
J
H
E
P
0
2
(
2
0
1
5
)
1
2
7

Published for SISSA by Springer

Received: October 27, 2014

Revised: January 6, 2015

Accepted: January 27, 2015

Published: February 19, 2015

D-brane potentials in the warped resolved conifold

and natural inflation

Zachary Kenton and Steven Thomas

Centre for Research in String Theory, School of Physics and Astronomy,

Queen Mary University of London,

Mile End Road, London E1 4NS, U.K.

E-mail: z.a.kenton@qmul.ac.uk, s.thomas@qmul.ac.uk
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warped resolved conifold (WRC) throat approximation of Type IIB string compactifica-

tions on Calabi-Yau manifolds. When we glue the throat to a compact bulk Calabi-Yau,

we generate a D-brane potential which is a solution to the Laplace equation on the resolved

conifold. We can exactly solve this equation, including dependence on the angular coor-

dinates. The solutions are valid down to the tip of the resolved conifold, which is not the

case for the more commonly used deformed conifold. This allows us to exploit the effect

of the warping, which is strongest at the tip. We inflate near the tip using an angular

coordinate of a D5-brane in the WRC which has a discrete shift symmetry, and feels a

cosine potential, giving us a model of Natural Inflation, from which it is possible to get a

Planckian decay constant whilst maintaining control over the backreaction. This is because

the decay constant for a wrapped brane contains powers of the warp factor, and so can be

made large, while the wrapping parameter can be kept small enough so that backreaction

is under control.
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1 Introduction

Inflation is a compelling solution to the horizon problem of the standard big bang model. A

simple model involves a scalar field coupled to gravity together with a suitably flat potential,

which drives the accelerated expansion of the early universe. Quantizing the scalar field

driving inflation, we can generate quantum fluctuations which source the temperature

anisotropies seen in the CMB. Quantizing the gravitational field (semiclassically) leads to

gravitational waves which can source quadrupolar temperature anisotropies in the CMB,

producing polarization of the photons [1, 2].
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String theory provides a consistent framework in which to investigate quantum fields

coupled to gravity, and its UV completion, which has important effects on models of in-

flation. There have been many reviews on inflation in string theory, for example [3, 4].

Critical superstring theory has geometric solutions with a 10D spacetime, while in cosmol-

ogy we are interested in a 4D spacetime. In section 2 we consider a compactification of the

six dimensions on a three complex-dimensional Calabi-Yau manifold, which preserves one

quarter of the original supersymmetries.

In section 3 we apply our string theory compactification to a model of Natural In-

flation [5–8]. In contrast to many previous studies of Natural Inflation from a controlled

string theory, we are able to achieve a Planckian decay constant. This is because our axion

is an open string modulus, rather than a closed string axion formed from integrating a

p-form over a p-cycle.

Calabi-Yau compactifications involve many closed string moduli, including complex

structure moduli, Kähler moduli and the axiodilaton. It was originally hoped that one

of these closed string moduli may provide a candidate scalar field for inflation. However,

because there are so many of them, most will require stabilization, as multifield inflation

is constrained by current observations [9]. In type IIB supergravity, the complex structure

moduli and the axiodilaton can be stabilized classically via flux compactifications [10],

which involve a warped spacetime. The Kähler moduli are not stabilized classically and

are instead fixed by quantum perturbative and non-perturbative effects [11, 12].

In general it’s difficult to stabilize all the closed string moduli, while maintaining a flat

potential for just one or two of them. A more promising approach is to inflate using open

string brane moduli, arising from spacetime-filling branes whose coordinates within the

internal 6D space are moduli for the 4D effective theory [13]. The branes feel a potential

through interactions with other sources in the internal space. The warping helps to keep

the brane potential flat, which is desired for inflation.

In order to study the dynamics of branes in warped spacetimes, we require the metric

on the internal unwarped 6D Calabi-Yau space. However, no explicit metric is known on

any global compact Calabi-Yau space. The best we can do is to approximate the Calabi-

Yau by a noncompact throat region, which is Ricci flat and Kähler, and on which we know

the metric. We can then cut off the throat at a finite length and glue it on to a compact

bulk Calabi-Yau, on which the metric is unknown. Research is constricted to obtaining

inflation from D-branes confined to the warped throat region, where the metric is known.

