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Neuropeptides are evolutionarily ancient mediators of neuronal signalling in

nervous systems. With recent advances in genomics/transcriptomics, an

increasingly wide range of species has become accessible for molecular analy-

sis. The deuterostomian invertebrates are of particular interest in this regard

because they occupy an ‘intermediate’ position in animal phylogeny, bridging

the gap between the well-studied model protostomian invertebrates (e.g.

Drosophila melanogaster, Caenorhabditis elegans) and the vertebrates. Here we

have identified 40 neuropeptide precursors in the starfish Asterias rubens, a

deuterostomian invertebrate from the phylum Echinodermata. Importantly,

these include kisspeptin-type and melanin-concentrating hormone-type

precursors, which are the first to be discovered in a non-chordate species.

Starfish tachykinin-type, somatostatin-type, pigment-dispersing factor-

type and corticotropin-releasing hormone-type precursors are the first

to be discovered in the echinoderm/ambulacrarian clade of the animal

kingdom. Other precursors identified include vasopressin/oxytocin-type,

gonadotropin-releasing hormone-type, thyrotropin-releasing hormone-

type, calcitonin-type, cholecystokinin/gastrin-type, orexin-type, luqin-type,

pedal peptide/orcokinin-type, glycoprotein hormone-type, bursicon-type,

relaxin-type and insulin-like growth factor-type precursors. This is the most

comprehensive identification of neuropeptide precursor proteins in an echino-

derm to date, yielding new insights into the evolution of neuropeptide

signalling systems. Furthermore, these data provide a basis for experimental

analysis of neuropeptide function in the unique context of the decentralized,

pentaradial echinoderm bauplan.
1. Background
Neuropeptides are intercellular signalling molecules that are secreted by

neurons to act as neurotransmitters, modulators of synaptic transmission

or hormones. They range in size from just three amino acids, such as thyrotro-

pin-releasing hormone (TRH), to much longer polypeptides (e.g. neuropeptide

Y, which comprises 36 residues). However, all neuropeptides share the common

characteristic of being derived from larger precursor proteins, which have an N-

terminal signal peptide that targets the precursor protein to the regulated

secretory pathway. Neuropeptides are key players in neural mechanisms con-

trolling physiological and behavioural processes; for example, neuropeptides

control feeding behaviour and reproductive behaviour in vertebrates and

invertebrates [1,2]. Furthermore, the evolutionary origins of neuropeptides

as regulators of physiology and behaviour are ancient; for example, neuro-

peptide signalling pathways are key components of the nervous systems of

basal animal phyla such as the cnidarians [3], and the origins of some peptide

signalling pathways may pre-date the emergence of animals with nervous

systems [4].
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A huge variety of neuropeptides have been identified in

vertebrates and invertebrates, but establishing evolutionary

relationships between neuropeptides identified in different

phyla has proved to be quite difficult because they comprise

relatively short stretches of amino acids, typically with only a

few conserved residues. However, recent advances in com-

parative genomics/transcriptomics are transforming our

understanding of the evolutionary and functional signifi-

cance of neuropeptide diversity in animals. Thus, a core set

of neuropeptide-receptor signalling pathways have been

traced back to the common ancestor of the Bilateria, with

families of orthologous neuropeptides being identified in an

increasingly wide range of animal phyla [5,6].

The classical invertebrate model systems Drosophila mela-
nogaster and Caenorhabditis elegans have been and continue

to be important for neuropeptide research [1,2]. However,

both species belong to phyla in the ecdysozoan clade of the

animal kingdom and therefore they are not representative

of invertebrates as a whole (figure 1). Critical to recent break-

throughs in our knowledge and understanding of

neuropeptide evolution has been the analysis of genome/

transcriptome data from other invertebrates, and in particular

lophotrochozoans (annelids and molluscs) and ambulacrar-

ians (echinoderms and hemichordates) [5–10]. Thus, we are

entering a new era where we have a molecular phylogenetic

framework that enables investigation of how evolutionarily

ancient orthologous neuropeptide systems are used to regu-

late physiological and behavioural processes in animals

from a range of phyla.

The echinoderms (e.g. starfish, sea urchins, sea cucumbers)

are particularly interesting for comparative and evolutionary

studies on neuropeptide signalling systems for a variety of

reasons. They are deuterostomian invertebrates and therefore

by virtue of their close relationship with chordates (figure 1),

echinoderms can provide key insights into the evolution of

neuropeptide systems in the animal kingdom. For example,

the recent discovery of a neuropeptide precursor in the sea

urchin Strongylocentrotus purpuratus comprising multiple

copies of TRH-type peptides revealed for the first time that

the evolutionary origin of TRH-type neuropeptides extends

beyond the vertebrates to invertebrates [9]. Furthermore, echi-

noderms have the unique characteristic in the animal

kingdom of exhibiting pentaradial symmetry as adult ani-

mals, which is derived from a bilateral body plan both

evolutionarily and developmentally. Consequently, echino-

derms do not have a ‘brain’; the nervous system is

decentralized, with the control of whole-animal behaviour

co-ordinated by five radial nerve cords that are linked by a

circumoral nerve ring [11,12]. Thus, it is of interest to deter-

mine how different neuropeptide signalling systems are

organized and used to regulate physiological and behaviour-

al processes in the context of the highly derived (pentaradial)

and decentralized nervous systems of echinoderms. Relevant

to this issue, there is evidence that neuropeptides may be

involved in mediating neural control of several unusual

biological phenomena in echinoderms. The ability to autoto-

mize and then regenerate body parts is one of the most

remarkable characteristics of echinoderms and it has been

reported that arm autotomy in starfish is triggered by a

peptide(s), but its molecular identity is unknown [13].

Another unusual feature of echinoderms is the mutability

of their collagenous tissue, which can rapidly change

between stiff and soft mechanical states under the control
of the nervous system [14]. Neuropeptides that affect the stiff-

ness of the body wall in sea cucumbers have been identified

[15], but the mechanisms by which they exert effects are

unknown [16].

The first extensive analysis of neuropeptide diversity in

an echinoderm species was enabled by sequencing of the

genome and transcriptome of S. purpuratus, and 28 candidate

neuropeptide/peptide hormone precursors have been ident-

ified in this species to date [9]. These include, for example,

homologues of vasopressin (VP)/oxytocin (OT), gonado-

tropin-releasing hormone (GnRH) and calcitonin (CT). At

present, little is known about the physiological roles of

these peptides in sea urchins; however, efforts to address

this issue have commenced. For example, in vitro pharmaco-

logical studies have revealed that echinotocin, a VP/OT-type

neuropeptide, causes contraction of the oesophagus and tube

feet in sea urchins [17].

More recently, analysis of transcriptome sequence data

has identified neuropeptide/peptide hormone precursors in

a second echinoderm species, the sea cucumber Apostichopus
japonicus [10]. Thus, we now have data from species represen-

tative of two of the five classes of extant echinoderms:

Echinoidea (S. purpuratus) and Holothuroidea (A. japonicus).

Analysis of phylogenetic relationships of the extant echino-

derm classes indicates that echinoids and holothurians are

sister groups in a clade known as the Echinozoa, while aster-

oids (starfish) and ophiuroids (brittle stars) are sister groups

in a clade known as the Asterozoa, with crinoids (feather

stars and sea lilies) occupying a basal position with respect

to the echinozoa and Asterozoa [18,19]. Thus, our current

knowledge of neuropeptide diversity in echinoderms based

upon analysis of transcriptome/genome sequence data is

restricted to the echinozoan clade. Deeper insights into the

evolution and diversity of neuropeptide systems in echino-

derms could be obtained by analysis of transcriptome/

genome sequence data from asterozoans (starfish and brittle

stars) and crinoids. To begin address this issue, here we

have generated and analysed neural transcriptome data

from a species belonging the class Asteroidea—the common

European starfish Asterias rubens.

We have selected A. rubens as a model echinoderm for

transcriptomic and experimental analysis of neuropeptide

signalling systems for several reasons. First, A. rubens has

been used as an experimental system for neuropeptide

research for many years. Thus, the detection of FMRF-

amide-like immunoreactivity in the nervous system of

A. rubens led to the discovery of the first neuropeptides to

be identified in an echinoderm—the SALMFamides S1 and

S2 [20–22]. Subsequently, detailed investigations of the

expression [23–26] and pharmacological actions [26–28] of

S1 and S2 in A. rubens have provided insights into the phys-

iological roles of SALMFamides in echinoderms [29]. Second,

A. rubens is a common and therefore easily obtained species of

starfish in the UK and throughout much of coastal Europe—

the range of A. rubens extends from the White Sea in Russia to

the coast of Senegal. Asterias rubens also occurs in deeper

waters off the northern coast of North America. Furthermore,

closely related species of the genus Asterias occur globally—

Asterias forbesi along the Atlantic coast of the USA from

Maine to the Gulf of Mexico and Asterias amurensis, a Northern

Pacific starfish native to the coasts of Japan, China, Korea and

Russia (http://www.marinespecies.org/aphia.php?p=taxde-

tails&id=123776). Third, analysis of neuropeptide systems in
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Figure 1. Animal phylogeny. Phylogenetic diagram showing the position of the phylum Echinodermata (shown in red; e.g. starfish) in the deuterostomian branch of
the animal kingdom. The Bilateria comprise two super-phyla—the deuterostomes and the protostomes. The deuterostomes comprise the chordates (vertebrates,
urochordates and cephalochordates) and the ambulacrarians (hemichordates and echinoderms). The protostomes comprise the lophotrochozoans (e.g. molluscs and
annelids) and the ecdysozoans (e.g. arthropods and nematodes). The Cnidaria (e.g. sea anemones) are basal to the Bilateria. Images of representative animals from
each phylum were obtained from http://phylopic.org or were created by the authors or by M. Zandawala (Stockholm University).
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A. rubens and other starfish species is also of potential interest

from an applied perspective because of the economic/environ-

mental impact of these animals as predators on shellfish

(e.g. mussels; A. rubens) [30,31] and coral (Acanthaster planci)
[32–34].

Here, we report the identification of 40 transcripts

encoding neuropeptide precursors in A. rubens based on

our analysis of neural transcriptome sequence data. Com-

bined with our recent analysis of the neuropeptide

transcriptome of the sea urchin S. purpuratus [9] and the sea

cucumber A. japonicus [10], these data provide important

new insights into the evolution and diversity of neuropeptide

signalling systems. Furthermore, the data provide a basis

for comprehensive analysis of the physiological roles of

neuropeptides in starfish, employing A. rubens as a model

experimental system.
2. Material and methods
2.1. Sequencing of Asterias rubens radial nerve

transcriptome
Radial nerve cords (approx. 30 mg) dissected from a male

adult specimen of A. rubens were used for RNA isolation

(Total RNA Isolation System, Promega). Library preparation

(TruSeqv2 kit, Illumina) was performed at the QMUL

Genome Centre and sequencing was performed on an Illu-

mina HiSeq platform at NIMR (Mill Hill), with cBot used

to generate clusters. A total of 168 776 495 � 100 bp reads
were obtained and raw sequence data (SRP068147; http://

www.ncbi.nlm.nih.gov/sra/SRP068147) were assembled

using SOAPDENOVO-TRANS v. 1.0 (http://soap.genomics.org.

cn/SOAPdenovo-Trans.html), a short-read assembly method

developed by the Beijing Genomics Institute [35]. Contigs

were assembled from reads with an overlap greater than

31 bp, which were then mapped back to the raw reads. The

326 816 contigs generated (with 16 316 over 1000 bp) were

then set up for BLAST analysis using SEQUENCESERVER,

which is freely available to academic users (http://www.

sequenceserver.com) [36].
2.2. BLAST-based identification of neuropeptide
precursors in Asterias rubens

To search for transcripts encoding putative neuropeptide or

peptide hormone precursor proteins in A. rubens, the

sequences of neuropeptide or peptide hormone precursors

previously identified in the sea urchin S. purpuratus
[5,6,11,16,17,37,38], the sea cucumber A. japonicus [10] and

the starfish species Asterina pectinifera [39] were submitted

individually as queries in tBLASTn searches of the contig

database with the BLAST parameter e-value set to 1000. Con-

tigs identified as encoding putative precursors were analysed

after translation of their full-length DNA sequence into

protein sequence using the ExPASy TRANSLATE tool (http://

web.expasy.org/translate/). Proteins were assessed as poten-

tial precursors of secreted bioactive peptides by investigating:

(i) the presence of a putative N-terminal signal peptide

http://www.ncbi.nlm.nih.gov/sra/SRP068147
http://www.ncbi.nlm.nih.gov/sra/SRP068147
http://www.ncbi.nlm.nih.gov/sra/SRP068147
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sequence, using the SIGNALP v. 3.0 online server [40], (ii) the

presence of putative monobasic or dibasic cleavage sites

N-terminal and C-terminal to the putative bioactive pep-

tide(s), with reference to known consensus cleavage motifs

[41–43], and (iii) the presence, in some cases, of a C-terminal

glycine residue that is a potential substrate for amidation.

2.3. De novo-based identification of candidate
neuropeptide precursors in Asterias rubens

A list of potential ORFs that were generated from the

A. rubens transcriptome sequence data were analysed using

a hidden Markov model described in [44,45]. The top 500

candidate sequences were then screened for the presence of

a signal peptide and short sequences flanked by canonical

Gly-Lys-Arg motifs characteristic of prohormone convertase

cleavage sites. The transcriptome sequence data were

also analysed using a novel neuropeptide-prediction tool

NpSearch, which uses characteristics of neuropeptide precur-

sors (signal peptide, dibasic cleavage sites) to identify novel

neuropeptides and their precursors (https://rubygems.org/

gems/NpSearch) [46].

2.4. Analysis of the sequences of neuropeptide
precursor transcripts identified in Asterias rubens

The protein sequences of candidate neuropeptide precursors

and polypeptide hormone precursors were annotated in

colour as follows. The N-terminal signal peptide, identified

using SIGNAlP v.3.0, was coloured blue; putative dibasic

or monobasic cleavage sites were coloured green; and the

putative neuropeptide(s) or peptide hormone(s) derived

from the precursor was coloured red, with C-terminal glycine

residues (when present) shown in orange. Figures compiling

the colour-coded precursor sequences were prepared

(figures 2, 9, 18 and 21). The DNA sequences of transcripts

encoding precursor proteins were also compiled, together

with the underlying encoded protein sequence (see electronic

supplementary material, figures S1–S40).

