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Abstract
Weaddress the issue of the reducibility of the dynamics on amultilayer network to an equivalent
process on an aggregated single-layer network. As a typical example ofmodels for opinion formation
in social networks, we implement the votermodel on a two-layermultiplex network, andwe study its
dynamics as a function of two control parameters, namely the fraction of edges simultaneously
existing in both layers of the network (edge overlap), and the fraction of nodes participating in both
layers (interlayer connectivity or degree ofmultiplexity).We compute the asymptotic value of the
number of active links (interface density) in the thermodynamic limit, and the time to reach an
absorbing state forfinite systems, andwe compare the numerical results with the analytical predictions
on equivalent single-layer networks obtained through various possible aggregation procedures.We
find a large region of parameters where the interface density of largemultiplexes gives systematic
deviations from that of the aggregates.We show that neither of the standard unweighted aggregation
procedures is able to capture the highly nonlinear increase in the lifetime of a finite sizemultiplex at
small interlayer connectivity. These results indicate thatmultiplexity should be appropriately taken
into accountwhen studying votermodel dynamics, and that, in general, single-layer approximations
might be not accurate enough to properly understand processes occurring onmultiplex networks,
since theymight flatten out relevant dynamical details.

1. Introduction

Real-world interactions often happen at different levels and are therefore properlymodelled bymeans of
multilayer networks. Suchmultilayer approaches [1–3] have been applied tofields ranging from energy
infrastructure [4] and transport [5–7], to epidemiology [8]. Themultilayer set up can either describe
interconnected networkswith nodes of the same nature in each layer, but interacting with nodes of different
nature in a different layer, or amultiplex structure with nodes of the same nature interacting via a different
network in each layer. In any case, a centralmethodological question is that ofmultilayer reducibility, that is,
when themultilayer framework is really needed to explain newphenomena, or when the systemdescription can
be reduced to an appropriately aggregated or reformulated single-layer network. An interesting contribution in
this direction has recently come from the study of the structural reducibility ofmultilayer networks, i.e. of the
possibility of aggregating some of the layers of amulti-dimensional networkwhile preserving its
distinguishability from the corresponding single-layer aggregated graph [9]. Although some recent works have
pointed out thatmultiplex dynamics can be intrinsically different from their equivalent single-layer
counterparts [10–14], little attention has been devoted so far to the problemof reducing a process taking place
on amultilayer network to a dynamically equivalent process on an appropriate single-layer network. In this
paperwe address this general question, by implementing the votermodel onmultiplex networks and by
studying the reducibility of its dynamics as a test case.

OPEN ACCESS

RECEIVED

7 September 2015

REVISED

21December 2015

ACCEPTED FOR PUBLICATION

4 January 2016

PUBLISHED

29 January 2016

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2016 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

http://dx.doi.org/10.1088/1367-2630/18/2/023010
mailto:m.diakonova@qmul.ac.uk
mailto:v.nicosia@qmul.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/2/023010&domain=pdf&date_stamp=2016-01-29
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/2/023010&domain=pdf&date_stamp=2016-01-29
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


The votermodel [15] is a nonequilibrium latticemodel [16]which gives a standard framework for studying
the influence of social imitation on the process of opinion formation [17]. A basic question considered in this
context is when and how the system reaches an absorbing state with all the interacting nodes in the same state, or
when an active dynamical situation of coexistence of different states prevails. The answer to these questions is
known to depend crucially on the network structure and on the update rules employed [18–22]. The votermodel
has also been instrumental to understand fundamental phenomena in coevolution dynamics inwhich node
states and network structure have coupled dynamical evolutionwith two different time scales [23–27]. In terms
of comparisonwith real data, ametapopulation votermodel has been recently shown to be able to account for
voting patterns in theUS general elections [28].

Quite frequently, social interactions happen in different concurrent contexts, so that anymodel of social
imitation based on a single-layer representation of social relationships should probably be regarded only as a
first-order approximation of a potentiallymore complex dynamics. In order to bettermimic the
multidimensional nature of social interactions, we consider here amultiplex votermodel, where agents interact
at two distinct layers.We assume also that the system exhibits a certain level ofmultiplexity,meaning that a
fraction q of the agents is present on both layers [26]. As a consequence, any change in the state of those agents on
either of the two layers is automatically transferred to the other layer, effectively coupling the votermodel
dynamics taking place on each of the two networks. By taking into account heterogeneity in the participation of
agents on layers we aim at reproducing an interesting feature of real-worldmultilevel social systems [29]. In
particular, it has been shown that the percentage of users of an online social network (e.g., Twitter)which have
also an account on another online social network (e.g., Facebook or LinkedIn) lies somewhere between 30%and
70%, as reported by the socialmediamatrix periodically published by the PewResearchCenter [30]. These
empirical findings confirm the necessity to consider systemswhosemultiplexity is neither 0 nor 1, but
somewhere in between. A second important feature of social interactions is the fact that different layers often
share a number of common links. This has been studied in details in online social systems. For instance, a
significant overlap between the designation of other individuals as friends, correspondents, or trading partners
has been found [31, 32]. Overlap is thus an intrinsic feature of real-worldmultilayer and interdependent
networks, and its presence can substantially influence the system—see, for instance, studies of its role in
percolation [33–35]. Here, we quantify this property ofmultilayer networks bymeans of the edge-overlap
parameter introduced in [36].