The singular conifold (SC) is one example of a Ricci flat, Kähler throat on which the

metric is known [14]. The SC lives at a singular point within the moduli space of Calabi-

Yau manifolds. It is a cone over a T 1,1 ≡ [SU(2)× SU(2)]/U(1) base, and so it contains a

conical singularity at its tip (not to be confused with the singular point within the moduli

space). We can smooth out this conical singularity in two topologically distinct ways, whilst

preserving the Ricci flat and Kähler conditions, leading to the deformed conifold (DC) and

the resolved conifold (RC). The DC and RC are both noncompact, and the metric is known

explicitly in each case [14–18] and [19].

The DC is the usual choice when one is interested in stabilizing the closed string moduli

and inflating within the same throat, because the DC can support a non-trivial (2,1)-form

– 2 –



J
H
E
P
0
2
(
2
0
1
5
)
1
2
7

flux which can stabilize the complex structure moduli and the axiodilaton while preserving

supersymmetry [11, 12, 20]. This flux is also responsible for the warping of the full 10D

solution, known as the warped deformed conifold (WDC) [18].

The RC, on the other hand can’t support topologically non-trivial (2,1)-form flux. This

means the complex structure moduli and axiodilaton can’t be stabilized in the same manner

as the DC. Indeed, the RC on its own has no complex structure moduli to stabilize, and so

it is no surprise that the flux mechanism used to stabilize the complex structure modulus

of the DC is not suitable here.1 However, we can still produce a warped 10D spacetime

by placing a stack of N D3-branes at the tip of the RC, extended along the 4 noncompact

spacetime directions. The resulting 10D spacetime is called the warped resolved conifold2

(WRC) [19, 25].

In this paper we do not explicitly address the issue of closed string moduli stabilization.

Instead, we assume that these are stabilized by some mechanism at a higher energy scale,

decoupled from the open string brane moduli, which remain light. This allows us to

investigate the inflationary dynamics from branes in the WRC.

This assumption does not seem so strange when one remembers that the throat re-

gion is only an approximation to a fully compactified Calabi-Yau manifold. Multi-throat

scenarios have been considered in which different throats are attached to different parts of

the bulk Calabi-Yau [26–30]. One of these other throats could support fluxes and or other

mechanisms to stabilize the closed string moduli at a high energy scale. An additional

warped throat may be necessary to embed the standard model, and another to uplift to

a dS vacuum. With this multi-throat picture in mind, we assume an RC throat in which

inflation occurs, and allow for other throats in which fluxes may be present which stabilize

the complex structure moduli. In future work we hope to investigate closed string moduli

stabilization in the WRC, and its effect on the brane potential.

In section 3, we model the inflaton as one of the angular coordinates of a probe wrapped

D5-brane moving within the tip region of the WRC. This angular coordinate is periodic,

and so has a shift symmetry, appearing in the brane potential inside a cosine. Once rescaled

to have canonical kinetic terms, it appears with a decay constant, set by the choice of D-

brane. In this way, we find a model of Natural Inflation from string theory. In taking a

path in field space along the angular direction, we evade the Baumann-McAllister bound,

which assumes the motion is in the radial direction [31].

Finally, it should be noted that the work in this paper has a more general context

beyond its application to the model of Natural Inflation presented in section 3. The authors

of [32–36] have developed a systematic programme investigating the various corrections to

the D-brane potential, corresponding to the potential on the Coulomb branch of the dual

gauge theory, for perturbations of the Lagrangian. This includes various compactification

1 The authors of [21] have analysed susy breaking ISD (1,2) fluxes on the RC, which are allowed if

Poincare duality is broken either through non-compactness or through having a compact but non-CY

manifold. It would be interesting to see if this work can be extended to the case of the WRC which we are

considering.
2This is not to be confused with the similarly named resolved warped deformed conifolds of [22, 23] based

on the work of [24].
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effects, such as the deformation of the throat from gluing it to the bulk, the inclusion of

IASD fluxes and a finite 4D curvature. The approach makes use of perturbative expansions

around a Calabi-Yau background, requiring knowledge of the eigenfunctions of the Laplace

operator on the unperturbed, unwarped Calabi-Yau background. Since the WDC has been

extensively studied for moduli stabilization, the DC geometry was used to derive explicit

expressions for the D-brane potential.

