4. Murine Intra-Peritoneal Insulin Tolerance Test (IPITT). 1 unit/kg of rapid-

acting Insulin was injected intraperitoneally as described. Experimental uraemia was 

induced in mice by administration of 0.25% Ad (8 per group). Data are expressed as 

mean ± SEM. Statistically significant differences between sham and Ad are indicated 

by * p<0.01. 
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4.6 Specific inhibition of 11HSD1 with UE2316 protects uraemic mice from insulin 

resistance.  

Finally, to confirm a specific role for 11β-HSD1 in uraemia-induced insulin resistance and to 

rule out potential non-specific CBX effects, we examined the effects of the specific 11βHSD1-

/- inhibitor (UE2316) on insulin resistance in uraemic Ad fed mice. Briefly, mice were fed with 

either standard chow, or Adenine (0.75%), for four weeks. UE2316 was infused over the 

following two weeks, while adenine or standard chow was continued. 

 In agreement with data obtained from CBX treatment and 11β-HSD1-/- mice, UE2316 

(20mg/kg/day) significantly improved glucose tolerance and insulin sensitivity in the Ad fed 

rats (Fig. 4.5-4.6), during dynamic physiological testing. However, the background parameters 

of renal failure were not different between the control and test diet groups (Table 4.2). These 

data demonstrate a clear role for 11β-HSD1 in mediating uraemia-induced insulin resistance.  
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Laboratory 

parameters  

CON + Vehicle Ad Ad + Inhibitor 

Serum Sodium 

(mmol/l) 
145.2 ± 3.0 144.8 ± 3.4 142.2 ± 5.5 

Serum Potassium 

(mmol/l) 

5.3 ± 0.3 4.9 ± 0.7 4.9 ± 0.6 

Serum Urea 

(mmol/l)   
8 ± 2.4 73.6 ± 12.8 *** 72.6 ± 14.1 *** 

Serum 

Creatinine 

(umol/l) 47.3 ± 11.6 301.7 ± 15.9 *** 291.1 ± 15.8 *** 

Serum Albumin 

(g/L) 
25.8 ± 2.8 24.6 ± 2.6 25.1 ± 2.1 

 

 

 

 

Table 4.2. Serum Markers of Renal Failure in Adenine-fed rats treated with specific 

11β-HSD1 inhibitor (UE2316). Renal dysfunction was determined in Ad fed mice (8 

per group) by measurements of serum levels of creatinine, urea, sodium, potassium 

and albumin. Data are expressed as mean ± SEM. ***p<0.05 vs. CON diet 
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Fig. 4.5. Rodent IPGTT. 25mg/kg of 25% dextrose was injected intraperitoneally as 

described.   Experimental uremia was induced in rats by Ad (8 per group). UE2316 

(20 mg/kg/day) or vehicle was administered by an osmotic mini-pump for 2 weeks. ). 

Data are expressed as mean ± SEM. Statistically significant differences between CON 

and Ad are indicated by *** p<0.001. Statistically significant effects of UE2316 

treatment are indicated by # # p<0.05, ### p<0.001 
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Fig. 4.6. Plasma glucose response to 2 units/kg/body weight porcine insulin injected 

intra-peritoneal (IPITT). Experimental uraemia was induced in rats by Ad (8 per 

group). UE2316 (20 mg/kg/day) or vehicle was administered by osmotic mini-pump 

for 2 weeks. Data are expressed as mean ± SEM. Statistically significant differences 

between CON and Ad are indicated by *** p<0.001. Statistically significant effects of 

treatment are indicated by # p<0.05, ### p<0.001 
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4.7. Conclusions. 

The work presented here in this chapter demonstrates that Ad-induced murine and 

rodent non-diabetic CKD is associated with insulin resistance that can be ameliorated by 

specific inhibition of the enzyme 11β-HSD1 either with pharmacological inhibition, or with 

whole-body knock-outs. As discussed earlier in chapter 3, while the mechanisms underlying 

elevated 11β-HSD1 in uraemia have not been fully elucidated, it may involve upstream 

inflammation. While CBX has been demonstrated to have dose-dependent inhibition of activity 

and expression of 11β-HSD enzymes, a criticism of its use is the lack of specificity between 

11β-HSD1 and 2, and its actions in gap-junction inhibition. However, 11β-HSD2 is not 

expressed in the liver, and its renal expression is confined to the distal nephron, which alone is 

unlikely to account for the substantial metabolic impacts observed. Importantly, a crucial 

specific role for 11β-HSD1 is underlined by the protective metabolic phenotype observed in 

the uraemic 11β-HSD1-/- mice and the fact that a specific 11β-HSD1 inhibitor (UE2316) also 

improved glucose tolerance and insulin sensitivity in uraemic rats. 