In this workwe address a fundamental question, that is whether the coupling of several votermodels into a
multiplex dynamics,motivated by themultiplicity of contexts influencing real interactions among individuals,
gives rise to qualitatively different phenomena or effects than those observed in the classical single-layer setup. In
particular, wewant to establishwhethermultiplexitymakes any difference for a simple social dynamics like the
votermodel, or if instead themultiplex votermodel can indeed be reduced to an equivalent votermodel
dynamics on an appropriately constructed single-layer network.

A preliminary result on the question of themultilayer reducibility exists for a bilayer of uncorrelated
networks evolving according to the votermodel with adaptive links [26], but in the limit of zero edge overlap. In
thatmodel each layer is associatedwith a network plasticity parameter, that controls the rate at which relations
among agents are rearranged, such that if the values of plasticity at the two layers are sufficiently different the
systemdisplays a network shattered fragmentation. On the other handwhen the layers have the same plasticity
onefinds that the results coming from a pair approximation in the thermodynamic limit are equivalent to those
of an appropriate aggregated single-layer network [26].We build upon this, in time independent networks,
examining both the asymptotic properties of the thermodynamic limit and the characteristic times to reach an
absorbing state forfinite systems.We also consider different schemes to obtain a possible equivalent aggregated
single-layer network and highlight the importance of the degree ofmultiplexity and edge overlap.

The paper is organized as follows. Section 2 introduces our voter dynamicsmultilayermodel. Section 3
describes our numerical findings. These are compared in section 4with single-layer theoretical results for two
naturalmethods of collapsing themultilayer into an aggregated single-layer network, andwith numerical results
obtained by considering aweighted single-layer aggregate. Section 5 analyses an optimum single-layer reduction
method. Conclusions are discussed in section 6.

2. Themodel

Weconsider here the case of a two-layer undirected unweightedmultiplex network, described by the pair of
binary adjacencymatrices A A,1 2{ }[ ] [ ] , where A aij{ }[ ] [ ]ºa a , and a 1ij

[ ] =a if and only if node i and node j are

connected by a link at layerα, and zero otherwise. On each layer we haveN nodes. A parameter of interest in this
study is the average edge overlapω, that is the probability that an edge is present on both layers:
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is the number of edges of the graph obtained by aggregating the two layers into a single one [36]. Notice that
ω=0 only if each edge exists in exactly one of the two layers, but not in the other one, while we haveω=1 only
if all the edges exist in both layers.

Each node i on layerα is associated to a binary state variable s ti ( )[ ]a , where s ti ( )[ ]a can be either+1 or−1.
Moreover, we assume that a fraction q of theNnodes participates in both layers, requiring that if i is one of these
qN nodes then its state at the two layers will be identical at the end of every update. Such nodes participating in
both layers are chosen randomly at initialisation.We can think of the parameter q as the interlayer connectivity or
the degree of structural multiplexity of the system. Themodel is illustrated infigure 1.

Themultiplex voter dynamics consists of a sequence of time steps. During a time stepwe performNupdates,
and each update consists of three elementary operations, as follows: (i) a layerα is selected at random,with
uniformprobability; (ii) one of the nodes i on layerα is chosen at randomand its state si

[ ]a is updated according
to the classical votermodel dynamics, that is, si

[ ]a becomes the same as that of a randomly chosen neighbour of i
on layerα; (iii) if the updated node i participates in both layers, then the state of the corresponding node in the
other layerβ changes aswell by setting s si i

[ ] [ ]=b a .With this third operation, state changes can propagate across
layers: indeed the presence of a fraction of nodes existing in both layers intertwines the voter dynamics on the
two layers, so that in general the evolution of the overallmultiplex dynamicsmight differ from the onewewould
observe on two independent networks of the same size. As a limiting case, the dynamics reduces to that of a
classical votermodel on a single-layer network onlywhen q=1.

It is well known that in connected finite-size single-layer networks the votermodel dynamics always reaches
an absorbing state, where all the nodes have exactly the same state, in a survival time that scales with the system
sizeN[16–18, 20, 21]. In networks of high effective dimensionality (including randomnetworks), when N  ¥
the dynamics sustains an active disordered state inwhich nodes continue to change their state [19]. Such active
state is the one observed asymptotically in large systems, beforefinite-size fluctuations pull the system towards
the absorbing state. The classical order parameter tomeasure the activity in the votermodel is the so-called
interface density ρ(t), defined as the fraction of active edges of the network, i.e. of those edges whose endpoints
have different states. In themultiplexmodel we can define:

t
K

a s t s t
1

2
, 2

i j i
ij i j( ) ∣ ( ) ( )∣ ( )[ ]