However, the eigenfunctions of the Laplace operator on the DC are only known in

the region well away from the tip of the DC. Interestingly, exact analytic solutions to the

Laplace equation on the RC are known. In contrast to the DC case, these solutions are valid

anywhere within the RC [25]. Thus by studying the WRC we are able to provide a new

explicit example of the general formalism developed in [32] - [36], which extends deeper into

the IR. Thus, aside from inflationary applications, we believe studying D-brane dynamics

in the WRC geometry is an interesting new avenue to explore from the perspective of the

holographic dual gauge theory.

This paper is structured as follows. In section 2 we review the supergravity background

arising from flux compactifications of 10D type IIB string theory, focussing on the various

sources that can contribute to the D-brane potential. We also introduce the geometry of

the WRC. In section 3 we apply this to produce a Natural Inflation model from a D-brane

in the WRC. We find that for the simple case of a D3-brane it’s not possible to obtain a

Planckian decay constant, as required by observational constraints. Indeed, in the WDC

case, it was shown in [37] that one can generate a Planckian decay constant from a large

number of D3-branes, but the backreaction effects cannot then be ignored. By considering

instead a wrapped D5-brane with flux we find that we can choose parameters such that

the decay constant is Planckian, while the backreaction remains small. We conclude in

section 4 and provide scope for future research. We gather more technical aspects, such

as estimations of the backreaction in appendix A and corrections to the potential coming

from the 4D Ricci scalar in appendix B.

2 The supergravity background

2.1 Flux compactifications

We would like to investigate the dynamics of D-branes in the WRC, which is a 10D warped

geometry. Following the seminal work of [10], these warped geometries arise naturally

when local brane sources are present, and fluxes are non-trivial. Compactifications on such

backgrounds are known as flux compactifications. We will briefly review the setup here to

set our notation and introduce warped spacetimes.

At leading order in α′ and gs, the type IIB action for bosonic fields, together with local

sources, is given in the Einstein frame as

S̃ =− 1

2κ2
10

[∫
M10

d10X
√
|g|

(
R− |∂τ |2

2(Imτ)2
− |G3|2

2Imτ
− |F̃5|2

4 · 5!

)
+

1

4i

∫
M10

C4 ∧G3 ∧G3

Imτ

]
+ Sloc

(2.1)
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where Sloc is the action for the local sources. The form fields are defined as

F̃5 ≡ F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3, G3 ≡ F3 − τH3 (2.2)

with F5 = dC4, F3 = dC2, H3 = dB2 and the axiodilaton is τ = C0 + ie−Φ, with Φ the

dilaton. Here κ10 = 1
2(2π)4gsl

4
s , with ls the string length. We must impose self duality of

F̃5 = ?10F̃5 by hand.

We assume a warped background metric ansatz

ds2 = e2A(y)gµνdx
µdxν + e−2A(y)g̃mndy

mdyn. (2.3)

We have a maximally symmetric external 4D spacetime X4, with metric gµν(x) and an

internal unwarped space Ỹ6 with metric g̃mn(y). The warp factor is denoted H(y) ≡
e−4A(y). We denote the warped internal 6D space without a tilde Y6, with warped metric

gmn = H(y)1/2g̃mn. Here, and in what follows, a tilde denotes use of the unwarped 6D

metric g̃mn (except for F̃5, which is just conventional notation in supergravity). Note that

if the warp factor is shifted by a constant, this can be absorbed into a rescaling of the xµ

coordinates, so that only the functional dependence of H(y) is important.

For F̃5 we take the ansatz

F̃5 = (1 + ?10) dα(y) ∧
√
−det gµνdx

0 ∧ dx1 ∧ dx2 ∧ dx3. (2.4)

Similarly to the warp factor, shifts of α(y) by a constant are irrelevant for F̃5.