Previous studies with conditional knockouts and reconstitution models concluded that the 

progression of insulin resistance to diabetes with fasting hyperglycaemia requires defects in 

tissues other than liver (139,140). However, results in liver insulin receptor knock-out and 

inducible liver insulin receptor knockout (iLIRKO) mice demonstrate (141) that liver-specific 

disruption of IR can impair both hepatic and extra-hepatic insulin signalling and that the 

severity of this resistance depends on the extent of IR deletion in the liver. iLIRKO mice 

display early insulin resistance as a primary defect related directly to the reduction or ablation 

of liver IR, but they also have impaired insulin signalling in other peripheral tissues, including 

skeletal muscle and brain. Thus, iLIRKO mice present systemic insulin resistance as a 

secondary effect.  
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Given that the deletion strategy did not alter IR expression in other tissues, this effect is likely 

the result of desensitization of the IR in extrahepatic tissues produced by prolonged 

hyperinsulinaemia. This is similar to the hepatic insulin resistance and circulating 

hyperinsulinaemia demonstrated in our current models. 

Our results demonstrate that a primary defect, likely in the liver, triggers secondary insulin 

resistance in extrahepatic tissues and suggest that, similar to the data from iLIRKO mice, the 

progression to diabetes does not require defects other than liver IR deficiency. However, even 

though physiological data from dynamic testing (IPPTT) and gluconeogenic signalling is 

compelling, more work needs to be done before tissue-specific and temporal changes in insulin 

resistance in uraemia can be teased apart.  

Specifically, while insulin resistance and glucose intolerance has been described in uraemia, 

the causes have been ascribed to increased hepatic gluconeogenesis, increased peripheral tissue 

resistance to insulin action, or to a combination of both. An obvious question is whether 

increased hepatic gluconeogenesis could be a compensatory mechanism for a decrease in renal 

cortical gluconeogenesis. Renal cortical gluconeogenesis has been described as accounting for 

10-15% of total gluconeogenic flux. However, a compensatory increase in hepatic 

gluconeogenesis would not account for circulating hyperinsulinaemia and peripheral (and 

hepatic) insulin resistance, unless we hypothesise that the compensatory mechanism to 

gluconeogenesis is impaired. While the presented study supports the hypothesis that uraemic 

insulin resistance involves signalling downstream of the Insulin receptor, it does not provide 

either a temporal or a mechanistic model for this phenomenon. 
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Chapter 5. Conclusions and future studies        
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The work described in this thesis has established a pivotal role of hepatic glucocorticoid 

metabolism by 11β-HSD1 in uraemic insulin resistance in non-diabetic kidney disease, with 

particular relevance to hepatic and whole body insulin sensitivity.          

In vivo studies in mouse and rat models characterized the expression of hepatic 11β-

HSD1 mRNA and protein in detail, confirming excess expression and activity of the intra-

hepatic enzyme. As suggested by the supporting changes in gluconeogenic enzymes, the impact 

of hepatic 11β-HSD1 on hepatic gluconeogenesis, and the resulting impact on whole body 

insulin sensitivity, a novel suggestion is presented of the physiological role of hepatic 11β- 

HSD1 in chronic kidney disease and corresponds with many of the observations from the 

clinical study comparing normal, obese and diabetic cohorts. This is in keeping with the intense 

focus of numerous published and ongoing studies on the importance and impact of 11β-HSD1   

on hepatic glucose output via gluconeogenesis and represents an exciting new paradigm that 

warrants further investigation as a novel cardiovascular risk factor in uraemia. 