[ ]
[ ] [ ] [ ]åår = -a

a
a a a

<

Figure 1. In themultiplex votermodel each node i on layerα is associated to a state s t 1i ( )[ ] = a (the values+1 and−1 are
respectively indicated in the figure by red and blue), which evolves according to one simple rule: select one of your neighbours x on
layerα uniformly at random, and copy its state, i.e. set s t s t1i x( ) ( )[ ] [ ]+ =a a . For instance, the state of node l on layer 2 changes from
s 1l

2[ ] = - (blue, panel (a)) to s 1l
2[ ]=+ (red, panel (b)) since l selected its neighbourm on layer 2 and copied its state on that layer. The

presence of inter-layer edges (dashed lines)denotes identification between nodes at the two layers. An example is the inter-layer edge
connecting the two replicas of node i. In this case, any change in the state of node i at one layer will enforce a change of its state on the
other layer. In thefigure, the state of node i flips from red (panel (a)) to blue (panel (b)) on both layers, as a consequence of the
interaction of node iwith its neighbour j on layer 1.
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for each layerα,α=1, 2, wherewe denote by K a
1

2 i j ij,
[ ] [ ]å=a a the total number of edges on layerα. Notice

that ρ=0 if and only if all the nodes have the same state, while larger values of ρ are associated to active
configurations. A second quantity of interest for afinite system is the average time Tá ñ to reach an absorbing

state of consensus. Such a time can be defined as T P t tds
0

( )òá ñ =
¥

from the survival probability Ps(t), i.e. the

probability for a system to be active at time t [37].
For single-layer uncorrelated networks at sufficiently large times t>N,Ps(t)decreases exponentially

P t es
t2( ) ~ t- [38]. Hence, T 2tá ñ ~ , so that the dependencies of Tá ñon system size and on themoments of

the degree distribution are given precisely by the corresponding dependencies of the characteristic time τ. For
uncorrelated networks one can find exact expressions for the value of the average interface density in the
thermodynamic limit ρsingle, as well as for the characteristic time to reach the absorbing state τsingle [23, 38]. An
important feature is that these analytical predictions of ρsingle and τsingle depend only on the values of the first two
moments of the degree distribution P(k) of the network, i.e. on k kP k

k1 ( )åm = á ñ = and

k k P k
k2

2 2 ( )åm = á ñ = , and not on any othermicroscopic property of the network, and read:

2

3 1
, 3single 1

1( )
( )r

m
m

=
-
-

where ρsingle is the average over surviving runs, and

N1

2
. 4single 1 1

2

1 2

( )
( )

( )t
m m

m m
=

-

-

In the followingwewill focus on the values ρ(q,ω) and τ(q,ω) of interface density and characteristic time of
themultiplex votermodel as a function of the average edge overlap of the systemω and of the fraction q of nodes
present in both layers.

3.Numerical results

We studied the votermodel on a duplex networkmade by two random regular graphswithN nodes, each node
having a degree equal toμ.We therefore have k k1

1 2[ ] [ ]m m= á ñ = á ñ = , andμ2=μ2. In our simulationswe
fixedN=1000 andμ=4, andwe studied the dynamics of the systemby varying the value of the edge overlapω
and the fraction q of nodes participating in both layers. In order to obtainmultiplex networkswith different
values of edge overlap, we started from a duplex consisting of two identical regular randomgraphswith
L=Nμ/2 edges. Then, the desired value of edge overlapwas obtained by rewiring the edges in only one of the
two layers, say layer 2, andmaintaining fixed the degree sequence.Notice that each edgemight exists either on
one of the two layers or on both.Hence, by rewiring on one layer an edge that exists on both layers, the number
of edges present in both layers decreases by one unit, while the number of edges present in just one of the two
layers increases by two units. Consequently, if we rewire a fraction r of the L edges of the second layer in such a
way that each rewiring decreases the number of edges existing on both layers, we obtain a duplexwith (1+r)L
distinct edges in total, of which (1−r)L (i.e., those that have not been rewired) are present on both layers, while
the rL2 remaining ones are present only on one of the two layers. Thus, the edge overlap in equation (1) can be
rewritten as:

r L

r L

r

r

1

1

1

1
, 5

( )
( )

( )w =
-
+

=
-
+

so that the fraction r of edges of the original duplex to be rewired in order to obtain a prescribed value of edge
overlapω is:

r
1

1
. 6( )w

w
=

-
+

The rewiring procedure described above is similar to the one used in [39] to obtain a two-layer duplex from a
single-layer network. An important difference is that our procedure is based on the rewiring of single edges,
while in [39] themodel proceeds by relabeling nodes, and thus effectively rewiring a certain number of edges at
each stepwhilemaintaining one of their endpointsfixed.

Since the system isfinite, the dynamics will eventually converge to the absorbing frozen state corresponding
to an interface density equal to zero. Consequently, for each time t, wewill evaluate the average value of the
interface density only over the surviving runs, i.e. on those realisations of the dynamics which are still active at
time t.We associate the asymptotic value of this numerically obtained quantity with the value at the
thermodynamic limit, given by equation (3), and refer to it as interface density, while being clear whetherwe are
referring to the numerical or analytical results. In the case of a duplexwith two layers, we have of course two
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values of interface density, one for each layer. If k k1 2[ ] [ ]á ñ = á ñ the ensemble averages on the two layers will be
equal, and hence the activity of an arbitrary layer is representative of the typical activity of the entire system.We
therefore use the asymptotic value of the interface density of an arbitrary layer to reflect the activity of the
multiplex, and dispensewith theα superscript.