The inclusion of local sources, such as D-branes, leads to a non-trivial warp factor,

producing a warped metric, together with non-vanishing fluxes. Varying the action leads

to the Bianchi identity

dF̃5 = H3 ∧ F3 + 2κ2
10T3 ?6 ρ

loc
3 (2.5)

where ?6 is the hodge dual in the warped 6D internal space with metric gmn. Here ρloc
3

is the D3-brane charge density from the local sources. Using the warped spacetime (2.3),

and the 5-form flux (2.4), the Bianchi identity (2.5) becomes

∇̃2α = ie2AGmnp ?6 G
mnp

12Imτ
+ 2e−6A∂mα∂

me4A + 2κ2
10e

2AT3ρ
loc
3 (2.6)

with ∇̃2 the Laplacian with respect to the unwarped internal 6D metric. The trace of the

Einstein equations can be written [10, 35],

∇̃2e4A = R4 +
κ2

10

2
e2AJ loc + e2AGmnpG

mnp

12Imτ
+ e−6A(∂mα∂

mα+ ∂me
4A∂me4A) (2.7)

where

J loc ≡ 1

4

(
9∑

M=4

TM
M −

3∑
M=0

TM
M

)loc

. (2.8)
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Note that the local stress-energy tensor T loc
MN is contracted using the full 10D metric. The

4D Ricci scalarR4 is not present when the external spacetime is taken to be Minkowski [10],

but in the case of inflation, we take the external 4D spacetime to be quasi-de Sitter, with

R4 ≈ 12H2 [35]. We can combine (2.6) and (2.7) to give

∇̃2Φ− = R4 +
e8A(y)

6Imτ
|G−|2 + e−4A(y)|∂Φ−|2 + 2κ2

10e
2A(y)(J loc − T3ρ

loc
3 )

where Φ− ≡ e4A(y) − α(y), G− ≡ ?6G3 − iG3.

(2.9)

Note that Φ− is insensitive to constant shifts.

For the time being, we work in the noncompact warped volume limit for the internal

geometry, vol(Y6)→∞. But the warped volume is related to the reduced Planck mass Mp

by

M2
p =

vol(Y6)

κ2
10

(2.10)

so that Mp → ∞ in this noncompact limit. Then by the Freidmann equation, H2 =

V/(3M2
p ) → 0, so that the Ricci scalar for dS space vanishes R4 → 0. We will later

consider corrections from taking the compact limit with finite Mp. In the noncompact

limit, (2.9) becomes

∇̃2Φ− =
e8A(y)

6Imτ
|G−|2 + e−4A(y)|∂Φ−|2 + 2κ2

10e
2A(y)(J loc − T3ρ

loc
3 ). (2.11)

Many well-understood local sources satisfy a BPS-like condition J loc ≥ T3ρ
loc
3 . D3-

brane sources saturate this, while D5-branes satisfy but don’t saturate it. Integrating (2.11)

and assuming no boundary contribution at infinity, the l.h.s. will vanish as it’s a total

derivative. But since each term on the r.h.s. is positive semi-definite, each must individually

vanish at leading order, giving an imaginary self-dual (ISD) solution G− = 0 and Φ− = 0.

2.2 The warped resolved conifold

We don’t know the explicit metric on any smooth compact Calabi-Yau in 3 complex di-

mensions.3 One way forward is to approximate a region of the fully compactified manifold

with a section of a noncompact throat, which satisfies the Ricci flat and Kähler condition,

upon which we know the metric. We then cut off this noncompact throat and glue it onto

a bulk compact Calabi-Yau producing a fully compactified geometry. If we assume that

the physics we’re interested in is localised within the throat region then we have access to

an explicitly known metric. We can try to quantify the effects of the gluing procedure via

perturbative expansions, assuming the gluing region is suitably far away.

The moduli space of Calabi-Yau threefolds has curvature singularities called conifold

singularities. The space associated to the conifold singularity is known as the singular

conifold (SC) [14], which is a cone over the coset space T 1,1. On the plus side, it’s Ricci

flat and Kähler, and we know the explicit metric on it. However, it’s noncompact and has a

3Although progress has been made numerically, for example in [38, 39].
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conical singularity at the tip, r = 0. There are two topologically distinct ways of removing

the conical singularity of the SC, while preserving the Ricci flat and Kähler conditions,

arriving at the deformed conifold (DC) [18] and the resolved conifold (RC) [19, 25]. For

each of these, the metric is explicitly known. These are all noncompact, and must be

truncated and glued to a bulk compact Calabi-Yau, as discussed in section 2.3.