The sequences of A. rubens precursor proteins or the puta-

tive neuropeptides/polypeptide hormones derived from

them were aligned with homologous proteins/peptides in

other bilaterian species, some of which were identified here

for the first time. Alignments were generated and edited

using JALVIEW [47] and MAFFT [48] with JABAWS web ser-

vice [49], employing default settings (gap opening penalty

at local pairwise alignment ¼ 22, similarity matrix ¼

Blosum62, gap open penalty ¼ 1.53, group size ¼ 20, group-

to-group gap extension penalty ¼ 0.123). GENEDOC (http://

genedoc.software.informer.com) was used to annotate the

alignments and prepare alignment figures.
3. Results and discussion
By analysing A. rubens nerve cord transcriptome sequence

data, we have identified 40 candidate neuropeptide precur-

sors, which for the purposes of discussion we have divided

into four groups. First, and most interestingly, precursors of

neuropeptides that are the first members of neuropeptide

families to be identified in a non-chordate species. Second,

precursors of neuropeptides that are the first echinoderm/
ambulacrarian representatives of bilaterian neuropeptide

families to be identified. Third, precursors of neuropepti-

des that are homologues of neuropeptides that have been

identified previously in other echinoderm species and

that are members of bilaterian neuropeptide families.

Lastly, precursors of putative neuropeptides that have, as

yet, not been identified as homologues of neuropeptides in

non-echinoderm animals.

3.1. Discovery of starfish neuropeptide precursors that
provide new insights into neuropeptide evolution
at the superphylum level

3.1.1. Precursor of two kisspeptin-type peptides (ArKPP)

A kisspeptin (KP)-type neuropeptide precursor in A. rubens
(ArKPP) was identified as a 149-residue protein comprising

a predicted 24-residue N-terminal signal peptide and two

putative KP-type peptides—ArKP1 and ArKP2 (figure 2a;

GenBank: KT601705). In common with human KP, ArKP1

has a C-terminal NxxSxxLxF-NH2 motif, but unlike human

KP, ArKP1 has two cysteine residues in its N-terminal

region, which may form a disulfide bridge. ArKP2 is similar

to ArKP1 but it lacks the N-terminal pair of cysteine resi-

dues present in ArKP1 and it has additional residues in its

C-terminal region. Discovery of ArKPP is important because

it is the first KP-type precursor to be identified in a non-

chordate species, consistent with the occurrence of KP-type

receptors in non-chordates [5,6]. Furthermore, our discovery

of ArKPP facilitated identification of KP-type precursors in

other non-chordate deuterostomes, including the sea urchin

S. purpuratus (phylum Echinodermata) and the acorn worm

Saccoglossus kowalevskii (phylum Hemichordata). In figure 3,

putative KP-type peptides in these two species are aligned

with ArKP1 and ArKP2, human KP and four KP-type

peptides that have been identified previously in the cephalo-

chordate Branchiostoma floridae [5,50]. As in A. rubens, one of

the KP-type peptides in S. purpuratus has two cysteine resi-

dues, but this feature is not present in KP-type peptides in

non-echinoderm species. Therefore, the presence of a putative

N-terminal disulfide bridge may be a unique characteristic of

KP-type peptides in echinoderms.

KP or kiss1 was originally discovered in humans as a

metastasis-suppressor gene [51,52], but subsequently it was

found to have an important role in neuroendocrine control

of reproductive maturation in humans and other vertebrates

[53]. The key evidence for this was provided by the discovery

that mutations in the KP receptor (GPR54) cause delayed

puberty in humans [54,55], and the same phenotype was

observed in GPR54-knockout mice [54,56] and KP-knockout

mice [57,58]. KPs trigger hypothalamic secretion of GnRH,

which then stimulates release of gonadotropins from the pitu-

itary [59]. KP regulates the activity of GnRH neurons both

directly [60] and indirectly [61,62], and also acts directly on

gonadotropes [63]. Similarly, non-mammalian vertebrate

KP-type peptides have been implicated in the regulation of

reproductive function in several fish species [53,64,65].

At present nothing is known about the physiological roles

of KP-type peptides in invertebrates. Our discovery of a

KP-type precursor in starfish and other ambulacrarians, as

reported here, provides a basis to address this issue for the

first time.

https://rubygems.org/gems/NpSearch
https://rubygems.org/gems/NpSearch
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Figure 2. Precursors of neuropeptides in A. rubens that provide novel insights into neuropeptide evolution at the superphylum/phylum level. Predicted signal
peptides are shown in blue, putative neuropeptides are shown in red (with cysteine (C) residues underlined), C-terminal glycine (G) residues that are putative
substrates for amidation are shown in orange and putative dibasic/tribasic cleavage sites are shown in green.
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3.1.2. Precursor of a melanin-concentrating hormone-type
peptide (ArMCHP)

A melanin-concentrating hormone (MCH)-type neuropeptide

precursor in A. rubens (ArMCHP) was identified as an 88-

residue protein comprising a predicted 24-residue N-terminal

signal peptide and a C-terminal 28-residue MCH-type

peptide with two cysteine residues, which is preceded by

a putative dibasic cleavage site (figure 2b; GenBank:

KT601706). ArMCHP was identified on account of its

sequence similarity with Spnp14, a putative neuropeptide

precursor in the sea urchin S. purpuratus [9]. However, com-

parison of ArMCHP with vertebrate neuropeptides revealed

sequence similarity with MCH-type peptides, as illustrated

in figure 4. Furthermore, the location of the putative neuro-

peptide ArMCH in the C-terminal region of ArMCHP is

likewise a characteristic of MCH-type precursors in ver-

tebrates, providing further evidence of orthology [66].

Interestingly, identification of ArMCHP also facilitated

identification of a MCH-type precursor in a hemichordate

species, the acorn worm S. kowalevskii (figure 4).

Our discovery of MCH-type peptides in echinoderms and

hemichordates is important because these are the first MCH-

type neuropeptides to be discovered in invertebrates. Align-

ment of the invertebrate and vertebrate MCH-type peptides

reveals a conserved pair of cysteine residues. These residues

form a disulfide bridge in vertebrate MCH-type peptides

[67] and therefore it is likely that invertebrate MCH-type

peptides also have a disulfide bridge. Other conserved fea-

tures include a methionine (or isoleucine) residue following

the first cysteine residue and a basic amino acid (lysine or

arginine) penultimate to the second cysteine residue. Interest-

ingly, the number of residues that separate the two cysteine

residues is greater in the invertebrate MCH-type pepti-

des than in vertebrate MCH-type peptides, with two
additional residues (DW or DV) located after the conserved

methionine/isoleucine residue.

MCH was first identified in teleost fish on account of its

effect in triggering a change in body colour [68,69]. Sub-

sequently, MCH-type peptides were identified throughout

the vertebrates [70–72], and experimental studies have

revealed a wide range of physiological roles, including regu-

lation of feeding, sleep and reproduction [73,74]. Our

discovery of MCH-type peptides in ambulacrarians provides

a unique opportunity to investigate for the first time the

actions of these peptides in invertebrates and the evolution

of the physiological roles of this family of neuropeptides.
3.2. Discovery of the first ambulacrarian/echinoderm
representatives of bilaterian neuropeptide families

3.2.1. Precursor of two tachykinin-type peptides (ArTKP)

A tachykinin (TK)-type neuropeptide precursor in A. rubens
(ArTKP) was identified as a 199-residue protein comprising

a predicted 31-residue N-terminal signal peptide and two

putative TK-type neuropeptides, ArTK1 and ArTK2, which

are bounded by putative monobasic or dibasic cleavage

sites (figure 2c; GenBank: KT601707). The presence of

C-terminal glycine residues is indicative of post-translational

conversion to amide groups in the mature peptides, and the

presence of an N-terminal glutamine residue in ArTK1 is

indicative of potential post-translational conversion to a pyr-

oglutamate residue. ArTKP was identified because it has the

characteristics of a neuropeptide precursor, and comparison

of its sequence with bilaterian neuropeptide precursors

revealed similarity with TK-type precursors. In particular,

alignment of ArTK1 and ArTK2 with TK-type peptides in

http://rsob.royalsocietypublishing.org/


Figure 3. Alignment of ArKP1 and ArKP2 with other kisspeptin (KP)-type peptides. Accession numbers for the corresponding precursor proteins are: Arub, A. rubens
KP-type precursor [GenBank: KT601705]; Spur, S. purpuratus KP-type precursor [GI:374768013]; Skow, S. kowalevskii KP-type precursor [GI:187123982]; Bflo1, B.
floridae KP-type precursor 1 [GI:260826607]; Bflo2, B. floridae KP-type precursor 2 [GI:260827077]; Bflo3, B. floridae KP-type precursor 3 [GI:260826605]; Bflo4,
B. floridae KP-type precursor 4 [GI:260793233]; Hsap, Homo sapiens KiSS-1 metastasis-suppressor precursor [GI:21950713].
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chordates reveals a conserved C-terminal GLXamide motif

(figure 5).

TK-type peptides are a family of neuropeptides with a

widespread phylogenetic distribution indicative of an ances-

tral bilaterian origin [5,6]. ArTK1 and ArTK2 are the first

members of the TK-type neuropeptide family to be identified

in an echinoderm and, more broadly, an ambulacrarian. Ver-

tebrate TK-type peptides share the conserved C-terminal

pentapeptide motif FxGLM-NH2, whereas TK-type peptides

in protostomian invertebrates typically share the conserved

C-terminal pentapeptide motif FxGxR-NH2 (figure 5). ArTK1

and ArTK2 have the C-terminal pentapeptide motifs QSGLF-

NH2 and QSGGIF-NH2, respectively, which share the

common motif GxF-NH2, with x representing a hydrophobic

leucine or isoleucine residue, and in this respect ArTK1 and

ArTK2 are similar to vertebrate TK-type peptides (figure 5).

Conversely, a conserved feature of TK-type peptides that is

not present in the starfish peptides is a phenylalanine residue

at the fifth position from the C-terminal amide.

The first TK-type peptide to be discovered was the mam-

malian neuropeptide substance P (SP) [75–77]. Subsequently,

two other TKs were discovered in mammals—neurokinin A

(NKA) and neurokinin B (NKB) [78–80]. TK-type peptides

act as neurotransmitters, neuromodulators and neurohor-

mones in both the central and peripheral nervous system of

mammals, with roles in regulation of, for example, intestinal

motility [81], smooth muscle contraction [82] and cardiovas-

cular function [83]. TK-type peptides have also been

identified in non-mammalian vertebrates [84], in urochor-

dates [85] and in protostomian invertebrates, including

molluscs [86,87], annelids [88,89], arthropods [90–93] and

nematodes [94]. Investigation of the physiological roles of

TK-type peptides in protostomes has revealed, for example,

effects on gut/oviduct motility and lipid synthesis in insects

and rhythmic motor output of the somatogastric system in

crustaceans [90,95–97]. Now with the discovery of ArTK1

and ArTK2 in A. rubens, as reported here, an opportunity

to investigate for the first time the physiological roles of

TK-type neuropeptides in an echinoderm has been provided.

3.2.2. Precursor of a somatostatin-type peptide (ArSSP)

A somatostatin (SS)-type neuropeptide precursor in A. rubens
(ArSSP) was identified as a 132-residue protein comprising

a predicted 24-residue N-terminal signal peptide and a
13-residue SS-type peptide that is preceded N-terminally

by a putative dibasic cleavage site (figure 2d; GenBank:

KT601708). ArSSP was identified based on its sequence simi-

larity with Spnp19, a putative neuropeptide precursor

previously identified in the sea urchin S. purpuratus [9]. How-

ever, comparison of ArSSP and Spnp19 (SpSSP) with known

neuropeptide precursors revealed similarity with vertebrate

SS/cortistatin-type precursors. For example, both ArSS and

SpSS share a CxxxFxxxxxxC motif with human SS and cortis-

tatin (figure 6). In vertebrate SS/cortistatin-type peptides, the

two cysteine residues form an intramolecular disulfide bridge

[98], and therefore it is likely that the same post-translational

modification occurs in the starfish and sea urchin SS-type

peptides. Furthermore, as with ArMCHP, another feature

of ArSSP that suggests homology with vertebrate SS-type

precursors is the conserved location of an SS-type neuro-

peptide at the C-terminus of the precursor [99]. The

discovery of SS-type neuropeptides in starfish and sea urchins

is important because these are the first to be identified in

echinoderms and they join a bilaterian family of neuropeptides

that include allatostatins in arthropods [5,6,100].

SS was first isolated from sheep hypothalamus [101], and

was initially characterized as a neuroendocrine peptide that

inhibits release of pituitary hormones such as growth

hormone and prolactin [102,103]. Subsequently, an SS-type

peptide termed cortistatin was discovered in humans [104]

and has since been found to occur throughout the tetrapod

vertebrates [99]. Additional SS-type peptides are present in

teleost fish [105], and a candidate SS-type peptide was

recently identified in the cephalochordate B. floridae
(figure 6) [5]. In addition to its effects on pituitary hormone

release, SS also has central actions that influence motor

activity, sensory processing and cognition [106].

Allatostatins inhibit juvenile hormone (JH) biosynthesis in

the corpora allata of insects and three structurally unrelated

types of allatostatins have been identified. Allatostatins were

first isolated from the cockroach Diploptera punctata and

these are now referred to as allatostatin-A [107–109], while

neuropeptides with allatostatic activity that were originally

identified from the cricket Gryllus bimaculatus are referred to

as allatostatin-B [110]. The allatostatin-C (AST-C)-type pep-

tides that are related to vertebrate SSs were first identified

in the tobacco hornworm Manduca sexta [111], but have

subsequently been identified in a number of arthropods,

including numerous insect species [100,112–115].
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Figure 4. Alignment of ArMCH with other melanin-concentration hormone
(MCH)-type peptides. Accession numbers for the corresponding precursor pro-
teins are: Arub, A. rubens MCH-type precursor [GenBank: KT601706]; Spur, S.
purpuratus MCH-type precursor [GI:109402760]; Skow, S. kowalevskii MCH-
type precursor [GI:187231810]; Trub, Takifugu rubripes MCH precursor
[GI:410918650]; Hsap, H. sapiens MCH precursor [GI:187445]. Figure 5. Alignment of ArTK1 and ArTK2 with other tachykinin (TK)-type pep-

tides. Accession numbers for the corresponding precursor proteins are: Arub,
A. rubens TK-type precursor [GenBank: KT601707]; Spur, S. purpuratus TK-type pre-
cursor [GI:109402899]; Cint, C. intestinalis TK-type precursor [GI:74136064];
Hsap_SubP, H. sapiens b-prepro TK precursor [GI:29482]; Hsap_NKB, H. sapiens
neurokinin-b precursor [GI:48146502]; Hsap_NKA, H. sapiens TK4 precursor
[GI:117938255]; Ctel, Capitella teleta [GI:161289578]; Lgig1, Lottia gigantea TK-
type precursor 1 [GI:676441944]; Lgig2, L. gigantea TK-type precursor 2
[GI:163525452]; Dmel, D. melanogaster TK precursor [GI:442618676].
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Our discovery of precursors of SS-type neuropeptides in

echinoderms is important because it provides a basis for

investigation of their physiological roles in non-chordate deu-

terostomes. A common theme that emerges from comparison

of the actions of SS-type and AST-C-type neuropeptides in

vertebrates and insects, respectively, is their roles in inhibi-

tory regulation of the biosynthesis/release of hormones that

regulate development and growth. Against this background,

it will be of great interest to discover the physiological roles of

SS-type neuropeptides in echinoderms.