Infigure 2(a)we report the values of interface density ρ(q,ω) as a function of q, and for different values ofω.
Let us consider first the caseω=0 of no overlap between the structure of the two layers of themultiplex.When
q=0, i.e. when inter-layer state passing is not allowed, the system effectively corresponds to two identical but
independent single-layer voter dynamics, so that ρ(q,ω) is in accordance with the classical analytical predictions
for single-layer networks (sinceμ1=4, equation (3) gives the activity ρ(0, 0)=0.22). On the other hand, when
q=1, i.e. when all the nodes participate in both layers and each edge exists only in one layer, the system is in all
respects identical to a single-layer networkwithμ1=2μ (forμ1=8, equation (3) gives the activity ρ(1,
0)=0.286). For intermediate values of q the dynamics interpolatesmonotonically between the two extreme
cases, i.e. two dynamically indistinguishable votermodels on single-layer networkswithμ1=μ (q= 0), and one
votermodel on a single-layer networkwithμ1=2μ (q= 1). The picture changes completely as soon asω is
large enough. In general, when the overlap is above some limit, then ρ(q,ω) is a non-monotonic concave
function of q, with amaximumat a given value of q in [0,1]which depends onω. Notice that, whenω=1 and
q=1, i.e. if the two layers are identical and all the nodes participate in both layers, the dynamics is identical to a
votermodel on a single-layer networkwithμ1=μ. In fact, since all the edges exist on both layers, a node
participating in both layers will have onlyμ distinct neighbours, andwill be connected to each of themon both
layers.Hence, in amultiplex networkwithω=1, the interface density ρ of the votermodel takes the same value
0.22 at q=0 and at q=1, while for intermediate values of q the interface density is higher than that of a voter
model on each of the two layers.

We now consider the characteristic time τ of themultiplex dynamics, where by characteristic timewe
understand twice the inverse exponent of themultiplex survival probability P ts

m ( ).We consider themultiplex as
active if at least one of the layers is active, and find that for all q>0 the survival probability of themultiplex does
decay exponentially with some exponent τ=τ(q,ω) (figure 2(b)). The only exception is the q=0 case of the
fully disconnectedmultiplex, where the survival probabilities of the layers are independent. In this case the
survival probability of themultiplex is given by the probability that at least one of the layers is active,
P t q P t P t, 0, 0 2s

m
s s( ) ( )( ( ))w= = ~ - , or P t , 0, 0 2e es

m t t2 4single single( ) ~ -t t- - . Thismeans that for q=0
themultiplex survival probability does not scale exponentially, and hence τ(q=0) is not well-defined. Figure 2(c)
shows the characteristic times τ(q,ω) obtained (the value at q= 0 is that of an approximate exponential fit). The
trend shows a peak at small q, followed by an exponential decaywith increasing number of interlayer
connections. The value of edge overlapω controls the rate of decrease.We stress that the peak is not a
consequence of the definition of τ for themultiplex, and the consequent rogue value of τ at q=0: the limit is
truly singular, with plots for the actual average time until absorption displaying the same features, as do the plots
for the characteristic exponent layer by layer.We also note that the peak is robust with respect to system size.
Therefore the slowestfinite-sizemultiplexes are ones where the layers are interconnected by the smallest
number of links.Multiplexes withmore interlayer connections will stop being active faster, as will wholly
disconnected systems. This insight can be understood by realising that in amultiplexwith few interlayer links,
the layers willmost of the time function as completely disconnected networks that half the timewill try to settle
into the absorbing states of consensus different fromone another. Since this situation is nowprohibited by the

Figure 2. (a)Asymptotic value of the interface density averaged over the surviving runs; (b) survival probability of themultiplex for
different q values, forω=0 (maroon, larger and darkermarkers), andω=1 (green, smaller and lightermarkers). The line denoted as
analytics is P t q, 0, 0s

m ( )w= = whose expression is given in themain text; (c) logarithmof the average characteristic time τ of the
approach to the absorbing state, rescaled by (1/N) (legend same as infigure 2(a)). Quantities are functions ofmultiplexity q, and edge
overlapω.We have considered an ensemble of 105 random initialisations on a fixed duplexwhose layers are random regular graphs,
eachwithN=1000 and k 4á ñ = .
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few interlayer links, themultiplexwill freeze only when one of the layers switches over and both layers reach the
same consensus. It is this switching behaviour that is responsible for the peak in τ for small q.We also notice that
this nonlinear effect does not depend on the edge overlapω. Here, unlikewith the behaviour of interface density,
the overlap does not change qualitatively the behaviour of τ for increasing q. In fact, themore interconnected the
multiplex, the higher the role of edge overlap: tuning upω causes a decrease in the interface density and results in
a longer-livedmultiplex, and the effect becomesmore pronouncedwith q.