We often speak of a warped throat spacetime, which is a 10D warped spacetime (2.3)

involving a noncompact throat as the unwarped 6D space, Ỹ6, which can be approximated

by a cone over some X5 base in the large r limit. These throats are a general family which

include the SC, the DC and the RC.

We will take the internal unwarped 6D manifold to be the RC, using the coordinates

ym = (r, ψ, θ1, φ1, θ2, φ2) in which the metric takes the form [19]

ds2
RC = g̃mndy

mdyn =κ−1(r)dr2 +
1

9
κ(r)r2(dψ + cos θ1dφ1 + cos θ2dφ2)2

+
1

6
r2(dθ2

1 + sin2 θ1dφ
2
1) +

1

6
(r2 + 6u2)(dθ2

2 + sin2 θ2dφ
2
2),

(2.12)

with

κ(r) =
r2 + 9u2

r2 + 6u2
. (2.13)

Here u is called the resolution parameter, which has dimensions of length. This naturally

defines a dimensionless radial coordinate ρ ≡ r/(3u). As r → 0 the second and third parts

of (2.12) vanish, corresponding to a shrinking S3 with coordinates (ψ, θ1, φ1), leaving an

S2 with coordinates (θ2, φ2) of radius u.

One can consider the 10D geometry sourced by placing a stack ofN D3-branes extended

along the noncompact 4 spacetime dimensions, appearing pointlike localized at the north

pole, θ2 = 0, of the S2 at the tip of the RC [25]. The resulting geometry is a warped

spacetime called the warped resolved conifold (WRC), with 10D metric [19, 25]

ds2 = H−1/2(ρ, θ2)ds2
FRW +H1/2(ρ, θ2)ds2

RC (2.14)

where we have taken the 4D spacetime to be FRW, for our cosmological application, and

the 6D unwarped space is the RC.

The warp factor, H(ρ, θ2), is the solution to the Green’s function equation for the

Laplace operator on the RC. An exact expression for the WRC warp factor is [25]

H(ρ, θ2) = (LT 1,1/3u)4
∞∑
l=0

(2l + 1)HA
l (ρ)Pl[cos(θ2)], (2.15)

with the T 1,1 lengthscale set by L4
T 1,1 = (27/4)πNgsl

4
s . The Pl are the Legendre polynomi-

als, and the radial functions HA
l (ρ) are given in terms of the 2F1(a, b, c; z) hypergeoemetric

functions as

HA
l (ρ) =

2C̃β
ρ2+2β 2F1(β, 1 + β, 1 + 2β;−1/ρ2) (2.16)

where C̃β =
Γ(1 + β)2

Γ(1 + 2β)
, β =

√
1 + (3/2)l(l + 1). (2.17)

– 7 –
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Since localizing the stack at the north pole specifies an angle, the warp factor must now

have both angular and radial dependence - whereas the warp factors only depend on the

radial coordinate in the case where the internal geometry is the SC or the DC, and is an

assumption usually made for generic warped throats. This motivates us to explore branes

moving in the angular directions within the WRC, where the warping also acts in the

angular direction.

The gauge gravity correspondence for a stack of D-branes near a conical singularity of

a cone over an X5 base was investigated in generality in [40] where strings on AdS5 ×X5

correspond to a certain dual N = 1 gauge theory. Theories where the stack of D-branes are

localized at a point on the resolution of an orbifold have also been considered, for example

in [41] for C3/Z3.

The WRC has been investigated from the point of view of the gauge gravity correspon-

dence in [25], which found the dual gauge theory living on the stack to be a 4D N = 1,

SU(N) × SU(N) gauge theory coupled to two chiral superfields Ai, i = 1, 2 in the (N,N)

representation of SU(N) × SU(N); and two chiral superfields Bj , j = 1, 2 in the (N,N)

representation of SU(N)×SU(N). The fields Ai, Bj are given VEVs such that the operator

U ≡ 1

N
Tr(|B1|2 + |B2|2 − |A1|2 − |A2|2) (2.18)

has VEV 〈U〉 = u2. The moduli space of these vacua has exactly the geometry of the RC,

with resolution parameter u.

2.3 Gluing a warped throat to a bulk Calabi-Yau

For model building purposes we first take the noncompact limit, with an infinitely long

warped throat. This gives an ISD flux solution, with G− = 0 = Φ−. However, note that a

10D geometry with an infinitely long warped throat does not lead to 4D dynamical gravity,

as Mp is infinite.