3.2.3. Precursor of two pigment-dispersing factor-type peptides
(ArPDFP)

A pigment-dispersing factor (PDF)-type neuropeptide

precursor in A. rubens (ArPDFP) was identified as a 104-

residue protein comprising a predicted 22-residue N-terminal

signal peptide and two putative PDF-type neuropeptides

bounded by dibasic/tribasic cleavage sites: ArPDF1, a 35-

residue polypeptide with a C-terminal glycine residue that

may be a substrate for amidation, and ArPDF2, a 29-residue

polypeptide (figure 2e; GenBank: KT601709). ArPDFP was

identified on account of its sequence similarity with a protein

in the sea urchin S. purpuratus, which was reported pre-

viously as a corticotropin-releasing hormone (CRH)-type

neuropeptide precursor [6]. However, three observations

lead us to conclude that ArPDFP is, as its name implies, a

PDF-type precursor. First, the A. rubens and S. purpuratus
PDF-type peptides share sequence similarity with a PDF-

type peptide that was identified recently in the hemichordate

S. kowalevskii [5] and with PDF/cerebrin-type peptides in pro-

tostomian invertebrates, as illustrated in figure 7. Second, the

occurrence of two putative neuropeptides in ArPDFP is a fea-

ture that is also seen other PDF-type precursors [116] but not

in CRH-type precursors. Third, we have identified other

neuropeptide precursors in A. rubens and the sea urchin S.
purpuratus that exhibit a higher level of similarity with

CRH-type precursors (see below).

PDF or pigment-dispersing hormone was first identified

in crustacean species on account of its effect in causing pig-

ment migration in retinal pigment cells of the eyes [117].

Subsequently, PDF-type peptides were identified in other

arthropods [118], and experimental studies on Drosophila
revealed that PDF released by sub-populations of neurons

in the brain is required for normal circadian patterns of loco-

motor activity [119–121]. PDF-type peptides have also been

identified in nematodes [122] and lophotrochozoans, includ-

ing molluscs [7] and annelids [8]. PDF-type neuropeptide

signalling in the nematode C. elegans regulates locomotor
activity and egg-laying [123], while a PDF-type neuropeptide

in the mollusc Aplysia californica (‘cerebrin’) affects the feed-

ing motor pattern, mimicking the motor-pattern alterations

observed in food-induced arousal states [124].

Phylogenetic studies indicate that PDF-type peptides are

a bilaterian neuropeptide family that has been lost in the

chordate lineage [5,6]. Therefore, the discovery of PDF-type

neuropeptides in echinoderms, as reported here, and in hemi-

chordates [5] is of particular interest because it provides a

unique opportunity for the first investigations of the physiologi-

cal roles of this family of neuropeptides in deuterostomian

invertebrates.

3.2.4. Precursor of a corticotropin-releasing hormone-type
peptide (ArCRHP)

A CRH-type neuropeptide precursor in A. rubens (ArCRHP)

was identified as a 130-residue protein comprising a

predicted 28-residue N-terminal signal peptide and a 41-

residue CRH-type peptide sequence bounded by dibasic/

tribasic cleavage sites (figure 2f; GenBank: KT601710). An

N-terminal glutamine residue and a C-terminal glycine resi-

due may be substrates for post-translational modifications

that give rise to an N-terminal pyroglutamate residue and a

C-terminal amide group in the mature peptide. As highlighted

above, neuropeptides in echinoderms purported to be CRH-

type peptides have been reported previously [5,6,10], but

further analysis here has revealed that these are in fact PDF-

type peptides. Therefore, ArCRHP is the first bone fide CRH-

type precursor to be identified in an echinoderm. Previous

studies have identified CRH-type precursors in other deuteros-

tomian invertebrates, including the hemichordate S. kowalevskii
[5,6] and the cephalochordate B. floridae [5], and in figure 8

we show an alignment of the A. rubens CRH-type peptide

(ArCRH) with homologues from these two species, human

CRH/urocortin-type peptides and CRH-type peptides in

lophotrochozoan protostomes. The alignment highlights

several residues that are conserved at the interphyletic level.

CRH was first identified as a hypothalamic neurohor-

mone that stimulates release of adrenocorticotropic
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Figure 6. Alignment of ArSS with other somatostatin (SS)-type peptides and
AST-C-type peptides. Accession numbers for the corresponding precursor proteins
are: Arub, A. rubens SS-type precursor [GenBank: KT601708]; Spur, S. purpuratus
SS-type precursor [GI:390344260]; Bflo, B. floridae SS-type precursor [JGI:72051];
Hsap_SS, H. sapiens SS precursor [GI:21619155]; Hsap_CORT, H. sapiens cortis-
tatin (CORT) precursor [GI:110645815]; Ctel, C. teleta AST-C-type precursor
[GI:161295377]; Lgig, L. gigantea AST-C-type precursor [GI:163505903]; Dme-
l_AstC, D. melanogaster AST-C-type precursor [GI:665407583]; Dmel_AstCC,
D. melanogaster AST-CC-type precursor [GI:665407585].

Figure 7. Alignment of ArPDF1 and ArPDF2 with other pigment-dispersing
factor (PDF)-type peptides. Accession numbers for the corresponding precursor
proteins are: Arub, A. rubens PDF-type precursor [GenBank: KT601709]; Spur,
S. purpuratus PDF-type precursor [GI:115899431]; Skow, S. kowalevskii PDF-type
precursor [GI:187067819]; Ctel, C. teleta PDF-type precursor [JGI:204689]; Lgig,
L. gigantea cerebrin precursor [GI:676458325]; Dmel, D. melanogaster PDF
precursor [GI:281362639]; Cele, C. elegans PDF precursor [GI:25149644].
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hormone in response to stress in mammals [125,126]. CRH-

type peptides have also been identified in non-mammalian

vertebrates, and in addition to its corticotropic effect, CRH

acts as a thyrotropic hormone [127]. A CRH-type peptide in

insects, DH44, acts as a diuretic hormone, stimulating fluid

secretion by Malpighian tubules by elevating cAMP levels

[128]. In the mollusc Aplysia, egg-laying hormone (ELH) is

a CRH-type peptide [129,130] and ELH/CRH-type peptides

have subsequently been identified in other molluscan species

[131]. It has also been reported that ELH-type peptides

trigger gamete release in annelids [132]. Against this

backdrop of diverse physiological roles, the discovery of

CRH-type peptides in starfish and other deuterostomian

invertebrates provides a unique opportunity to obtain new

insights into the evolution of the physiological roles of

CRH-type neuropeptides in the animal kingdom.

3.3. Discovery of novel starfish representatives of
bilaterian neuropeptide and peptide hormone
families

3.3.1. Precursor of a vasopressin/oxytocin-type neuropeptide
(asterotocin)

A VP/OT-type neuropeptide precursor in A. rubens was ident-

ified as a 147-residue protein comprising a predicted 23-residue

N-terminal signal peptide, a VP/OT-type neuropeptide

sequence (CLVQDCPEGG) followed by a dibasic cleavage site

and a neurophysin domain (figure 9a; GenBank: KT601711).

This structure of the precursor conforms to the evolutionarily

conserved organization of VP/OT-type neuropeptide precur-

sors throughout the Bilateria [5,133]. Mature VP/OT-type

neuropeptides are typically C-terminally amidated and have a

disulfide bridge between two highly conserved cysteine resi-

dues, which are crucial for biological activity [134–136].

Therefore, the predicted neuropeptide product of the VP/OT-

type precursor in A. rubens is CLVQDCPEG-NH2, with a disul-

fide bridge between the two cysteine residues. We refer to this

putative starfish VP/OT-type neuropeptide as ‘asterotocin’, in

keeping with the naming of a VP/OT-type peptide,
‘echinotocin’, which was identified previously in the echinoid

(sea urchin) S. purpuratus [17].

In figure 10, we have compared the sequence of asteroto-

cin with VP/OT-type neuropeptides that have been identified

in other animals. The presence in asterotocin of leucine and

valine residues at positions 2 and 3, respectively, is atypical

for VP/OT-type peptides but consistent with the occurrence

of hydrophobic residues at these positions in other VP/OT-

type peptides. The aspartic acid at position 5 in asterotocin

is also atypical (more commonly it is an asparagine), but

this feature is also seen in several other VP/OT-type pep-

tides, including peptides identified in the hemichordate

S. kowalevskii, the urochordates Ciona intestinalis and Styela pli-
cata [137,138], and the nematode C. elegans [139]. The most

unusual and interesting structural characteristic of asterotocin

is the presence of a glutamate residue at position 8 because, to

the best of our knowledge, this is the first of example of a

VP/OT-type neuropeptide with an acidic residue in this pos-

ition. Typically, the residue in this position is a basic residue

(e.g. lysine or arginine in mammalian VPs) or a hydrophobic

residue (e.g. leucine in OT). Furthermore, this feature of aster-

otocin may be unique to starfish or a sub-set of echinoderms

because the VP/OT-type neuropeptide previously identified

in the sea urchin S. purpuratus (echinotocin; CFISNCPKG-

NH2) has a lysine residue at position 8 [17]. Therefore, it

may be of interest to investigate the importance of the chemi-

cal characteristics of the amino acid at position 8 for the

biological activity of asterotocin.

VP was first discovered in mammals on account of its

effects as a regulator of blood pressure and diuresis

[140,141], while OT was discovered on account of its effects

as a stimulator of uterine contraction and lactation [142].

However, in addition to these peripheral hormonal functions,

VP and OT also have central neuromodulatory roles in social

cognition and behaviour, including mother–infant bonding

[143], and pair bonding and attachment [144,145]. Currently,

there is great interest in both VP and OT with respect to

understanding human social behaviour and neuropathology,

with implications of involvement in disorders such as autism,

social anxiety disorder, borderline personality disorder and

schizophrenia [146,147].

As illustrated in figure 10, VP/OT-type neuropeptides

have a widespread phylogenetic distribution indicative of

an evolutionary origin dating back to the common ancestor

of bilaterians [5,6]. VP/OT-type peptides have been identified

in many vertebrate species [148,149] and in deuterostomian
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Figure 8. Alignment of ArCRH with other corticotropin-releasing hormone (CRH)-type peptides. Accession numbers for the corresponding precursor proteins are:
Arub, A. rubens CRH-type precursor [GenBank: KT601710]; Skow1, S. kowalevskii CRH-type precursor 1 [GI:281433636]; Skow2, S. kowalevskii CRH-type precursor 2
[GI:281433636]; Bflo, B. floridae CRH-type precursor [GI:260786674]; Hsap_CRH, H. sapiens CRH precursor [GI:30583744]; Hsap_UCN, H. sapiens urocortin (UCN)
precursor [GI:49457481]; Hsap_UCN2, H. sapiens stresscopin-related protein precursor [GI:14029393]; Hsap_UCN3, H. sapiens stresscopin precursor [GI:15026913];
Ctel1, C. teleta CRH-type precursor 1 [GI:161303031]; Ctel2, C. teleta CRH-type precursor 2 [JGI:190906]; Ctel3, C. teleta CRH-type precursor 3 [JGI:190906]; Ctel4,
C. teleta CRH-type precursor 4 [JGI:194553]; Lgig1, L. gigantea CRH-type precursor 1 [GI:676493124]; Lgig2, L. gigantea CRH-type precursor 2 [GI:163524672].
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invertebrates, including the urochordates [137,138], the

cephalochordate B. floridae [150], the hemichordate S. kowa-
levskii [151] and the echinoderm S. purpuratus [17]. VP/

OT-type peptides have also been identified in protostomes

[152–154]. Furthermore, recent studies on the nematode

C. elegans have shown that the VP/OT-type peptide nemato-

cin [139,155] is involved in gustatory associative learning and

control of mating behaviour in this species [1,139]. It has

therefore been hypothesized that VP/OT-type peptides may

be ancient modulators of reproductive behaviour and

associative learning [1].

Currently, little is known about the physiological roles of

VP/OT-type neuropeptides in echinoderms. In vitro pharma-

cological tests have, however, revealed that echinotocin

causes contraction of tube foot and oesophagus preparations

in the sea urchin species Echinus esculentus [17]. These effects

of echinotocin are consistent with contractile actions of VP

and OT on blood vessels and uterus, respectively, in mam-

mals [140–142]. Likewise, a VP/OT-type neuropeptide

causes contraction of the inhalant and exhalant siphons in

the urochordate S. plicata [138]. With the discovery of the

asterotocin precursor in A. rubens, as reported here, an oppor-

tunity to investigate the physiological roles of a VP/OT-type

neuropeptide in starfish has been provided.
3.3.2. Precursor of NGFFYamide, a neuropeptide-S/NG peptide/
crustacean cardioactive peptide-type neuropeptide

Discovery of the A. rubens NGFFYamide precursor was

reported recently [156] and was accomplished by analysis

of the same neural transcriptome dataset analysed here;

therefore, it is included here for sake of completeness. The

NGFFYamide precursor is a 239-residue protein comprising

a predicted 23-residue N-terminal signal peptide, two

copies of the sequence NGFFYG bounded by dibasic clea-

vage sites and a C-terminal neurophysin domain containing

14 cysteine residues (figure 9b; GenBank: KC977457), which

is a conserved feature of neurophysins. Post-translational con-

version of the C-terminal glycine residue of the NGFFYG
peptide to an amide group has been confirmed by mass

spectrometry [156].

NGFFYamide belongs to a bilaterian family of neuro-

peptides that include the vertebrate peptide neuropeptide-

S (NPS), protostomian crustacean cardioactive peptide

(CCAP)-type neuropeptides and NG peptides, neurophysin-

associated peptides in deuterostomian invertebrates that are

characterized by an Asn-Gly (NG) motif, which include

NGFFYamide. This relationship of NG peptides with NPS/

CCAP-type peptides was proved recently with the discovery

that the NG peptide NGFFFamide is the ligand for an NPS/

CCAP-type receptor in the sea urchin S. purpuratus [157]. Fur-

thermore, the presence of a neurophysin domain in NG

peptide precursors reflects a common ancestry with VP/

OT-type precursors, with gene duplication in a common

ancestor of the Bilateria having given rise to the VP/OT-

type and the NPS/NG peptide/CCAP-type neuropeptide

signalling systems [5,157].