4. Irreducibility of the dynamics

It was shown in [26] that the interface density of themultiplex votermodel dynamics as a function of q and in
absence of edge overlap can be rewritten as the interface density of a votermodel on a single-layer network
having k q11 ( )m = á ñ + (where k is the average degree of each of the two original layers), under some
appropriately rescaled time.Here it is important to note that the approximation of [26] treated the interlayer
connections as inherently probabilistic: the q parameter was a probability that each node’s state gets passed on to
the other layer. It was shown that the analytics of such a system, in the particular caseω=0, are equivalent to
those of the votermodel on some properly aggregated single-layer network.However, as [26] only considered
the thermodynamic limit, it is not obvious whether the aggregate displays a corresponding rescaling of
characteristic time.Nevertheless, it should be possible to devise an aggregate that results from the flattening of
themultiplex into a single-layer network, so that the resulting networkwill have afirstmoment of the degree
distribution equal to the expressionμ1 given above.

Themain question now iswhether such a reducibility is possible in themost general case inwhich the
multiplex has edge overlap 0w ¹ . This is indeed themost interesting case, i.e. when in amultiplex there are
correlations between the edges at the different layers [29, 36]. In the following ourworking hypothesis will be
that, if themultiplex can indeed be reduced to amonoplex (in the variables of interest), then there exists an
aggregate graph such that the behaviour of the votermodel on themultiplex is completely described by
equations (3) and (4) evaluated on the correspondingmonoplex. Since those equations depend just on the
number of nodes and on the first twomoments of the degree distribution of the resulting single-layer network,
wewill now consider two standard aggregation procedures, and derive analytically the values of the first and
secondmoments of the resulting degree distributions. Let us remind that, by definition, thefirstmoment of the
degree distribution of a graph is equal to k kP k

k1 1
( )åm = á ñ = =

¥
, where P(k) is the degree distribution, so that

P(k=κ) is the probability that the degree of a node sampled at random from the graph is equal toκ. The
probability P(k) can be alsowritten as:

P k
N

N
, 7k( ) ( )

ℓ
ℓå

=

whereNk is the number of nodes in the graph having degree equal to k and the normalisation is just the total
number of distinct nodes.

Given a duplex formed by two random regular graphswith identical degreeμ, with edge overlapω andwhere
a fraction q of nodes participates in both layers, we can distinguish two classes of nodes. The nodes in the first
class exist in only one layer, andwe indicate as ksingle the number of their neighbours, while nodes in the second
class exist in both layers (these are the nodes having an inter-layer link) andwe indicate their degree as kboth. The
former class has degree:

k , 8single ( )m=

whereas nodes present on both layers have degree kboth=2μwhenω=0.However, if the edge overlap is not
null, i.e. whenω>0, then the nodes being present in both layers have degree kboth equal to:

k q q2 2 . 9both ( ) ( )m mw m w= - = -

In fact, the degree of a node i present in both layers is equal to the sumof its degrees on the two layers (2μ)
minus the expected number of its edges which are present on both layers. This number is equal to the probability
that a neighbour j of i is also present on both layers (which is equal to q), times the probability that the edge (i, j) is
present in both layers (which is equal toω)multiplied by the number of neighbours of i (i.e.,μ). Hencewe get the
correction qμω. In the particular case inwhichω=1, we get kboth=μ (2− q), while forω=0we recover
kboth=2μ.

Let us now consider the two following distinct aggregation procedures. They are illustrated infigure 3 and
correspond to the twomost standardways to aggregate a duplex into a single-layer network. The twoflattening
procedures differ in the total number of nodes and also in the number of nodes of degree ksingle and kboth that
they produce. This in turn changes the effective system size of the aggregate network, and the first twomoments
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of the degree distribution. In the following sections we compute these quantities for the twomethods, and assess
howwell the aggregates fare in describing the behaviour of the truemultiplex. For the sake of completeness, we
will also introduce a third aggregationmethod that results in aweighted single-layer network.

4.1. Aggregationmethod 1
Wecan obtain a single-layer representation of amultiplex by putting the layers side by sidewith no effective
node overlap. ThereforeNsingle=2N(1−q),Nboth=2Nq, and the total number of nodes in the aggregate is
justNaggr=2N. The degrees of the nodes participating in just one or both layers are respectively equal to ksingle
and kboth. By using equation (7)wehave:

P k k q1 , 10single( ) ( ) ( )= = -

and

P k k q. 11both( ) ( )= =

Thefirstmomentμ1
aggr of the aggregated graph is then equal to:

kP k

k P k k k P k k

P k k q P k k

q q q

q q

2

1 2

1 , 12

k
1
aggr

1

single single both both

1 single 1 both

1 1 1

1
2

( )

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )

åm

m m w
m m wm

m w

=

= = + =
= = + - =
= - + -

= + -

=

¥

and the secondmoment

q q q

q q q

1 2

1 3 4 . 13
2
aggr

1
2

1
2 2

1
2 2 2 3

( ) ( )

[ ] ( )

m m m w

m w w

= - + -

= + - +

Under no overlap these reduce to

q

q
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m m

m m
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Note that thismethod produces the same effective rescaling of the firstmomentμ1 as given by the analytical
estimation of the interface density of themultiplex in the thermodynamic limit (see [26]).