To remedy this, we cut off the warped throat at some large radial distance rUV , and

glue it to a compact bulk Calabi-Yau. The metric on the bulk is not known, but the metric

on the warped throat is explicitly known for certain warped throats, such as the SC, the

DC and the RC. For this reason we try to get inflation to occur within the warped throat.

Although this may not be generic, it allows us to do calculations. Perturbations of Φ−
arise as a result of this gluing procedure and are solutions to the Poisson equation (2.9),

written in terms of the warp factor as

∇̃2Φ− = R4 +
H−2

6Imτ
|G−|2 +H|∂Φ−|2 + 2κ2

10H−1/2(J loc − T3ρ
loc
3 ). (2.19)

We will assume that the gluing will induce corrections of O(δ) to Φ−, for some small δ,

and we assume corrections to G− are of the same order. We will assume also that the local

terms don’t contribute at this order. The G− and Φ− terms appear on the r.h.s. of (2.19)

at second order in δ, so that the leading order perturbation of Φ− in the large throat limit

is a solution to the homogeneous Laplace equation, so we denote it with subscript h,

∇̃2Φh = 0. (2.20)

– 8 –
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This distinguishes it from Φ− which is the full solution to the Poisson equation arising

when we consider the effect of a non-negligible R4, where the leading order correction to

Φ− = 0 from the gluing is given by

∇̃2Φ− = R4 (2.21)

so that Φ− includes Φh, but also the particular solutions to the Poisson equation.

The solutions of (2.20) and (2.21) will depend on the unwarped internal 6D geometry.

In subsubsections 2.3.1 and 2.3.2 we consider solutions to the Laplace equation (2.20) for

the DC and the RC geometry respectively. In appendix B we consider solutions to the

Poisson equation (2.21) for the RC.

2.3.1 Gluing the deformed conifold

Unfortunately, the exact solutions to the Laplace equation (2.20) are not known for the

deformed conifold. Progress has only been made in the mid-throat region [34] , rIR � r �
rUV , where the geometry approximates that of the singular conifold, with the 10D metric

approaching AdS5 × T 1,1.

We can expand the solution in terms of the eigenfunctions YL(Zi) of the 5D Laplacian

on T 1,1 as

Φh(y) =
∑
L

ΦL(r)YL(Zi) (2.22)

where Zi are the angular coordinates on T 1,1. Here, the multi-index L ≡ (l1,m1, l2,m2, R),

labels the SU(2)1× SU(2)2×U(1)R quantum numbers under the corresponding isometries

of T 1,1.

But the equation for the radial part, ΦL(r), has no known analytic solution for the

DC, and can only be solved numerically [42]. Limited to the mid-throat region, Φh can be

expanded in powers of r/rUV as [36]

Φh(r, Zi) ≈
∑
L

cL

(
r

rUV

)∆(L)

YL(Zi) (2.23)

where ∆(L) ≡ −2 +
√

6[l1(l1 + 1) + l2(l2 + 1)−R2/8] + 4 (2.24)

where cL are constant coefficients.

The lowest value of ∆(L) will give the leading contributions for r < rUV. The lowest

value is ∆(L) = 3/2, for L = (1/2, 1/2, 1/2, 1/2, 1) [34]. But the U(1)R symmetry of T 1,1

is broken in the DC to a discrete Z2, so only modes with R = 0 are allowed, forbidding

the ∆(L) = 3/2 mode. The next smallest mode, ∆(L) = 2, for L = (1, 0, 0, 0, 0) or

L = (0, 0, 1, 0, 0) is allowed, and comes with an angular term YL ∼ cos θi. This mode was

analyzed in [43] in the DBI limit.

The coefficients cL appearing in (2.23) are undetermined, apart from their small size.

The authors of [44, 45] have taken a statistical approach to investigating warped D3-brane

inflation in this approximation. For example, [45] explores the parameter space spanned

by the first 12 cL coefficients and determining the success/failure of the model in each
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case. However, a flat field space metric was used instead of a curved conifold metric

which was corrected for in [46] and appeared in a corrected version of [45]. This statistical

approach has been restricted to the mid-throat region of the singular conifold, but could

also be applied to the RC geometry we consider in this paper, with the benefit of not being

restricted to lie in the mid-throat region.