NPS acts as an anxiolytic in mammals and induces wake-

fulness and hyperactivity [158], whereas CCAP activates the

ecdysis motor programme in arthropods that results in shed-

ding of the exoskeleton [159,160]. Thus, a common theme for

these neuropeptides appears to be roles in behavioural states

associated with a heightened state of arousal [157]. We

have investigated the physiological roles of NGFFYamide in

A. rubens and have discovered that it potently stimulates con-

traction of the cardiac stomach in vitro [156]. Starfish feed by

everting their cardiac stomach over the digestible parts of

prey such as mussels and in vivo pharmacological tests have

revealed that NGFFYamide triggers retraction of the everted

cardiac stomach [156]. Therefore, it is likely that NGFFY

amide acts physiologically to mediate neural control of

cardiac stomach retraction in starfish.

3.3.3. Precursor of gonadotropin-releasing hormone-type
peptide 1 (ArGnRH1P)

A GnRH-type neuropeptide precursor in A. rubens
(ArGnRH1P) was identified as a 121-residue protein com-

prising a predicted 27-residue N-terminal signal peptide
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Figure 9. Precursors of neuropeptides in A. rubens that are novel echinoderm representatives of bilaterian neuropeptide families. Predicted signal peptides are
shown in blue, putative neuropeptides are shown in red (with cysteine (C) residues underlined), C-terminal glycine (G) residues that are putative substrates
for amidation are shown in orange and putative dibasic cleavage sites are shown in green. For the (a) asterotocin and (b) NGFFYamide precursors, the C-terminal
neurophysin domain (with the characteristic 14 cysteine (c) residues underlined) is shown in purple.
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and a GnRH-type peptide sequence (QIHYKNPGWGPG)

followed by a dibasic cleavage site (figure 9c; GenBank:

KT601712). The presence of an N-terminal glutamine residue

and a C-terminal glycine residue are indicative of post-

translational modifications giving rise to an N-terminal

pyroglutamate residue and a C-terminal amide group in

the putative mature peptide (pQIHYKNPGWGPG-NH2;

ArGnRH1), which would be consistent with GnRH-

type neuropeptides that have been identified in other

species [161].

GnRH-type peptides have a widespread phylogenetic dis-

tribution indicative of an evolutionary origin dating back to

the common ancestor of bilaterians [5,6]. The structural

organization of ArGnRH1P conforms to other GnRH-type

precursor proteins, with a single GnRH-type peptide located

directly after the N-terminal signal peptide (figure 9c).
Furthermore, comparison of the sequence of ArGnRH1 with

other GnRH-type peptides reveals several conserved features,

including the aforementioned predicted N-terminal pyrogluta-

mate and C-terminal amide as well as a GWxP motif at

positions 8–11 in ArGnRH1 (figure 11a). The C-terminal PG

motif in ArGnRH1 is a feature that it shares with human

GnRHs.

GnRH was first discovered in mammals as a reproductive

regulator through its stimulatory effect on the release of the

gonadotropins luteinizing hormone (LH) and follicle-

stimulating hormone (FSH) from the anterior pituitary

gland [162]. GnRH-type peptides have subsequently been

identified in other vertebrates [163,164] and deuterostomian

invertebrates, including urochordates [165,166], the cephalo-

chordate B. floridae [167], the hemichordate S. kowalevskii [5]

and the echinoderm S. purpuratus [9]. GnRH-type peptides
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Figure 10. Alignment of asterotocin with other vasopressin/oxytocin (VP/OT)-
type peptides. Accession numbers for the corresponding precursor proteins are:
Arub, A. rubens asterotocin precursor [GenBank: KT601711], Spur, S. purpuratus
echinotocin precursor [GI:390337108]; Skow, S. kowalevskii VP/OT-type precursor
[GI:187155721]; Bflo, B. floridae VP/OT-type precursor [GI:260828088];
Hsap_VP, H. sapiens VP precursor [GI:340298]; Hsap_OT, H. sapiens OT precur-
sor [GI:189410]; Ctel, C. teleta VP/OT-type precursor [JGI:173251]; Lgig,
L. gigantea VP/OT-type precursor [JGI:53893]; Dpul, Daphnia pulex VP/OT-
type precursor [JGI:59567].

rsob.royalsocietypublishing.org
Open

Biol.6:150224

11

 on February 10, 2016http://rsob.royalsocietypublishing.org/Downloaded from 
have also been identified in lophotrochozoans, including sev-

eral molluscan species [168–170] and annelids [8,161,169].

Interestingly, it has been discovered that adipokinetic

hormone (AKH) in the ecdysozoans (arthropods and nema-

todes) and corazonin (CORZ)-type peptides and AKH/

CORZ-related peptides (ACP) in the arthropods are homol-

ogues of GnRH [171–173]. In insects, AKH is synthesized

in the corpora cardiaca, which are functionally equivalent

to the pituitary gland in vertebrates, and acts to mobilize

energy from the fat body during flight and locomotion

[174,175]. AKH-type peptides in the nematode C. elegans
regulate fertility, indicating that GnRH/AKH-type peptides

have an evolutionarily ancient role in neural control of re-

productive processes [171]. The physiological roles of

GnRH-type peptides in echinoderms are currently unknown.

Therefore, the discovery of ArGnRH1 in A. rubens, as

reported here, provides an opportunity to address this issue.

3.3.4. Precursor of gonadotropin-releasing hormone-type
peptide 2 (ArGnRH2P)

A second GnRH-type neuropeptide precursor in A. rubens
(ArGnRHP2) was identified as a 99-residue protein compris-

ing a predicted 23-residue N-terminal signal peptide and a

putative GnRH-type peptide sequence (HNTFTMGGQN

RWKAGG) followed by a dibasic cleavage site (figure 9d;

GenBank: KT601713). The presence of a C-terminal glycine

residue is indicative of a post-translational modification that

gives rise to a C-terminal amide group on the mature peptide

(HNTFTMGGQNRWKAG-NH2). However, the absence of an

N-terminal pyroglutamate residue is atypical for GnRH-type

neuropeptides [161].

ArGnRHP2 was identified on account of its sequence

similarity with Spnp12, a putative neuropeptide precursor

previously identified in the sea urchin S. purpuratus [9]. How-

ever, here we have discovered that the structural organization

and sequence of Spnp12 and its homologue in A. rubens are

similar to GnRH-type precursors in S. purpuratus, A. rubens
(figure 11b) and other species. Thus, the GnRH-type peptide

is located directly following the signal peptide, and

ArGnRH1P and ArGnRH2P have a conserved C-terminal

domain. Furthermore, ArGnRH2 shares a C-terminal

WxxG-NH2 motif with ArGnRH1 (figure 11b).
Investigation into the evolution of GnRH-type neuropep-

tide signalling systems in the Bilateria has revealed a complex

picture [167]. A variety of neuropeptide types, including

chordate GnRH-type peptides, arthropod AKH-type, CORZ

and ACP-type peptides, appear to have evolved from a

common ancestral peptide that occurred in the common

ancestor of the Bilateria. However, the timing of the gene

duplications that gave rise to this heterogeneous family of

neuropeptides that occur in extant bilaterians remains

unclear. Discovery of a second GnRH-type neuropeptide pre-

cursor in echinoderms (starfish and sea urchins) adds further

complexity. However, our findings provide a basis for func-

tional characterization of ArGnRH1 and ArGnRH2, which

may provide new insights that facilitate a deeper understand-

ing of the evolution of GnRH-type signalling systems in the

Bilateria.

3.3.5. Precursor of thyrotropin-releasing hormone (TRH)-type
peptides (ArTRHP)

A TRH-type neuropeptide precursor in A. rubens (ArTRHP)

was identified as a 225-residue protein comprising a predicted

23-residue N-terminal signal peptide and 12 putative TRH-

type peptides bounded by dibasic cleavage sites (figure 9e;

GenBank: KT601714). These include a single copy of the pep-

tide sequence QYPGGAPIGLDG and 11 copies of the peptide

sequence QWYTG. The presence of an N-terminal glutamine

residue and a C-terminal glycine residue in these peptide

sequences are indicative of potential post-translational modifi-

cation to an N-terminal pyroglutamate and a C-terminal

amide group in the mature peptides, which would be consist-

ent with the structure of TRH in mammals (pQHP-NH2).

Hence the predicted structure of the multi-copy TRH-type

peptide in A. rubens is pQWYT-NH2. Furthermore, the occur-

rence of multiple copies of this peptide is consistent with the

organization of TRH-type precursors in vertebrates, which

comprise multiple copies of TRH [176,177].

Comparison of ArTRHP with TRH-type precursors that

have been identified in other echinoderm species reveals simi-

larities. TRH-type precursors in the sea urchin S. purpuratus [9]

and in the sea cucumber A. japonicus [10] comprise 19

putative neuropeptides. The most abundant predicted neuro-

peptide product of the S. purpuratus precursor is pQYPG-

NH2 and the most abundant predicted neuropeptide product

of the A. japonicus precursor is pQYFA-NH2. Thus, with our

discovery of the putative pQWYT-NH2 peptide in A. rubens,

it appears that a tetrapeptide with an N-terminal pyrogluta-

mate and a C-terminal amide are conserved features of

TRH-type peptides in echinoderms, which contrasts with

the tripeptidic TRH-type peptides that occur in chordates,

namely pQHP-NH2 in vertebrates and pQSP-NH2 in the

cephalochordate B. floridae (figure 12). Comparison of the

sequences of the most abundant of the TRH-type peptides

in the three echinoderm species reveals similarities, with

the amino acids in positions 2 and 3 having side chains that

are aromatic (Y, F or W) or cyclic (P) (figure 12). In this

respect, there is similarity with TRH in vertebrates, which

has an aromatic histidine residue in position 2 and a cyclic

proline residue in position 3 (figure 12).

TRH was first identified in mammals as a hypothalamic

peptide that stimulates the release of the hormones thyroid-

stimulating hormone (TSH) and prolactin from the anterior

pituitary gland. Release of TSH then triggers release of
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Figure 11. Alignment of A. rubens GnRH-type peptides/precursors with other gonadotropin-releasing hormone (GnRH)-type peptides/precursors. (a) Alignment of
GnRH-type peptides. Accession numbers for the corresponding precursor proteins are: Arub, A. rubens GnRH-type precursor 1 [GenBank: KT601712]; Spur, S. pur-
puratus GnRH-type precursor 1 [GI:390361802]; Skow, S. kowalevskii GnRH-type precursor [GI:585702722]; Bflo, B. floridae GnRH-type precursor [GI:568818760];
Hsap1, H. sapiens GnRH precursor 1 [GI:133908609]; Hsap2, H. sapiens GnRH precursor 2 [GI:109731929]; Ctel, C. teleta GnRH-type precursor [GI:161294493];
Acal, A. californica GnRH-type precursor [GI:325296898]; Dmel_CORZ, D. melanogaster corazonin (CORZ) precursor [GI:386765761]; Dmel_AKH, D. melanogaster adi-
pokinetic hormone (AKH) precursor [GI:281365621]. (b) Alignment of GnRH-type precursors. Accession numbers for the corresponding precursor proteins are:
Arub_GnRH1P, A. rubens GnRH-type precursor 1 [GenBank: KT601712]; Spur_GnRH1P, S. purpuratus GnRH-type precursor 1 [GI:390361802]; Arub_GnRH2P,
A. rubens GnRH-type precursor 2 [GenBank: KT601713]; Spur_GnRH2P, S. purpuratus GnRH-type precursor 2 [GI:109403263].
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thyroid hormones (T3 and T4) that stimulate metabolism

in cells throughout the body and promote growth and

development [125]. TRH also acts as neurotransmitter or

neuromodulator in other regions of the brain [178,179]. In

amphibians and fish, TRH stimulates the release of pituitary

growth hormone and prolactin but has little or no effect on

the secretion of TSH [180]. Thus, the role of TRH as a regula-

tor of TSH release in mammals does not apply to all

vertebrate species.

The occurrence of TRH-type receptors in deuterostomes

and protostomes indicates that the evolutionary origin of

this neuropeptide signalling system dates back to the

common ancestor of the Bilateria [5,6]. In support of this,

FSEFLGamide has recently been discovered as the ligand

for a TRH-type receptor in the annelid Platynereis dumerilii
[181]. It has therefore been proposed that the ‘EFLGamides’

identified in the lophotrochozoans [182] are orthologous to

deuterostomian TRH-type neuropeptides [181]. The charac-

terization of the P. dumerilii TRH-type receptor highlights

the importance of receptor orthology in determining relation-

ships between neuropeptides in distantly related phyla

that share modest sequence similarity. The discovery of

TRH-type peptides in echinoderms [9,10], including the star-

fish A. rubens (this paper), and in the cephalochordate

B. floridae [6] has provided opportunities to investigate for

the first time the physiological roles of TRH-type peptides

in deuterostomian invertebrates.

3.3.6. Precursor of a calcitonin-type peptide (ArCTP)

A CT-type neuropeptide precursor in A. rubens (ArCTP) was

identified as a 114-residue protein comprising a predic-

ted 21-residue N-terminal signal peptide and a 40-residue

CT-type peptide sequence bounded by dibasic cleavage

sites (figure 9f; Gen Bank: KT601715). The presence of a

C-terminal glycine residue is indicative of a post-translational

modification that gives rise to a C-terminal amide group on

the mature peptide, which would be consistent with CT-

type neuropeptides that have been identified in other species.

The putative CT-type peptide (ArCT) contains two cysteine

residues in the N-terminal region, which may form an intra-

molecular disulfide bridge in accordance with other CT-type

peptides [182,183].

ArCT is the third CT-type neuropeptide to be identified

in an echinoderm, following the identification of CT-type
peptides in the sea urchin S. purpuratus [9] and the sea

cucumber A. japonicus [10]. In figure 13, we show an align-

ment of ArCT with CT-type peptides that have been

identified in other deuterostomes and in lophotrochozoans,

which also illustrates the antiquity of this bilaterian

neuropeptide family. A conserved feature of these neuro-

peptides is the presence of the two cysteine residues in the

N-terminal region, which—as highlighted above—form a

disulfide bridge. Another conserved feature is a C-terminal

amidated proline, although this character has been lost in

some CT-type peptides that occur in vertebrates, such as

CT-gene-related peptide (CGRP), islet amyloid polypeptide

(IAPP) and adrenomedullins (figure 13).

CT-type peptides have also been identified in insects and

other arthropods, and were discovered on account of their

effects as diuretic hormones (DH31) [184]. However, the

DH31-type peptides do not have the pair of cysteine residues

that are characteristic of deuterostomian CT-type peptides.