 

Hepatic pre receptor glucocorticoid metabolism resulting in changes in hepatic 

glucocorticoid activation was found to be implicated and may thus be associated with the 

dysregulation of insulin sensitivity seen in CKD. In particular, hepatic glucocorticoid 

metabolism, specifically, cortisone to cortisol conversion, was found to be abnormal in tubular 

as well as glomerular models of non-diabetic CKD, whether murine or rodent. Furthermore, 

there was clear evidence of increased hepatic glucocorticoid activation and 11β-HSD1 gene 

expression, which may be important in defining the cause of the renal hepatic 

“pseudocushings‟ state. Hepatocellular gluconeogenic enzymes such as Glucose 6 phosphate 

and phosphenol carboxykinase 1 was defined as a direct link between glucose and 

glucocorticoid metabolism and was published in a peer-reviewed journal. 
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The results presented in the current thesis support the clinical studies comparing 

glucose and glucocorticoid metabolism in normal, obese and type 2 diabetic subjects and has, 

as discussed in individual chapters, revealed new data with relevance to the importance of 

insulin sensitivity and a strong association with hepatic 11β-HSD1 activity and hepatic 

gluconeogenesis. In addition, the association of hepatic lipid accumulation with activation of 

hepatic 11β-HSD1 and stimulation of lipogenesis in CKD was confirmed. Collectively, the 

data presented in this thesis provide support for the role of selective 11β-HSD1 inhibition for 

the treatment of insulin resistance in non-diabetic CKD, similar to that described in insulin 

resistant states and type 2 diabetes in previously published literature. 

 

 However, important questions arise with regard to the use of these agents in the 

presence of chronic kidney disease, in particular where increased glucocorticoid activation, 

and, possibly, decreased glucocorticoid clearance serve as a protective response to limit 

worsening inflammation and injury. In addition, the predicted impact of these inhibitors upon 

hepatic glycolysis and adipose and skeletal muscle insulin resistance warrants further 

investigation, as does the short and long-term effects of this inhibition. 

 

In addition to the above, this work has led to the possibility of a number of future 

studies. It would be of great importance to fully define the physiological role of the distribution 

of 11β-HSD1 in CKD and its relevance upon glycolytic, gluconeogenic and lipogenic pathways 

and the resulting impact upon whole body and in particular adipose tissue and skeletal muscle 

insulin sensitivity. An initial study would include the comparison of the activity and expression 

of 11β-HSD1 in progressive uraemia in murine, rodent, and human tissue. It would be of 

significant interest to characterise expression of 11β-HSD1 in progressive stages of CKD, as 

well as other models of chronic kidney diseases (such as autoimmune and transplantation), that 
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are strongly associated with Insulin resistance and bear close resemblance with current models 

of CKD.  This would be allied with studies to define the localisation of 11β-HSD1 within 

inflammatory cells in the liver and the factors involved in the activation of this process.  

 

In addition, clinical studies to define hepatic glucocorticoid metabolism in vivo, in 

progressive stages of CKD would be important. Animal models of CKD would mimic stages 

of the disease, while samples from omental (and mesenteric) fat could be obtained during 

peritoneal dialysis catheter insertion in near-end stage pre-dialysis patients to compare with 

control specimens.  On the basis of the results of the human study, a novel role for selective 

inhibition would be as a therapy specifically for insulin resistance and dyslipidaemia associated 

with CKD. Its aim would be to reduce hepatic glucocorticoid activation, and hence reduce 

endogenous hepatic glucocorticoid to limit the increase in hepatic glucose production. Its role, 

if proven, would be very significant in its ability to exert a decrease in hepatic glucocorticoid 

without the multiple undesirable effects of systemic glucocorticoid blockade. Further clinical 

studies in CKD, both rodent and human, are warranted to examine hepatic, adipose, muscle, 

and whole body glucocorticoid metabolism in progressive disease.  

 

This study specifically chose those models with advanced CKD. It would be important 

to extend these investigations to subjects with earlier stages of disease, as well as in dialysis-

dependent renal failure to characterise increased states of insulin resistance and to look for 

evidence of beta cell failure. Technically these studies would be more challenging but would 

provide important information of the detrimental or beneficial effect of 11β-HSD1 driven 

glucocorticoid activation and the role of hepatic glucocorticoids in renal impairment. 
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The results described in this thesis form key data with clear clinical importance and 

relevance in the application of 11β-HSD1 inhibition. Further studies will follow that will 

provide a greater depth of understanding and offer new possibilities for the treatment of patients 

with the metabolic syndrome, a serious global public health concern.           
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