4.2. Aggregationmethod 2
Thismethod reduces the number of effective nodes in the aggregate by treating nodes present in both layers as
one node. So, while for the rest of the nodeswe still haveNsingle=2N (1−q), the number of ‘multiplex’nodes
is nowhalf asmuch as inmethod 1,Nboth=Nq. The total number of distinct nodes in the aggregate is equal to
N N q Nq N q2 1 2aggr ( ) ( )= - + = - . The degrees of the single and ‘multiplex’nodes are as before equal to
ksingle and kboth respectively. Therefore

P k k
q

q

2 1

2
, 15single( ) ( )

( )
( )= =

-
-

Figure 3. Schematic illustration of two possible aggregation procedures that reduce a two-layermultiplexwithNnodes on each layer
to a single network. Themultiplex contains qN interlayer links between associated nodes (pairwise links). These nodes are shown in
double circles. These nodes will have twice asmany links in the aggregates, independent of theflatteningmethod.Method 1 keeps 2N
nodes in the resultant aggregate, whereasmethod 2 hasN(2−q).
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and

P k k
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q2
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-

Consequently, we have for the firstmoment of the degree distribution 1
aggrm :
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and for the secondmoment 2
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When the layers are uncorrelated and the overlapω=0, we have
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Wenotice that, when q=0 (i.e., if we have two non-interacting layers), we get 1
aggr

1m m= and 2
aggr

1
2

2m m m= = ,

while for q=1we have 21
aggr

1m m= and 4 22
aggr

1
2

1
2( )m m m= = .

4.3. Aggregationmethod 3
Up to this point we have considered themost straightforward procedures to create a single-layer network out of
amultilayer system. The separate layers in our initial systemswere unweighted, and by design so are the
aggregates produced by thefirst two aggregationmethods. However, if a link between two nodes (i, j) exists in
both layers, then the probability for these two nodes to interact in themultiplex dynamics is twice as large than
that associated to a pair of nodes which is connected only in one of the two layers. In this Subsectionwe explore
whether an appropriately weighted single-layer aggregate network can provide a better approximation for the
multiplex voter dynamics. In particular, we considered as a third possibility a single-layer weighted networkwith
N(2−q)nodes in total, as in the aggregate costructedwithmethod 2, where theweight of edge (i, j) is either 1 (if
that edge exists in only one of the two layers) or 2 (when the edge exists on both layers). Since the resulting
network has edges with different weights, it is not immediate how to express the interface density as a function of
thefirst and secondmoments of the degree sequence, or of the sequence of node strengths (where the strength of
a node is equal to the sumof theweights of the edges incident on it). Hence, we investigated such a situation
through numerical simulations. The update is implemented as follows.We randomly select a linkwith a
probability proportional to its weight and, if the states of the two end-nodes are different, one of them is
changed. For these homogenous networks this edge-centric evolution is equivalent to the node-centric one by
which the votermodel on the layers of themultiplex evolve.

We computed the interface density by averaging over surviving runs at some large enough time, when the
trend has reached the asymptote. A systematicfitting of the profiles of interface density as a function ofω and q
resulting from the simulations allowed to conclude that in the single-layer weighted aggregate graph ρ(q,ω),
q>0, can bewell approximated as:

q
q q

, 1
3 10

1
3

2
, 190

2
2( ) ( )⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥r w r w w» + - + +

where
2

3 10 ( )
r

m
m

=
-
-

is the value of the interface density observed in an unweighted single-layer aggregatewith

average degree equal toμwhenwe setω=0 and q=0.

4.4. Comparing aggregated tomultiplex dynamics
Weare now ready to compare the results of the numerical simulations of themultiplex system to the theoretical
values given by the corresponding equations for the unweighted aggregates, andwith the numerical simulations
of theweighted aggregate. Equations (3) and (4) describe the behaviour of themonoplex.We contrast the two
unweighted aggregates by putting in those equations the respective effective value for the first and second
moments and the total number of nodes. In other words, we take N Naggr , 1 1

aggrm m , and 2 2
aggrm m ,

where the effective values differ depending on the aggregationmethod.
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Weconsider first the behaviour in the thermodynamic limit, described by the interface density ρ. The results
are reported infigure 4. It is interesting to notice that all the threemethods yield aggregates whose qualitative
behaviourwithω and q corresponds to the trend observed in themultiplex: for small q the systembecomesmore
active by increasing the number of interlayer edges whereas, after a certain point, the activity can decrease,
depending onwhether or not the edge overlap is significant enough.However, none of themethods provide a
quantitive explanation for a general (ω, q).Method 1 in general does a better job thanmethod 2 at being
systematically consistent, albeit predicting substantially higher values than the other twomethods for
intermediate values of q. Aswe have seen before, the analytical results forMethod 1 (atω=0) correspond to a
multiplexwith probabilistic interlayer connections of intensity q. Therefore, atω=0, comparing the numerical
results for themultiplex, and the analytical trend formethod 1 can be used to gain insight into the difference
induced by an alternativemethod of inteconnecting the layers of themultiplex (in fact, when viewed in this way, the
smallmagnitude of the differences becomesmore surprising than their presence). Themain quantitative
differences arise for awide range of intermediate overlap values, formedium-to-large interlayer connectivity—
precisely the region of parameter spacemotivated by real-world systems.Wenote that also theweighted
aggregate shows a general qualitative agreementwith themultiplex dynamics, but the quantitative discrepancies
appear to be systematic, though somehowobscured byfinite-size fluctuations.We conclude that considering the
numerical simulations of theweighted aggregate instead of the analytical approximations of the two standard
unweighted aggregates adds to, but does not substantially aid our understanding of themultiplex dynamics.