Interestingly, in annelids (e.g. Capitella), two genes encoding

CT-type peptides have been identified: one encoding a

CT-type peptide with two N-terminal cysteine residues and

one encoding a DH31-type peptide without two N-terminal

cysteine residues [5,8]. More recently, a second gene encoding

one or multiple CT-type peptides with two N-terminal

cysteine residues has also been identified in several arthropod

species [185]. It appears, therefore, that there was a dupli-

cation of a CT-type gene in a common ancestor of the

protostomes, with the neuropeptide product of one copy

retaining the N-terminal cysteine residues (CT-type) and

the neuropeptide product of the other copy losing the

N-terminal cysteine residues (DH31-type).

CT was first discovered in mammals as a peptide that is

released from parafollicular cells of the thyroid gland, inhibits

intestinal calcium ion (Ca2þ) absorption and inhibits osteo-

clast activity in bones [186]. CT is encoded by a gene that

also encodes CGRP, with alternative splicing giving rise to

either prepro-CT (exons 1, 2, 3 and 4) or prepro-CGRP

(exons 1, 2, 3, 5 and 6) [187]. CGRP is released by sensory

nerves and is a potent vasodilator in mammals [188]. Aside

from the diuretic actions of DH31-type peptides in insects

[184], very little is known about the physiological roles of

CT-type neuropeptides in invertebrates. With the discovery

of ArCT in A. rubens and related peptides in other echino-

derms [9,10], there are opportunities to address this issue

using echinoderms as model systems.
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Figure 12. Alignment of ArTRH with other thyrotropin-releasing hormone
(TRH)-type peptides. Accession numbers for the corresponding precursor proteins
are: Arub, A. rubens TRH-type precursor [GenBank: KT601714]; Spur, S. purpur-
atus TRH-type precursor [GI:109402869]; Skow, S. kowalevskii TRH-type precursor
[GI:187216047]; Bflo, B. floridae TRH-type precursor [GI:260784028]; Hsap,
H. sapiens TRH precursor [GI:485464565]; Pdum, P. dumerilii EFLGamide precur-
sor [GI:332167915].
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3.3.7. Precursor of two cholecystokinin-type peptides (ArCCKP)

A cholecystokinin (CCK)-type neuropeptide precursor in

A. rubens (ArCCKP) was identified as a 163-residue protein

comprising a predicted 22-residue N-terminal signal peptide

and two putative CCK-type neuropeptides bounded by

dibasic cleavage sites: RQSKVDDYGHGLFWG (ArCCK1)

and GGDDQYGFGLFFG (ArCCK2) (figure 9g; GenBank:

KT601716). The presence of C-terminal glycine residues in

both of these sequences is indicative of post-translational

modifications giving rise to a C-terminal amide group on

the mature peptides. Furthermore, an additional potential

post-translational modification for these peptides is sulfation

of the tyrosine residues (underlined above), as this is a

common characteristic of CCK-type neuropeptides in other

species [189].

CCK-type peptides have a widespread phylogenetic distri-

bution in bilaterian animals [5,6,190–192] and the antiquity of

CCK-type peptides was first revealed with the discovery of

CCK-type sulfakinin (SK) peptides in insects [193,194].

CCK-type peptides have been identified throughout the ver-

tebrates [195] and in deuterostomian invertebrates, including

the urochordate C. intestinalis [196], the hemichordate S. kowa-
levskii [5] and in the echinoderm S. purpuratus [5].

Interestingly, however, CCK-type peptides and receptors

appear to have been lost in the cephalochordate B. floridae [5].

In figure 14, we compare ArCCK1 and ArCCK2 with

CCK-type peptides identified in other species. Most ver-

tebrate CCK-type peptides typically share the conserved

C-terminal octapeptide motif DYMGWMDF-NH2, whereas

most SK-type peptides, for example in D. melanogaster, typi-

cally share the conserved C-terminal heptapeptide motif

DYGHMRF-NH2 (figure 14). ArCCKP comprises two puta-

tive CCK-type peptides with the C-terminal octapeptide

motifs DYGHGLFW-NH2 (ArCCK1) and QYGFGLFF-NH2

(ArCCK2), which share the common motif x1YGx2GLFx3-

NH2, with x3 representing a shared hydrophobic residue.

This motif shares sequence similarity with both the vertebrate

CCK-type and protostomian SK-type motifs, including the

likely presence of a conserved O-sulfated tyrosine residue

and an amidated phenylalanine residue (with the exception

of ArCCK1, which has a C-terminal tryptophan residue;

figure 14).

CCK and the related peptide hormone gastrin have a

common C-terminal tetrapeptide sequence (WMDF-NH2)

that is required for biological activity and indicative of a

common evolutionary origin [195,197,198]. CCK/gastrin-

type peptides have numerous roles in the gastrointestinal
system and central nervous system of mammals. In the

gastrointestinal system, roles in regulation of gallbladder con-

traction, gastrointestinal motility and pancreatic secretion of

digestive enzymes have been identified [199], and in the

CNS these peptides are implicated in learning and memory,

angiogenesis, nociception and regulation of food intake

[195,200–203].

SK-type peptides in insects are myotropic on the gut

[193,194,204], heart [205] and body wall muscles [206]. It

has also been discovered that SKs regulate food intake in

multiple insect species including the desert locust Schistocerca
gregaria [207], regulate digestive enzyme release in the beetle

Rhynchophorus ferrugineus [208] and the moth Opisina areno-
sella [209], and affect digestive enzyme release and fat

storage in the nematode C. elegans [191]. It appears, therefore,

that the CCK/SK-type neuropeptide system has ancient roles

in regulating physiological processes associated with feeding

and digestion. The discovery of ArCCKP in the starfish

A. rubens provides an opportunity to investigate the phy-

siological roles of CCK-type peptides in an echinoderm

species, in particular with respect to processes associated

with feeding and digestion.

3.3.8. Precursors of orexin-type peptides (ArOXP1 and ArOXP2)

An orexin (OX)-type neuropeptide precursor in A. rubens
(ArOXP1) was identified as a 112-residue protein comprising

a predicted 24-residue N-terminal signal peptide and an OX-

type peptide sequence followed by a dibasic cleavage site

(figure 9h; GenBank: KT601717). The presence of a C-term-

inal glycine residue is indicative of a post-translational

modification that gives rise to a C-terminal amide group on

the mature peptide. It is noteworthy that the putative

OX-type peptide contains six cysteine residues, which may

form up to three disulfide bridges. This contrasts with OX-

type peptides in vertebrates that have two intra-chain

disulfide bridges formed by four cysteine residues [210]. A

second OX-type neuropeptide precursor in A. rubens
(ArOXP2) was identified as a 161-residue protein comprising

a predicted 26-residue N-terminal signal peptide and an OX-

type peptide sequence, followed by a dibasic cleavage site

(figure 9i; GenBank: KT601718). As with ArOXP1, the pres-

ence of a C-terminal glycine residue is indicative of a

post-translational modification that gives rise to a C-terminal

amide group and the presence of six cysteine residues is

indicative of three disulfide bridges in the mature peptide.

OX-type peptides are a family of neuropeptides with a

widespread phylogenetic distribution indicative of an ances-

tral bilaterian origin [5,6]. Thus, OX-type peptides, despite

sharing little sequence similarity, have recently been found

to be homologous to insect allatotropin (AT)-type peptides

based on receptor orthology and precursor structure [5,6].

AT-type peptides have been identified in arthropods

[211,212] and in lophotrochozoans, including molluscs

[7,213,214] and annelids [8,215]. Interestingly, however,

AT-type peptides and receptors appear to have been lost in

nematodes and Drosophila [5,6].

In figure 15, we compare the sequences of ArOX1 and

ArOX2 with OX-type peptides that have been identified in

other deuterostomes. ArOX1 and ArOX2 are the second

members of the OX neuropeptide family to be identified in

echinoderms, following on from the identification of two

OX-type precursors in the sea urchin S. purpuratus (SpOXP1
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Figure 13. Alignment of ArCT with other calcitonin (CT)-type peptides. Accession numbers for the corresponding precursor proteins are: Arub, A. rubens CT-type
precursor [GenBank: KT601715]; Spur, S. purpuratus CT-type precursor [GI:115767208]; Skow, S. kowalevskii CT-type precursor [GI:187217193]; Bflo1, B. floridae CT-
type precursor 1 [GI:260826569]; Bflo2, B. floridae CT-type precursor 2 [GI:260826567]; Bflo3, B. floridae CT-type precursor 3 [GI:260826573]; Bflo4, B. floridae CT-
type precursor 4 [GI:260812099]; Hsap_Calc, H. sapiens CT precursor [GI:179819]; Hsap_CGRP1, H. sapiens CT gene-related peptide (CGRP) 1 precursor
[GI:269784661]; Hsap_IAPP, H. sapiens islet amyloid polypeptide (IAPP) precursor [GI:109255169]; Hsap_ADML, H. sapiens adrenomedullin precursor
[GI:675022745]; Hsap_ADM2, H. sapiens adrenomedullin 2 precursor [GI:41016725]; Ctel, C. teleta CT-type precursor [GI: 161220966]; Lgig1, L. gigantea CT-
type precursor 1 [GI:163526287]; Lgig2, L. gigantea CT-type precursor 2 [GI:676481265].
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and SpOXP2) [5,6]. As in A. rubens, both of the OX-type pep-

tides in S. purpuratus have six cysteine residues, suggesting

the presence of three disulfide bridges in the mature peptides.

Interestingly, an OX-type peptide in the hemichordate

S. kowalevskii also has six cysteine residues [5,6] and therefore

it appears that this feature may be a characteristic of ambula-

crarian OX-type peptides. OX precursors in vertebrates

comprise two OXs termed OX-A and OX-B [216]. OX-A con-

tains four cysteine residues that form two intramolecular

disulfide bridges, whereas OX-B does not contain cysteine

residues. By way of comparison, two OX-type precursors in

the cephalochordate B. floridae comprise peptides that are

similar to vertebrate OX-A-type peptides, with four cysteine

residues, and thus this appears to be a chordate characteristic.

OXs were originally discovered as hypothalamic neuro-

peptides that stimulate food intake in mammals [210,217].

However, it has subsequently been discovered that OXs

also stimulate wakefulness and energy expenditure [218].

Similarly, OXs have also been shown to regulate feeding be-

haviour and the processes of sleep and wakefulness in teleost

fish [219]. The ATs, the protostomian homologues of OXs

[5,6], were first identified as peptides that stimulate the syn-

thesis and secretion of JH from the corpora allata in insects

[220,221]. Subsequently, other effects of ATs have been dis-

covered, including cardioacceleration and the inhibition of

active ion transport in the midgut of the tobacco hornworm

M. sexta [220–222]. Currently, nothing is known about the

physiological roles of OX-type peptides in echinoderms and

other deuterostomian invertebrates, and therefore the discov-

ery of ArOX1 and ArOX2, as reported here, provides an

exciting opportunity to now address this issue.

3.3.9. Precursor of a luqin-type neuropeptide (ArLQP)

A luqin (LQ)-type neuropeptide precursor in A. rubens
(ArLQP) was identified as a 106-residue protein comprising

a predicted 44-residue N-terminal signal peptide and a
putative LQ-type peptide sequence (EEKTRFPKFMRWG)

followed by a dibasic cleavage site (figure 9j; GenBank:

KT601719). The presence of a C-terminal glycine residue is

indicative of a post-translational modification giving rise to

a C-terminal amide group on the putative mature peptide

(EEKTRFPKFMRW-NH2).

Comparison of the LQ-type neuropeptide precursor in

A. rubens with LQ-type precursor proteins that have been

identified in other species reveals similarities (figure 16).

Thus, in A. rubens, the precursor comprises a single putative

neuropeptide (EEKTRFPKFMRW-NH2), which is also a fea-

ture of LQ-type precursors in other echinoderms (e.g. sea

urchin S. purpuratus), in the hemichordate S. kowalevskii and

in lophotrochozoans. This contrasts with precursor proteins

in the ecdysozoans comprising multiple copies of LQ-type

RYamides [6], which is probably a derived characteristic.

Another feature of the A. rubens LQ precursor is two cysteine

residues separated by a 10-residue peptide sequence in its

C-terminal region, which are also a characteristic of LQ-

type precursors in other invertebrates (figure 16). The

LQ-type neuropeptide in A. rubens has a putative C-terminal

RWamide motif, a feature that is shared by LQs in other echi-

noderms and in the hemichordate S. kowalevskii. Thus, this

appears to be a characteristic of ambulacrarian LQs, which con-

trasts with the RFamide motif of lophotrochozoan LQs and the

RYamide motif of ecdysozoan LQs (or ‘RYamides’). Compari-

son of echinoderm LQs reveals a high level of sequence

identity, with the C-terminal sequence KFMRW-NH2 a

shared feature of LQs in A. rubens, S. purpuratus (figure 16)

and A. japonicus [10].

LQ was first identified in the mollusc A. californica and

named on account of the expression of its precursor protein

in the dorsal left upper quadrant cells of the abdominal

ganglion [223]. Prior to the discovery of LQ in A. californica,

a closely related neuropeptide termed Achatina cardio-

excitatory peptide-1 or ACEP-1 was isolated from the African

giant snail Achatina fulica on account of its excitatory effect on
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Figure 14. Alignment of ArCCK1 and ArCCK2 with other cholecystokinin
(CCK)-type peptides. Accession numbers for the corresponding precursor pro-
teins are: Arub, A. rubens CCK-type precursor [GenBank: KT601716]; Spur, S.
purpuratus CCK-type precursor [GI:390355380]; Skow1, S. kowalevskii CCK-
type precursor 1 [GI:585688033]; Skow2, S. kowalevskii CCK-type precursor
2 [GI:187061456]; Cint, C. intestinalis cionin precursor [GI:10799472];
Hsap_CCK-8, H. sapiens CCK precursor [GI:30582820]; Hsap_Gast-6, H. sapiens
gastrin precursor [GI:47481291]; Ctel, C. teleta CCK-type precursor
[GI:161296032]; Lgig1, L. gigantea CCK-type precursor 1 [GI:161296032];
Lgig2, L. gigantea CCK-type precursor 2 [GI:52414496]; Dmel_SK, D. melanogaster
sulfakinin (SK) precursor [GI:386765036].
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the heart and other muscles [224]. Subsequently, a closely

related peptide termed Lymnaea cardio-excitatory peptide or

LyCEP, which also has a cardio-excitatory effect, was isolated

from the pond snail Lymnaea stagnalis [225]. More recently

LQ-type peptides have been identified in a number of lopho-

trochozoans, including other molluscs [7] and annelids [8].

Very little is currently known about the physiological roles

of the RYamides that are recognized as ecdysozoan (arthro-

pods and nematodes) homologues of LQ [5,6]. However,

evidence of a possible role in regulation of feeding behaviour

in Drosophila has been reported [226].