2.3.2 Gluing the resolved conifold

For the RC we can again expand Φh in the YL(Zi), but in this case the radial part of the

Laplace equation can be solved exactly on the resolved conifold in terms of hypergeometric

functions [25], which was not the case for the DC.

In this paper, we are interested in probing the tip of the WRC, so we focus on solutions

of the Laplace equation which are invariant under the SU(2)1 × U(1)ψ which rotates the

(θ1, φ1) and ψ coordinates of the shrinking S3 which has zero radius at the tip.4 This leaves

us (ρ, θ2, φ2), from which we now drop the subscripts.

There are two particular independent solutions to the radial part of the Laplace equa-

tion on the RC, invariant under the SU(2)1×U(1)ψ. They are HA
l (ρ), given in (2.16), and

HB
l (ρ), given by

HB
l (ρ) = 2F1(1− β, 1 + β, 2;−ρ2). (2.25)

The most general solution to the Laplace equation with the given isometries is

Φh(ρ, θ, φ) =
∞∑
l=0

m=l∑
m=−l

[alH
A
l (ρ) + blH

B
l (ρ)]Ylm(θ, φ). (2.26)

This solution is valid anywhere within the WRC throat, in particular near the tip.

This is a much better situation compared to the WDC, where the solution is only valid in

the mid-throat region. The coefficients are undetermined, yet small, al, bl = O(δ).

For completeness, we give the asymptotics of the two radial functions HA
l (ρ) and

HB
l (ρ) [25]

2

ρ2
+ 4β2 log ρ+O(1)

0←ρ←− HA
l (ρ)

ρ→∞−→
2C̃β
ρ2+2β

(2.27)

O(1)
0←ρ←− HB

l (ρ)
ρ→∞−→ O(ρ−2+2β).

In appendix B we will consider solutions to the Poisson equation (2.21) on the RC,

which gives corrections to Φ− in the limit of a finite but large throat.

4It should be emphasised there is no particular reason other than simplicity in focussing on solutions

with the given isometries. We focus on dynamics at the tip, as this is new analytic territory compared to

that available for the WDC. Note that studying dynamics along the whole throat is calculable in the WRC

but we leave this interesting problem to a future investigation.
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2.4 Moduli stabilization

In an ISD flux compactification, the complex-structure moduli and the axiodilaton τ ex-

perience a potential, coming from the following term in the 10D type IIB action (2.1)

Vflux =
1

2κ2
10

∫
d10X

√
|g|
[
−|G3|2

2Imτ

]
, |G3|2 ≡

1

3!
gMNgPQgRSGMPRG

∗
NQS . (2.28)

The 4D effective description of an ISD flux compactification can also be derived from

a Kähler potential and a Gukov-Vafa-Witten flux superpotential, W , of N = 1 supergrav-

ity [20]

W =

∫
Ỹ6

Ω ∧G3 (2.29)

where Ω is the holomorphic 3-form associated to the Calabi-Yau Ỹ6. N = 1 supersymmetry

is preserved if G3 is a primitive (2, 1)-form [10]. Since G3 depends on the axiodilaton and

Ω depends on the complex-structure moduli, (2.29) is independent of the Kähler moduli.

Since the Kähler potential is of no-scale type, the resulting scalar potential stabilizes only

the complex-structure moduli and axiodilaton. The Kähler moduli are assumed lighter

than the complex-structure moduli and axiodilaton, and so once these heavier moduli have

been integrated out, the Kähler moduli can then be stabilized by quantum non-perturbative

effects, such as wrapped D7-branes. This leads to an AdS vacuum, which requires uplifting

to a dS vacuum involving the inclusion of anti-brane sources [11].

Previous studies [10–12] have stabilized the complex-structure moduli and axiodila-

ton using the DC as the internal 6D unwarped metric. The DC has Hodge numbers

h2,1 = 1, h1,1 = 0 [47] so there is only one complex-structure modulus to stabilize —

the deformation parameter of the deformed conifold, z. Since h2,1 = 1, one can turn

on primitive (2, 1)-form fluxes which preserve N = 1 SUSY. The third betti number is

b3 = 2 + 2h2,1 = 4, so there are 4 non-trivial 3-cycles in the DC. One of these, the A-cycle,

is associated to the finite size S3 at the DC tip. There is an associated 3-cycle, B, which

intersects this A-cycle exactly once.