The conclusionwe draw from the analysis of the interface density is that, as long as edge overlap is taken into
account, standard unweighted andweighted aggregates can only reproduce some qualitative features of large
multiplex systems, but cannot capture quantitatively the behaviour of realmultiplex networks.

Consider now the characteristic time of the approach to absorbing states offinite-size systems (figure 5). The
difference between the results of the numerical simulations of themultiplex dynamics and the predictions at
q=0 of the unweighted aggregates is due to τ(q=0,ω)not being defined for themultiplex; yet the aggregate
timescale is close. Themonotonic decrease for q>0 exhibited by the numerical simulations is captured only by
methods 2 and 3, with coincidence of τ values for q=1. It is interesting to note that neither of the two
unweighted aggregates is able to capture the jumpof τ at small q, while theweighted aggregate can somehow
reproduce this effect, at least qualitatively. Overall, whileMethod 1 appears towork best in the thermodynamic
limit (this aggregationmethod results in amuch slower system for large q than the observed duplex),Methods 2
and 3 do a better job in capturing thefinite-size behaviour. In conclusion, although the three aggregation
procedures can come close to describing the qualitative features of long-termduplex activity, they are not
sophisticated enough to capture the long timescales associatedwith sparsely interconnected systems. In the
following sectionwewill seewhether and how it is possible to devisemore complex aggregation procedures in
order to reproduce quantitatively the dynamics of themultiplex votermodel.

Figure 4.Comparison of the interface density of themultiplex dynamics (black circles)with the theoretical predictions of the two
unweighted aggregationmethods (respectively, solid black line and dashed red line) andwith the numerical simulations of aweighted
aggregate (blue diamonds) for different values of edge overlapω. Although there is a general qualitative agreement between the
multiplex and the aggregates, quantitative discrepancies are evident, especially for intermediate-to-large values ofmultiplexity.
Overall, theweighted aggregate approximates ρ(q,ω) slightly better than the unweighted ones, in particular for relatively small values
of q, although the relative error remains of the same order.
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5.Nonlinearmultiplex effects

In principle, the results of the previous section cannot absolutely rule out the possibility that there exist other
aggregationmethods reproducing the behaviour of ρ(q,ω) observed in themultiplex votermodel. Our
hypothesis is that the deviations from the theory found forω>0 are due to the additional nonlinearity induced
by inter-layer state copyingmade possible by the presence of a fraction of inter-layer edges. In order to better
investigate these nonlinear effects, we inverted equation (3) to compute the effective value of the average degree

q,1
aggr ( )m w of an ideal aggregated unweighted single-layer network able to reproduce the observed value of ρ(q,

ω) for each value ofω and q. In formula:

q
q

q
,

3 , 2

3 , 1
. 201

aggr ( ) ( )
( )

( )m w
r w
r w

=
-
-

Asmade evident byfigure 6, for each value of edge overlap, q,1
aggr ( )m w can befitted verywell by a quadratic

polynomial in q. However, the actual values of the coefficients of the fit depend onω in a non-trivial way.We can
formally write:

q F q G q H, . 211
aggr 2( ) ( ) ( ) ( ) ( )m w w w w= + +

The problemnow is tofind an expression for F(ω),G(ω) andH(ω).We started bymaking an ansatz for the
functional dependence of those coefficients onω, and thenfitting these functions, for each value of q, by using
several realisations of q,1

aggr ( )m w corresponding to different values ofω.

Figure 5.Trends of the normalised characteristic time to consensus τ(q,ω)/N in a finite-size system for different values of edge
overlap. AggregationMethods 2 and 3 are somehow able to capture the qualitative behaviour of themultiplex dynamics for q> 0,
which exhibits amarkedmonotonic decrease of τ(q,ω) for increasing values ofmultiplexity. However, except for the case q=1,
which is well reproduced by bothMethods 2 and 3, none of the standard aggregates can provide a satisfactory quantitative description
in thewhole range of q.