The discovery of LQ-type peptides in several deuterosto-

mian invertebrates [5,6,10] has revealed that the evolutionary

origin of this neuropeptide family dates back to the common

ancestor of the Bilateria. However, LQ-type peptides and

receptors have not been found in the chordates, indicating

that this neuropeptide signalling system may have been lost

in the chordate lineage. At present nothing is known about

the physiological roles of LQ-type peptides in deuterosto-

mian invertebrates and therefore the discovery of ArLQP

has provided a new opportunity to address this issue using

starfish as an experimental system.
3.3.10. Precursor of pedal peptide-type neuropeptides (ArPPLNP)

A partial 325-residue sequence of a pedal peptide (PP)-type

precursor (ArPPLNP) was identified in A. rubens, comprising

a 31-residue N-terminal signal peptide and seven putative

neuropeptides bounded by dibasic cleavage sites (figure 9k;

GenBank: KT601720). The putative peptides derived from

ArPPLNP share sequence similarity with peptides derived

from two PP-type precursors that were recently identified

in the sea urchin S. purpuratus (SpPPLNP1 and SpPPLNP2)

[9]. Furthermore, as illustrated in figure 17, representative

neuropeptides derived from ArPPLNP, SpPPLNP1 and

SpPPLNP2 share sequence similarity with PP-type peptides
in lophotrochozoans (e.g. Capitella, Lottia) and orcokinin-

type peptides in arthropods (e.g. Drosophila). Indeed, it was

the discovery of SpPPLNP1 and SpPPLNP2 in S. purpuratus
that first revealed the widespread phylogenetic distribution

and urbilaterian origin of PP/orcokinin-type peptides [9], a

finding that has been supported by subsequent studies [6].

PP was first discovered in the mollusc A. californica as a

peptide that causes contraction of pedal muscles [227,228];

it also stimulates beating of cilia associated with the foot

[229]. Orcokinin was first isolated from abdominal nerve

cord extracts of the crayfish Orconectus limosus on account

of its effect in stimulating hindgut myoactivity [230]. Orcoki-

nin-type peptides have subsequently been identified in a

number of arthropods and attributed a range of functions,

including stimulation of the prothoracic gland and regulation

of ecdysteroidogenesis in the silk moth Bombyx mori [231],

and regulation of circadian and seasonal physiology in the

cockroach Leucophaea maderae [232–234].

Currently, nothing is known about the physiological func-

tions of PP/orcokinin-type peptides in echinoderms. With

the discovery of ArPPLNP in A. rubens, as reported here, an

opportunity to address this issue in starfish has been

provided.

3.3.11. Precursors of GPA2-type and GPB5-type glycoprotein
hormones

A glycoprotein hormone a-2 (GPA2)-type precursor in

A. rubens (ArGPAP2-1) was identified as a 135-residue

protein comprising a predicted 24-residue N-terminal signal

peptide followed by a 111-residue polypeptide that shares

sequence similarity with GPA2-type subunits (figure 18a;

GenBank: KT601721). A second GPA2-type precursor

(ArGPAP2-2) was identified as a 130-residue protein com-

prising a predicted 28-residue N-terminal signal peptide

followed by a 102-residue polypeptide that shares sequence

similarity with GPA2-type subunits (figure 18b; GenBank:

KT601722). It is noteworthy that both ArGPA2-1 and

ArGPA2-2 contain 10 cysteine residues (figure 18a,b),

which, in accordance with glycoprotein hormone subunits

in other phyla, are likely to form five disulfide bridges [125].

A glycoprotein hormone b-5 (GPB5)-type precursor in

A. rubens (ArGPBP5-1) was identified as a 136-residue protein

comprising a predicted 24-residue N-terminal signal peptide

followed by a 112-residue polypeptide that shares sequence

similarity with GPB5-type subunits (figure 18c; GenBank:

KT601723). A second GPB5-type precursor (ArGPBP5-2)

was identified as a 141-residue protein comprising a pre-

dicted 31-residue N-terminal signal peptide followed by a

110-residue polypeptide that shares sequence similarity

with GPB5-type subunits (figure 18d; GenBank: KT601724).

A third GPB5-type precursor (ArGPBP5-3) was identified as

a 130-residue protein comprising a predicted 30-residue

N-terminal signal peptide followed by a 100-residue polypep-

tide sequence sharing sequence similarity with GPB5-type

subunits (figure 18e; GenBank: KT601725). It is noteworthy

that ArGPB5-1 contains eight cysteine residues while both

ArGPB5-2 and ArGPB5-3 contain 10 cysteine residues

(figure 18c–e), which are likely to form four or five disulfide

bridges, respectively, in accordance with glycoprotein

hormone subunits in other phyla [125].

Alignment of ArGPA2-1, ArGPA2-2, ArGPB5-1, ArGPB5-2

and ArGPB5-3 with glycoprotein hormones in humans and
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Figure 15. Alignment of ArOX1 and ArOX2 with other orexin (OX)-type peptides. Accession numbers for the corresponding precursor proteins are: Arub1, A. rubens
OX-type precursor 1 [GenBank: KT601717]; Arub2, A. rubens OX-type precursor 2 [GenBank: KT601718]; Spur1, S. purpuratus OX-type precursor 1 [GI:346420309];
Spur2, S. purpuratus OX-type precursor 2 [GI:346419879]; Skow, S. kowalevskii OX-type precursor [GI:585662697]; Bflo1, B. floridae OX-type precursor 1
[GI:260807454]; Bflo2, B. floridae OX-type precursor 2 [GI:260780718]; Hsap_OX, H. sapiens OX precursor [GI:4557634].

rsob.royalsocietypublishing.org
Open

Biol.6:150224

16

 on February 10, 2016http://rsob.royalsocietypublishing.org/Downloaded from 
Drosophila and with the related bursicon-type hormones (see

below) reveals seven conserved cysteine residues and a con-

served glycine residue. A serine or threonine residue that is

located one residue after the fourth cysteine residue in all

five of the A. rubens glycoprotein hormones is another

conserved feature (figure 19).

The glycoprotein hormones are a family of cysteine-rich

polypeptide hormones with a phylogenetic distribution

indicative of an evolutionary ancestry that dates back to the

common ancestor of the Bilateria [235]. The prototypical

members of the glycoprotein hormone family are the mam-

malian gonadotropins LH, FSH choriogonadotropin (CG)

and TSH [236]. These are heterodimeric glycoproteins com-

prising a common a-subunit and a unique b-subunit,

which is crucial for receptor specificity. The a-subunit has

10 cysteine residues forming five disulfide bridges, while

the b-subunit has 12 cysteine residues forming six disulfide

bridges, with the formation of a/b dimers necessary for

biological activity [125].

Sequencing of the human genome revealed a novel

member of the glycoprotein hormone family, which is now

known as thyrostimulin [237]. Thyrostimulin is a heterodi-

meric glycoprotein comprising an a-subunit termed GPA2

and a b-subunit termed GPB5, and it acts as a ligand for

TSH receptors [238]. GPA2- and GPB5-type subunits have sub-

sequently been identified in other vertebrates [237] and in

deuterostomian invertebrates, including urochordates

[239,240], the cephalochordate B. floridae [241], the hemichor-

date S. kowalevskii [239], and the echinoderm species

S. purpuratus [11] and A. japonicus [10]. GPA2- and GPB5-

type subunits have also been identified in ecdysozoans,

including arthropods [242] and nematodes [235], and in lopho-

trochozoans, including molluscs [7] and annelids [8]. Thus, the

phylogenetic distribution of GPA2- and GPB5-type subunits

indicates that these subunits have an ancestral bilaterian origin,

with the a- and b-subunits of vertebrate LH, FSH, CG and

TSH probably having evolved from GPA2- and GPB5-type

subunits, respectively, in the vertebrate lineage [243].

The physiological roles of GPA2/GPB5-type hormones in

invertebrates have yet to be characterized extensively, but it

has been shown that GPA2/GPB5-type hormones modulate

ionic and osmotic balance in insects [244,245]. To date, noth-

ing is known about the physiological roles of GPA2/GPB5-

type hormones in echinoderms. Therefore, the discovery of

glycoprotein-type hormones in A. rubens, as reported here,

provides a new opportunity to address this issue.
3.3.12. Precursors of bursicon-type hormones (ArBAP and ArBBP)

A bursicon-a-type precursor in A. rubens (ArBAP) was

identified as a 139-residue protein comprising a predic-

ted 35-residue N-terminal signal peptide followed by a

104-residue polypeptide sequence sharing sequence simi-

larity with bursicon-a-type subunits (figure 18f; GenBank:

KT601726). A bursicon-b-type precursor in A. rubens
(ArBBP) was identified as a 142-residue protein comprising

a predicted 30-residue N-terminal signal peptide followed

by a 112-residue polypeptide sequence sharing sequence

similarity with bursicon-b-type subunits (figure 18g; Gen-

Bank: KT601727). Both ArBAP and ArBBP contain 11

cysteine residues, in common with the prototypical

bursicon-type subunits in insects (figure 19).

Bursicon was originally discovered in insects on account

of its effect in causing cuticular tanning [246]. It is heterodi-

meric protein formed by two subunits, bursicon-a and

bursicon-b, which are derived from separate precursor pro-

teins [247]. Analysis of the sequences of these subunits

reveals that bursicon is a member of the glycoprotein hor-

mone family (see above). Bursicon-type subunits have been

identified in a variety of insects and in other arthropods

[248], and a role in regulation of cuticle hardening and ecdy-

sis has been demonstrated in crustaceans [249–251].

Bursicon-type subunits have also been identified in lophotro-

chozoans, including molluscs [7] and annelids [8], and in

deuterostomian invertebrates, including the echinoderm

species S. purpuratus [11], A. japonicus [10] and now

A. rubens. Thus, based on the phylogenetic distribution of

bursicons, the evolutionary origin of this peptide hormone

family dates back to the common ancestor of the Bilateria.

The physiological roles of bursicon-type hormones outside

of the arthropods are unknown. The discovery of bursicon-

type hormones in A. rubens, as reported here, provides a new

opportunity to address this issue in an echinoderm species.

3.3.13. Precursor of relaxin-like gonad-stimulating peptide
(ArRGPP)

A relaxin-like gonad-stimulating peptide precursor in

A. rubens (ArRGPP) was identified as a 109-residue protein

comprising sequentially (i) a predicted 26-residue N-terminal

signal peptide, (ii) a 20-residue polypeptide comprising two

cysteine residues (B-chain), (iii) a dibasic cleavage site,

(iv) a connecting peptide (C-peptide) domain (residues
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Figure 16. Alignment of ArLQ with other luqin (LQ)-type peptides and align-
ment of a conserved C-terminal domain of LQ-type precursor proteins.
Accession numbers for the corresponding precursor proteins are: Arub, A.
rubens LQ-type precursor [GenBank: KT601719]; Spur, S. purpuratus LQ-
type precursor [GI:390331828]; Skow, S. kowalevskii LQ-type precursor
[GI:585716464]; Ctel, C. teleta LQ-type precursor [GI:161280144]; Lgig, L.
gigantea LQ-type precursor [GI:163510328]; Dpul, D. pulex LQ-type precursor
[JGI:251691]; Dvir, Drosophila virilis LQ-type precursor [GI: 968114152].

Figure 17. Alignment of representative A. rubens PP/orcokinin-type peptide
with other PP/orcokinin-type peptides. Accession numbers for the correspond-
ing precursor proteins are: Arub, A. rubens PP/orcokinin-type precursor
[GenBank: KT601720]; Spur1, S. purpuratus PP/orcokinin-type precursor 1
[GI:390335272]; Spur2, S. purpuratus PP/orcokinin-type precursor 2
[GI:390352581]; Ctel, C. teleta PP-type precursor [GI:161190484]; Lgig,
L. gigantea PP-type precursor [GI:163513756]; Dmel, D. melanogaster
orcokinin precursor [GI:442624594].
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49–82), (v) a dibasic cleavage site and (vi) a 25-residue poly-

peptide comprising four cysteine residues (A-chain)

(figure 18h; GenBank: KT601728). The A-chain has the

cysteine motif CCxxx CxxxxxxxxC, which is characteristic

of the insulin/insulin-like growth factor (IGF)/relaxin super-

family (figure 20). More specifically, the final residue of the

A-chain is a cysteine, which is characteristic of the relaxin/

insulin-like (INSL) sub-class as opposed to the insulin/

IGF sub-class [252]. The B-chain has the cysteine motif

CxxxxxxxxxxxC, which is characteristic of the insulin/IGF/

relaxin superfamily (figure 20). However, the B-chain does

not contain the relaxin-specific receptor-binding motif

RxxxRxxI/V characteristic of vertebrate relaxin-like peptides

[253]. Informed by the biochemical characterization of RGP

in A. pectinifera [39], the predicted mature product of

ArRGPP is a heterodimeric protein comprising A/B-chains,

with two inter-chain disulfide bridges and an intra-chain

disulfide bridge in the A-chain.

RGP was first identified in the starfish species A. pectinifera
[39] as the long-sought-after ‘gonad-stimulating substance’ or

GSS. The existence of GSS was first reported in 1959 as a com-

ponent of starfish radial nerves that triggers gamete release in

starfish [254]. Subsequently, it was characterized as a peptide

hormone [255–257], but 50 years elapsed before its molecular

identity was finally determined, revealing that it is a member

of the insulin/IGF/relaxin superfamily [39]. The existence of

GSS in many other starfish species has been reported [258].

Thus, GSS activity was first detected in extracts of A. forbesi
and early efforts to determine the chemical identity of GSS

focused on A. amurensis [258]. Recently, an RGP-like precursor

sharing a high level of sequence similarity with ArRGPP was

identified in A. amurensis, and experimental tests revealed that

synthetic A. amurensis RGP triggers gamete spawning and

oocyte maturation in this species [259]. Therefore, it is very

likely that ArRGP also triggers gamete spawning and oocyte

maturation in A. rubens.

3.3.14. Precursor of relaxin-like peptide 2 (ArRLPP2)

A second relaxin-like peptide precursor in A. rubens
(ArRLPP2) was identified as a 119-residue protein compris-

ing sequentially (i) a predicted 30-residue N-terminal signal

peptide, (ii) a 26-residue polypeptide comprising two

cysteine residues (B chain), (iii) a dibasic cleavage site, (iv)

a C-peptide domain (residues 59–91), (v) a dibasic cleavage

site and (vi) a 26-residue polypeptide comprising four
cysteine residues (A-chain) (figure 18i; GenBank:

KT601729). It is noteworthy that the N-terminal glutamine

residue in the B-chain could be subject to post-translational

conversion to a pyroglutamate. Similarly to ArRGPP (or

‘ArRLPP1’), the A-chain has the cysteine motif

CCxxxCxxxxxxxxC, while the B-chain has the cysteine motif

CxxxxxxxxxxxC characteristic of the insulin/IGF/relaxin

superfamily (figure 20). However, the B-chain does not con-

tain the relaxin-specific receptor-binding motif RxxxRxxI/V

characteristic of vertebrate relaxin-like peptides [253]. Thus,

as with ArRGPP, the predicted bioactive product of

ArRLPP2 is a relaxin-like heterodimeric protein comprising

A/B-chains, with two inter-chain disulfide bridges and an

intra-chain disulfide bridge in the A-chain.

The hormone relaxin was first identified in 1926 on

account of its softening effect on the pubic ligament [260]

and the sequence of a cDNA encoding the relaxin precursor

was reported in 1981 [261]. Subsequently, other relaxin/

INSL precursors have been identified in mammals and

other vertebrates [262,263], and the diversity of relaxin/

INSL genes in vertebrates is in part attributable to whole-

genome duplication during early vertebrate evolution

[264,265]. More specifically, it has been suggested that the

relaxin/INSL genes are products of an ancestral system that

originally consisted of three genes, two of which trace their

origins back to the invertebrates [265].

The likely physiological role of ArRGP as a regulator of

gamete maturation and spawning in A. rubens has been

discussed above. The discovery of ArRLPP2 in A. rubens pro-

vides an opportunity to investigate the physiological roles of

a second relaxin-like peptide in an echinoderm species.
3.3.15. Precursors of insulin-like growth factors (ArIGFP1 and
ArIGFP2)

ArIGFP1 is a 355-residue precursor protein comprising a

predicted 27-residue N-terminal signal peptide and A–E

domains that are characteristic of IGF-type precursors

(figure 18j; GenBank: KT601730). The B-domain contains

two cysteine residues (residues 32 and 44) and the

A-domain contains four cysteine residues (residues 91, 92,

96 and 105), which are likely to form disulfide bridges and

a peptide heterodimer between both chains based on the

presence of this feature in the insulin/IGF/relaxin superfam-

ily. ArIGFP1 has dibasic cleavage sites at the C-terminal and

N-terminal of the B-domain (residues 28–55) and A-domain
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Figure 18. Precursors of cysteine-rich peptide hormones and growth factors in A. rubens. Predicted signal peptides are shown in blue, putative peptide hormones/
growth-factors are shown in red (with cysteine (C) residues underlined), C-terminal glycine (G) residues that are putative substrates for amidation are shown in
orange and putative dibasic cleavage sites are shown in green. For ArIGFP1 and ArIGFP2, the C-peptide is shown in black, the D-domain (for ArIGFP1) is shown in
olive and the E-domain is shown in maroon.
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(residues 83–106), respectively, which would allow for the

removal of the intervening C-peptide (residues 58–80) as in

vertebrate insulin and relaxin. However, the ArIGFP1 A-

domain also extends to a D-domain (residues 107–133) and

E-domain (residues 134–355), a feature found in IGF-type

precursors [266].

ArIGFP2 is a 343-residue precursor protein compris-

ing a predicted 22-residue N-terminal signal peptide and

characteristic IGF-type A-, B-, C- and E-domains
(figure 18k; GenBank: KT601731). The B-domain contains

two cysteine residues (residues 28 and 40) and the

A-domain contains four cysteine residues (residues 66, 67,

71 and 80), which are likely to form disulfide bridges, and

a peptide heterodimer between both chains based on the

presence of this feature in the insulin/IGF/relaxin superfam-

ily. However, unlike vertebrate insulin and relaxin, ArIGFP2

does not have dibasic cleavage sites at the C-terminal and N-

terminal of the B-domain (residues 23–46) and A-domain
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Figure 19. Alignment of glycoprotein/bursicon hormone-type precursors. Accession numbers for the corresponding precursor proteins are: Arub_GPA2_1, A. rubens
glycoprotein hormone a-2 (GPA2)-type precursor 1 [GenBank: KT601721]; Arub_GPA2_2, A. rubens GPA2-type precursor 2 [GenBank: KT601722]; Arub_GPB5_1,
A. rubens glycoprotein hormone b-5 (GPB5)-type precursor 1 [GenBank: KT601723], Arub_GPB5_2, A. rubens GPB5-type precursor 2 [GenBank: KT601724];
Arub_GPB5_3, A. rubens GPB5-type precursor 3 [GenBank: KT601725]; Arub_BursA, A. rubens bursicon-a-type precursor [GenBank: KT601726]; Arub_BursB,
A. rubens bursicon-b-type precursor [GenBank: KT601727]; Hsap_GPA2, H. sapiens GPA2 precursor [GI:189491650]; Hsap_GPB5, H. sapiens GPB5 precursor
[GI:21427593]; Hsap_FSHB, H. sapiens follicle-stimulating hormone (FSH) b-precursor [GI:124014246]; Hsap_CGB7, H. sapiens chorionic gonadotropin (CG) b-polypep-
tide 7 precursor [GI:15451749]; Hsap_LSHB, H. sapiens luteinizing hormone (LH) b-polypeptide precursor [GI:15431286]; Hsap_TSHB, H. sapiens the putative IGF-type
receptor (TSH) b-precursor [GI:47479817]; Dmel_GPA2, D. melanogaster GPA2 precursor [GI:320546230]; Dmel_TSHB, D. melanogaster glycoprotein hormone b-subunit-
related protein precursor [GI:21427595]; Dmel_BursA, D. melanogaster bursicon-a precursor [GI:665394724]; Dmel_BursB, D. melanogaster bursicon-b precursor
[GI:62392020].
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(residues 61–81), respectively, indicating that the intervening

C-peptide (residues 47–80) is not processed for removal. Fur-

thermore, the ArIGFP2 A-domain extends to an E-domain

(residues 82–343), a feature found in IGF-type precursors [266].

Comparison of ArIGFP1/2 with IGF1/2 precursors

identified and subsequently characterized in S. purpuratus
(SpIGF1/2) [11,267] reveals that both ArIGFP1/2 and

SpIGF1/2 have an A–E domain organization, as found in

IGF-type precursors. However, ArIGFP1 and SpIGF1 are

more insulin/relaxin-like in relation to potential removal of

the C-peptide, while ArIGFP2 and SpIGF2 are more IGF-

like in relation to the C-peptide. Both the ArIGFP1/2

A-domains have the cysteine motif CCxxxCxxxxxxxxC,

characteristic of the insulin/IGF/relaxin superfamily

(figure 20). Similarly, the B-domains both have the cysteine

motif CxxxxxxxxxxxC, characteristic of the insulin/IGF/

relaxin superfamily (figure 20). Importantly, two disulfide

bridges connecting the B- and A-domains and a single

intra-disulfide bridge associated with the A-domain have

been identified in SpIGF1/2 [267]. Interestingly, it has also

been shown that SpIGF1 and SpIGF2 share more sequence

similarity with each other compared with other insulin/

IGF/relaxin superfamily members in other phyla, indicating

that they may have arisen by gene duplication in the sea

urchin or echinoderm lineage [267].

To date, the physiological function of IGF-type peptides

in non-chordate deuterostomes, and in particular echino-

derms, has not been extensively studied. It has previously

been shown that mammalian insulin stimulates growth of

the sea urchin embryo and that IGFs may be expressed in

the sea urchin larval gut [268] and adult starfish gut [269],

suggesting a role in digestive processes. Moreover, microar-

ray data confirm expression in the sea urchin embryo [270].

The identification of SpIGF1 and SpIGF2 in the sea urchin
S. purpuratus [11] has made it possible to investigate the

roles of IGFs in echinoderms. It has recently been shown

that SpIGF1 is expressed in both the stomach and intestine

of feeding larvae, with differential expression dependent on

nutrient availability, suggesting a role for SpIGF1 in digestive

processes [267]. Furthermore, it has been shown that SpIGF2

is expressed in the gastrula foregut, while the putative IGF-

type receptor (SpInsr) is expressed in the mesodermal cells

at the tip of the archenteron [267]. Taken together, this

suggests a role for SpIGF2 as a growth signal to stimulate

coelomic pouch development [267].
3.4. Discovery of SALMFamide precursors and precursors
of candidate neuropeptides in A. rubens that do
share apparent sequence similarity with known
neuropeptide families

3.4.1. Precursors of SALMFamide neuropeptides

The SALMFamide neuropeptides S1 (GFNSALMF-NH2) and

S2 (SGPYSFNSGLTF-NH2) were originally isolated from

extracts of nerves dissected from A. rubens and the closely

related starfish species A. forbesi; they were the first neuropep-

tides to be identified in an echinoderm species [21,22]. Here,

we have identified transcripts that encode the S1 and S2

precursor proteins.

The S1 precursor is a 210-residue protein comprising a

predicted 23-residue N-terminal signal peptide and, bounded

by dibasic cleavage sites, seven putative neuropeptide

sequences that have a C-terminal glycine residue, which is

a potential substrate for C-terminal amidation (figure 21a;

GenBank: KT601732). The predicted neuropeptide products
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Figure 20. Alignment of insulin/relaxin/insulin-like growth factor (IGF)-type precursors. Accession numbers for the corresponding precursor proteins are: Arub_Rel1,
A. rubens relaxin-like gonad-stimulating peptide precursor [GenBank: KT601728]; Arub_Rel2, A. rubens relaxin-like peptide precursor 2 [GenBank: KT601729]; Aru-
b_IGF1, A. rubens IGF-type precursor 1 [GenBank: KT601730]; Arub_IGF2, A. rubens IGF-type precursor 2 [GenBank: KT601731]; Spur_IGF1, S. purpuratus IGF-type
precursor 1 [GI:390333650]; Spur_IGF2, S. purpuratus IGF-type precursor 2 [GI:390333648]; Skow, S. kowalevskii IGF-type precursor [GI:187064073]; Bflo1, B. floridae
IGF-type precursor 1 [JGI:72897]; Bflo2, B. floridae IGF-type precursor 2 [JGI:74371]; Bflo3, B. floridae IGF-type precursor 3 [JGI:77763]; Bflo4, B. floridae IGF-type
precursor 4 [JGI:100967]; Hsap_INS, H. sapiens insulin (INS) precursor [GI:186429]; Hsap_IGF1, H. sapiens IGF precursor [GI:49456676]; Hsap_REL1, H. sapiens
relaxin-1 precursor [GI:35932]; Hsap_REL2, H. sapiens relaxin-2 precursor [GI:35926]; Hsap_REL3, H. sapiens relaxin-3 precursor [GI:17484095]; Dmel_INSL1,
D. melanogaster insulin-like (INSL) peptide 1 precursor [GI:317423340]; Dmel_INSL2, D. melanogaster INSL peptide 2 precursor [GI:442631434]; Dmel_INSL3, D.
melanogaster INSL peptide 3 precursor [GI:221331056]; Dmel_INSL4, D. melanogaster INSL peptide 4 precursor [GI:442631435]; Dmel_INSL5, D. melanogaster
INSL peptide 5 precursor [GI:320545737]; Dmel_INSL6, D. melanogaster INSL peptide 6 precursor [GI:442614930]; Dmel_INSL7, D. melanogaster INSL peptide 7
precursor [GI:386763756]; Dmel_INSL8, D. melanogaster INSL peptide 8 precursor [GI:386771312].
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of the S1 precursor are S1 and six other putative L-type SAL-

MFamides, which like S1 have the C-terminal motif S/

TxLxF/Y-NH2 (where x is variable). Four of the novel SAL-

MFamides are octapeptides, like S1, but one peptide is one

residue shorter than S1 (LHSALPF-NH2) and another is

longer than S1 (PAGASAFHSALSY-NH2).

The S2 precursor is a 233-residue protein comprising a pre-

dicted 23-residue N-terminal signal peptide and, bounded by

dibasic cleavage sites, eight putative neuropeptide sequences

that have a C-terminal glycine residue, which is a potential

substrate for C-terminal amidation (figure 21b; GenBank:

KP330476). The predicted neuropeptide products of the S2

precursor are S2, which like S1 is an L-type SALMFamide,

and seven putative F-type SALMFamides, which have the

C-terminal motif F/YxF/Y-NH2 (where x is variable). The pre-

dicted neuropeptide products of the S2 precursor range in size

from just seven residues (AFGDFSF-NH2) to as many as 19

residues (QQSDREREVEAAQTQFYPY-NH2). Furthermore,

the N-terminal glutamine residue of the latter peptide may

be a substrate for conversion to pyroglutamate, which is a

common post-translational modification of neuropeptides.

The sequences of the S1 precursor and S2 precursor in

A. rubens are similar to those of orthologous proteins that

were recently identified in the starfish species Patiria miniata
[271]. Thus, in P. miniata, there is an L-type SALMFamide

precursor, which comprises S1 and six other L-type
SALMFamides, while an orthologue of the A. rubens S2 pre-

cursor in P. miniata comprises an S2-type peptide and eight

F-type or F-type-like SALMFamides. SALMFamide precur-

sors have also been identified in other echinoderms. As in

starfish, sea urchins (class Echinoidea; e.g. S. purpuratus),

sea cucumbers (class Holothuroidea; e.g. A. japonicus) and

brittle stars (class Ophiuroidea; e.g. Ophionotus victoriae)

have two SALMFamide precursor genes—an L-type precur-

sor and an F-type precursor. In contrast, only a single

SALMFamide gene has been identified in feather stars

(class Crinoidea; e.g. Antedon mediterranea). As crinoids are

basal to the other echinoderm classes phylogenetically, it

has been proposed that the L-type and F-type SALMFamide

precursors that occur in Asterozoa (Asteroidea and Ophiuroi-

dea) and Echinozoa (Echinoidea and Holothuroidea) may

have arisen by duplication of a gene encoding a protein

similar to the SALMFamide precursor found in extant

crinoids [272].

The physiological roles of SALMFamide neuropeptides

in echinoderms have been investigated using in vitro and

in vivo pharmacological methods. This has revealed that

both L-type and F-type SALMFamides act as muscle relax-

ants [26–28,273]. More specifically, injection of S1 or S2 in

A. rubens triggers cardiac stomach eversion, a process that

occurs naturally when starfish feed extra-orally on prey

such as mussels [26,27]. Consistent with this effect of S1

http://rsob.royalsocietypublishing.org/
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and S2 in vivo, both peptides cause dose-dependent relax-

ation of cardiac stomach preparations in vitro [27].

Furthermore, S1-immunoreactive and S2-immunoreactive

nerve fibres are present in the innervation of the cardiac

stomach, and therefore it is thought that endogenous release

of S1 and/or S2 may be responsible, at least in part, for med-

iating cardiac stomach eversion when starfish feed [24–26].