Figure 6. (a)The values of 1
aggrm resulting from the inversion of themeasured interface density in the simulations as a function of q for

different values of edge overlap (symbols) and the corresponding quadratic fits (lines). (b) Scaling of τwith q using the data shown in
figure 2. For eachω,α corresponds to the slope of−ln(τ/N)with q computed for q>0. Straight lines are the linear regression fits for
each of the twoN trends, with coefficients given in the legend.
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We found that for all the values ofω the quadratic fit of q,1
aggr ( )m w yieldsH(ω)=μ, sowe just focused on

the other two coefficients. The values of F(ω) andG(ω) are reported in the panels offigure 7 as black circles. It is
then reasonable to assume that F(ω),G(ω) are polynomial functions ofω.We found that in order to accurately
reproduce the behaviour of q,1

aggr ( )m w in thewhole range ofω, both F(ω) andG(ω) should be at least third-
order polynomials inω, asmade evident by the plots reported infigure 7.

Notice that the predictions of 1
aggrm provided by the two theoretical arguments reported above, based on

the linear superpositions of the two layers, contained only linear terms inω. However, the fit of q,1
aggr ( )m w

confirms that, whenω>0, the behaviour of themultiplex votermodel is the result of a highly nonlinear
combination of the two layers, suggesting that a trivial single-layer equivalent of themultiplex votermodel
dynamics does not exist, especially when the underlyingmultiplex network is characterised by a non-
negligible overlap.

That simple aggregation procedures do not produce the observed scaling is also evident by examining the
timescales onwhich finite systems approach absorbing states. For q>0, the characteristic time τ(q,ω) is an
exponentially decreasing function of q, q N, e q N,( ) ( )t w ~ a w- ,α>0 (figure 2(b)). Figure 6(b) shows that

N a b,( )a w w= - + , a>0, and that the system-size dependency does not enter into it. Hence,
q N, eq a b( ) ( )t w ~ w - . Thus increasing the edge overlapω results in longer-lived systems, while addingmore

interlayer links produces the opposite effect. This was additionally confirmed by examining the behaviour of the
rescaled time until absorption Tá ñ, which showed the same qualitative trend and almost identical a and b
coefficients.

6.Discussion

Multilayer networks allow to extend the applicability of network theory tomore realistic contexts in which
nodes are connected through concurrent interaction patterns of different kinds. However, a fundamental
open question to answer is whether the added complexity yielded bymultilayer networks is really needed to
model network phenomena, or if instead there exist simple ways of representingmultiplex dynamics
through appropriately constructed processes occurring on appropriately constructed single-layer networks.
We have investigated here the problem of reducing themultiplex votermodel to an equivalent single-layer
dynamics.We have considered the predictions about the level of activity of themultiplex votermodel in the
thermodynamic limit, asmeasured by the interface density, as well as the time to reach the absorbing state for
finite systems.We have found that results for the interface density based on single-layer aggregated graphs,
either weighted or unweighted, are accurate only when there is little or no interaction between the layers (q
sufficiently small), or when there is full connectivity (q∼1) and the edge overlapω is either 0 or 1. For the
complementary broad range of parameters, any standard aggregation procedure can only give some
qualitative information about the interface density, but fails to reproduce the quantitative details.We
showed that edge overlap andmultiplexity have two opposite effects on the long-term dynamics of the
multiplex votermodel, and in particular that an increase in the value of edge overlap can counter the action
of increasing the fraction of interlayer links, leading to an overall decrease in the interface density of the

Figure 7.The black dots in each panel represent the coefficients of the quadratic fit F q G q2( ) ( )w w m+ + of q,1
aggr ( )m w for different

values ofω. Notice that both F(ω) andG(ω) are nonlinear functions ofω. The different lines correspond to fits of F(ω) andG(ω) using
dth order polynomials. Interestingly, a goodfit is obtained only for d�3,meaning that the presence of inter-layer state copying is
introducing highly nonlinear effects.
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multiplex. In fact, we showed numerically that any equivalent single-layer representation of themultiplex
votermodel dynamics entails the construction of an aggregate networkwhich is a highly nonlinear
combination of the original layers.

These results will be found at the same time surprising and interesting by all the researchers aiming at
modelling social interaction in real-world scenarios. As amatter of fact, it has been recently shown that
multilayer social networks are normally truly multiplex, meaning that they are characterised by non-
negligible values of edge overlap [30] and by an intermediate level ofmultiplexity [29, 31, 32]. And as we have
shown in this work, standard single-layer votermodel approximations are quantitatively inaccurate in
explaining the values of the interface density when the edge overlapω and the degree ofmultiplexing q are far
from their extreme values 0 or 1. The peculiarity of themultiplex dynamics is also reflected in the average
timescales of consensus for finite systems, as we found that amultiplex with very few interlayer connections
takes the longest time to reach consensus, muchmore than would probabilistically be needed by two
disconnectedmonoplexes. This nonlinear effect is not captured by any of the simple unweighted aggregation
procedures proposed in the paper, but it is qualitatively reproduced by the weighted aggregate. Hence,
although the analytical treatment of the weighted aggregate, and its comparison with themultiplex systems,
is beyond the scope of this work, we would still like to highlight it as a potentially fruitful direction for future
research.

The case of dynamical irreducibility of amultiplex process presented in this work raises the important
question of whether other unknown phenomenamight be lurking in themultilayer structure of real-world
systems. This question, togetherwith the insights about the intrinsicallymultidimensional nature of the
multiplex votermodel, represents a stimulus to perform further research along these lines.
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