With the discovery of the sequences of the S1 and S2 pre-

cursor proteins, as reported here, we now know that both S1

and S2 are derived from precursor proteins that contain other
SALMFamides. Therefore, testing and comparing the effects

of S1 and S2 in vitro is in fact not representative of physio-

logical conditions. In the future it would be interesting to

investigate the in vitro actions of the ‘cocktail’ of SALMFa-

mides that are derived from the S1 precursor, as this will

reveal pharmacological actions that are representative of

physiological processes in vivo. Similarly, it will be interesting

to compare the effects of S2 with the effects of F-type and

F-type-like SALMFamides that are derived from the S2 precur-

sor, and to compare the effects of peptides tested individually
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with the effects of the entire ‘cocktail’ of SALMFamides that

are derived from the S2 precursor. Experimental studies

such as these, using the starfish SALMFamides as a model

system, may provide new insights into the functional signifi-

cance of the general phenomenon of precursor proteins that

give rise to ‘cocktails’ of structurally related neuropeptides.

One important issue that remains to be resolved is the

relationship of echinoderm SALMFamide neuropeptides

with neuropeptides that have been identified in other

phyla. Insights into this issue would be gained if the recep-

tor(s) that mediate the effects of SALMFamides were

identified. Based on C-terminal sequence similarity shared

with vertebrate gonadotropin-inhibitory hormone (GnIH)/

NPFF-type neuropeptides (LxFamide) and QRFP-type neuro-

peptides (FxFamide), candidate receptors have been

proposed [274]. However, definitive identification of SAL-

MFamide receptors will require functional expression

studies and the neural transcriptome sequence data that we

have obtained for A. rubens provides a basis for this.
3.4.2. Precursor of AN peptides (ArANPP)

ArANPP is a 274-residue precursor protein comprising a pre-

dicted 24-residue N-terminal signal peptide and six putative

neuropeptides with an N-terminal alanine (A)/asparagine

(N) (AN) motif, which are bounded by putative dibasic clea-

vage sites (figure 21c; GenBank: KT601733). Three of the

predicted neuropeptides have a C-terminal glycine residue,

which may be a substrate for post-translational conversion

to an amide group. ArANPP was identified on account of

its sequence similarity with the sea urchin AN peptide

precursor SpANPP [9].

The AN peptides are a family of peptides that have to

date only been identified in the echinoderms [9,10], and a

relationship with neuropeptides identified in other phyla

has yet to be determined. Some similarities with TK-type

peptides have been noted [10], but with the discovery of

other TK-type peptides in A. rubens (see above), it would

appear that these similarities may be due to convergence.

The physiological roles of AN peptides in echinoderms are

unknown so the discovery of ArANPP has provided an

opportunity to address this issue using the starfish

A. rubens as a model experimental system.
3.4.3. Arnp11

Arnp11 was identified and named on account of its similarity

with Spnp11, a putative neuropeptide precursor in the sea

urchin S. purpuratus [9]. It is a 103-residue precursor protein

comprising a 21-residue N-terminal signal peptide followed

by an 82-residue polypeptide sequence (residues 22–103)

that contains a putative dibasic cleavage site at residues 45/

46 (figure 21d; GenBank: KT601734). The N-terminal region

of the protein (residues 22–44) contains six acidic residues

(D or E), which indicates that this part of the protein

may be an acidic spacer peptide. We propose that it is the

57-residue polypeptide formed by residues 47–103 that

may be a secreted bioactive neuropeptide. It is noteworthy

that the 57-residue polypeptide includes six cysteine residues,

which may form up to three intramolecular disulfide bridges.

Alternatively, a homodimeric protein could be formed by up

to six intermolecular disulfide bridges.
The putative 57-residue polypeptide (Arn11) derived

from Arnp11 shares sequence similarity with a putative 54-

residue polypeptide (Spn11) derived from Spnp11, including

the presence of six cysteine residues. However, these poly-

peptides do not share any apparent sequence similarity

with neuropeptides or peptide hormones that have been

identified in any other phyla. Nevertheless, neuropeptides

of a similar size and with six cysteine residues have

been identified in other animals. For example, eclosion hor-

mone in insects [275] and a family of peptide hormones in

crustaceans comprising molt-inhibiting hormone, vitellogen-

esis-inhibiting hormone and crustacean hyperglycaemic

hormone [276–278] each comprise six cysteine residues that

form three intramolecular disulfide bridges.

3.4.4. Arnp15a and Arnp15b

Arnp15a and Arnp15b were identified and named on account

of their similarity to Spnp15, a putative neuropeptide

precursor in the sea urchin S. purpuratus [9].

Arnp15a is a 111-residue protein comprising a predicted

19-residue N-terminal signal peptide followed by a 92-residue

polypeptide sequence (residues 20–111) that contains a diba-

sic cleavage site at residues 54/55 (figure 21e; GenBank:

KT601735). The N-terminal region of the protein (residues

20–53) contains eight acidic residues (D or E), indicating

that this part of the protein is an acidic spacer peptide. We

propose that it is the 53-residue polypeptide formed by

residues 56–108 that may be a secreted bioactive neuropep-

tide. The presence of six cysteine residues in the 53-residue

polypeptide suggests that there may be up to three intramole-

cular disulfide bridges. Alternatively, a homodimeric protein

could be formed by up to six intermolecular disulfide bridges.

Arnp15b is a 111-residue protein comprising a predicted

25-residue N-terminal signal peptide followed by an 86-resi-

due polypeptide sequence (residues 26–111) that contains a

dibasic cleavage site at residues 63/64 (figure 21f; GenBank:

KT601736). The N-terminal region of the protein (residues

26–62) contains six acidic residues (D or E), indicating that

this part of the protein may be an acidic spacer peptide. We

propose that it is the 47-residue polypeptide formed by resi-

dues 65–111 that may be a secreted bioactive neuropeptide.

The presence of six cysteine residues in the 47-residue

polypeptide suggests that there may be up to three intramole-

cular disulfide bridges. Alternatively, a homodimeric protein

could be formed by up to six intermolecular disulfide bridges.

3.4.5. Arnp18

Arnp18 was identified and named on account of its similarity

to Spnp18, a putative neuropeptide precursor in the sea

urchin S. purpuratus [9]. Arnp18 is a 113-residue protein com-

prising a predicted 27-residue N-terminal signal peptide

followed by an 86-residue polypeptide sequence (residues

28–113) that contains a putative dibasic cleavage site at resi-

dues 36/37 (figure 21g; GenBank: KT601737). We propose

that it is the 76-residue polypeptide formed by residues 38–

113 that may be a secreted bioactive neuropeptide (Arn18).

It is noteworthy that Arn18 contains nine cysteine residues,

which may form up to four intramolecular disulfide bridges.

Alternatively, a homodimeric protein could be formed by up

to nine intermolecular disulfide bridges. Arn18 and Spn18 do

not share any apparent sequence similarity with
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neuropeptides or peptide hormones identified in any other

phyla. However, neuropeptides similar in size comprising

eight cysteine residues have been identified in other animals;

for example, the anti-gonadotropic peptide schistosomin in

the pond snail L. stagnalis, which is thought to have four

intramolecular disulfide bridges [279].

3.4.6. Arnp21

Arnp21 is a 102-residue protein comprising a predicted

22-residue N-terminal signal peptide followed by an

80-residue polypeptide sequence (residues 23–102) that con-

tains putative dibasic cleavage sites at residues 45/46 and

67/68 (figure 21h; GenBank: KT601738). We propose that it

is the 22-residue peptide formed by residues 23–44 (Arn21a)

and the 20-residue peptide formed by residues 47–66

(Arn21b) that may be secreted bioactive neuropeptides. The

presence of C-terminal glycine residues on both of these pep-

tides is indicative of post-translational modifications giving

rise to a C-terminal amide group on the mature peptides.

3.4.7. Arnp22

Arnp22 is a 157-residue protein comprising a predicted 24-

residue N-terminal signal peptide followed by a 133-residue

polypeptide sequence (residues 25–157) that contains puta-

tive dibasic cleavage sites at residues 86/87, 112/113, 126/

127, 136/137 and 151/152 (figure 21i; GenBank: KT601739).

We propose that it is the 24-residue polypeptide formed by

residues 88–111 (Arn22a) and the 23-residue polypeptide

formed between residues 128–150 (Arn22b) that may form

secreted bioactive neuropeptides. It is noteworthy that both

Arn22a and Arn22b contain two cysteine residues that are

separated by four amino acid residues and that may form

intramolecular disulfide bridges. Alternatively, heterodimeric

polypeptides could be formed by up to two intermolecular

disulfide bridges. It is also noteworthy that both Arn22a

and Arn22b have the same C-terminal pentapeptide

sequence—NQRGW. Therefore, this conserved feature may

be critical for the bioactivity of the candidate neuropeptides

derived from Arnp22.

3.4.8. Arnp23

Arnp23 is a 118-residue protein comprising a predicted

24-residue N-terminal signal peptide followed by a

94-residue polypeptide sequence (residues 25–118) that con-

tains putative dibasic cleavage sites at residues 51/52, 75/76

and 111/112 (figure 21j; GenBank: KT601740). We propose

that it is the 22-residue polypeptide formed by residues

53–74 (Arn23a) and the 34-residue polypeptide formed by resi-

dues 77–110 (Arn23b) that may form secreted bioactive

neuropeptides. It is noteworthy that both Arn23a and Arn23b

contain two cysteine residues that are separated by four

amino acid residues and that may form intramolecular disul-

fide bridges. Alternatively, a heterodimeric protein could be

formed by up to two intermolecular disulfide bridges. Interest-

ingly, both Arn23a and Arn23b have the same C-terminal

tripeptide sequence (RGW), which, as highlighted above, is a

feature of Arn22a and Arn22b. This suggests that Arnp22 and

Arnp23 may be related and, as with Arnp22, the conserved

RGW motif may be critical for the bioactivity of the candidate

neuropeptides derived from Arnp23.
3.4.9. Arnp24

Arnp24 is an 83-residue protein comprising a predic-

ted 16-residue N-terminal signal peptide followed by a

67-residue polypeptide sequence (residues 17–83) that con-

tains putative dibasic cleavage sites at residues 60/61 and

76/77 (figure 21k; GenBank: KT601741). We propose that it

is the 14-residue peptide formed by residues 62–75 that

may form a secreted bioactive neuropeptide. The presence

of a C-terminal glycine residue on the peptide is indicative

of post-translational modification giving rise to a C-terminal

amide group on the mature peptide. The putative neuro-

peptide (Arn24) contains two cysteine residues, which may

form an intramolecular disulfide bridge. Alternatively, a

homodimeric protein could be formed by up to two intermo-

lecular disulfide bridges. Finally, it is noteworthy that the

position of Arn24 in the C-terminal region of the precursor

and the presence of two cysteine residues is reminiscent of

SS/MCH-type neuropeptides (see above), which may pro-

vide clues towards functional characterization of Arn24 as a

putative neuropeptide.

3.4.10. Arnp25

Arnp25 is a 97-residue protein comprising a predicted 31-

residue N-terminal signal peptide followed by a 66-residue

polypeptide sequence (residues 32–97) that contains a puta-

tive dibasic cleavage site at residues 46/47 (figure 21l;
GenBank: KT601742). We propose that it is the 14-residue

peptide formed by residues 32–45 that may form a secreted

bioactive neuropeptide. The presence of a C-terminal glycine

residue on the peptide is indicative of post-translational

modification giving rise to a C-terminal amide group on

the mature peptide. It is also noteworthy that the putative

neuropeptide (Arn25) contains two cysteine residues, which

may form an intramolecular disulfide bridge. Alternatively,

a homodimeric protein could be formed by up to two inter-

molecular disulfide bridges. It should also be noted that the

two arginine residues preceding the first cysteine residue rep-

resent a potential dibasic cleavage site. If this were indeed a

cleavage site then the putative neuropeptide Arn25 would

be an 11-residue peptide and not a 14-residue peptide. Inter-

estingly, Arnp25 shares some similarities with VP/OT-type

neuropeptide precursors—the putative neuropeptide Arn25

is located proximal to the N-terminal signal peptide and, in

common with VP/OT-type peptides, Arn25 is a putative

C-terminally amidated peptide with two cysteine residues

separated by four amino acid residues. These shared charac-

teristics may, of course, have arisen by convergent evolution.

Nevertheless, Arn25 represents an interesting candidate

neuropeptide for further investigation.
4. Conclusions
The identification of 40 neuropeptide precursors in the starfish

A. rubens has provided important new insights into the evol-

ution and diversity of neuropeptide signalling systems. Most

noteworthy are the discovery of the first kisspeptin (KP)-

type and MCH-type precursor proteins to be identified in a

non-chordate species. Other neuropeptide families that

have been identified previously in protostomes and deuteros-

tomes have been identified here for the first time in an

ambulacrarian/echinoderm species including tachykinin
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(TK)-, somatostatin (ss)-, PDF- and CRH-type precursor pro-

teins. However, it should be noted that assignment of

neuropeptides as members of bilaterian neuropeptide families

based solely on sequence data can be difficult because of

sequence convergence or divergence. More definitive proof

of relationships can be obtained by identification of the cog-

nate receptors for neuropeptides [5], and this will be an

important objective for future research on the candidate neuro-

peptides identified here. Furthermore, mass spectroscopic

identification of the mature neuropeptides derived from the

starfish neuropeptide precursors identified here will be an

important prelude to their functional characterization.

This study provides the most comprehensive identifi-

cation of neuropeptide precursors in an echinoderm, in

comparison with our previous analyses of transcriptome

sequence data from the sea urchin S. purpuratus and the sea

cucumber A. japonicus [9,10]. Discovery of 40 neuropeptide

precursors in A. rubens provides a rich resource that estab-

lishes this echinoderm species as a model system for

neuropeptide research, building upon pioneering research

that enabled the discovery and functional characterization

of the first neuropeptides to be identified in echinoderms—

the SALMFamide neuropeptides S1 and S2 [29]. Furthermore,

functional characterization of neuropeptides facilitated by

analysis A. rubens neural transcriptome sequence data has

already commenced. Thus, identification of the precursor of

the neuropeptide NGFFYamide in A. rubens enabled func-

tional characterization of this neuropeptide as a neural

regulator of cardiac stomach contraction and retraction in
starfish [156]. Likewise, experimental studies directed

towards functional characterization of other candidate neuro-

peptides identified here are ongoing. We anticipate that

discovery of the physiological roles of starfish representatives

of ancient bilaterian neuropeptide families will provide

important new insights into the evolution of neuropeptide

function in the animal kingdom, particularly in the context

of a pentaradial bauplan, which is such a unique and fasci-

nating characteristic of starfish and other echinoderms.
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