One can then choose to turn on the following quantized (2, 1)-form fluxes through the

A,B cycles

1

2πα′

∫
A
F3 = 2πM and

1

2πα′

∫
B
H3 = −2πK. (2.30)

These fluxes allow for the superpotential to be written in terms of z. Since SUSY is

preserved, one can minimize the scalar potential by imposing DzW = 0 which stabilizes

z, by solving DzW = 0 for z. In the noncompact DC, the axiodilaton is not fixed by the

superpotential - instead it is frozen in the Klebanov-Strassler solution.

In the noncompact DC limit, with an infinitely long throat, the DC B-cycle degenerates

to infinite size. When the DC is cut off and glued to a compact bulk Calabi-Yau, the B-cycle

becomes finite. The gluing will generically increase h2,1 for the entire manifold, meaning

there are more complex-structure moduli to stabilize. Assuming one can first stabilize z

near the conifold point z = 0, the additional complex-structure moduli can be stabilized
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while preserving N = 1 supersymmetry using the superpotential generated by the fluxes.

In this compact case, the axiodilaton is no longer frozen, as in the KS solution. It is now

fixed by including (2, 1)-form fluxes over the remaining two 3-cycles distinct from A and

B. This contributes to W , and one can then impose DτW = 0, near z = 0 and solve for τ ,

which preserves N = 1 SUSY [10].

The RC on the other hand has Hodge numbers h2,1 = 0, h1,1 = 1 [47] so there are

no complex-structure moduli to stabilize, instead there is a single Kähler modulus, the

resolution parameter u. Since h2,1 = 0, there are no cohomologically nontrivial closed

(2, 1)-forms, so one can’t turn on fluxes which preserve N = 1 SUSY. The third betti

number is b3 = 2 + 2h2,1 = 2, so there are 2 non-trivial 3-cycles in the RC, on which (3, 0)-

form fluxes could be turned on, and these would classically fix the axiodilaton. However,

these fluxes will break N = 1 SUSY, and so the equation determining the vev of the

axiodilaton would be obtained by minimizing the full scalar potential, rather than just

solving DτW = 0. It would be interesting to compare the energy scale at which SUSY

would need to be broken to fix the axiodilaton in this way, compared to the energy scale

at which SUSY is broken when uplifting to a dS mimimum, as in [12].

The Kähler modulus u would need to be stabilized by non-perturbative effects, [11].

This may also fix the axiodilaton, without the need for breaking SUSY. It would be in-

teresting to investigate at what value u is fixed at, and its possible mixing with the open

string brane moduli.

When the compact case is considered, the bulk Calabi-Yau may have a different topol-

ogy, allowing for h2,1 > 0, and so SUSY preserving primitive (2, 1)-form fluxes may be

turned on, stabilizing the additional complex-structure moduli and the axiodilaton.

Indeed, there have been multi-throat scenarios proposed, [26], in which the standard

model is required to be situated in a seperate throat to that where inflation occurs, and

to where the anti-branes, which end inflation, are located. Since this scenario allows

for these extra throats, it doesn’t seem too much to ask that there is another warped

throat in the compactification, perhaps a WDC throat, which allows stabilization of the

complex-structure moduli. Perhaps it’s too much to hope that one throat will be able to

do everything: stabilize, inflate, produce the standard model and give a dS vacuum.

In addition, it has been suggested that there might be a mild hierarchy between the

scales at which the closed string moduli and open string moduli are stabilized, so that

the two problems are approximately decoupled [48]. This serves as motivation for us to

investigate brane inflation in the WRC.

3 Natural inflation model

3.1 Preview

We are interested in modelling inflation using the open string moduli arising as the coor-

dinates of a probe D-brane within the WRC geometry, which are scalar fields of the 4D

effective theory. The probe approximation means ignoring any backreaction coming from

the mobile brane, onto the WRC supergravity background, which is itself sourced by the

stack of N D3-branes at the north pole of the S2 at the tip of the RC. Note that N must
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be large for the SUGRA solution to be valid, so that for a single probe D3-brane, the

backreaction should be negligable. The backreaction for a probe D5-brane is discussed in

appendix A.

In the original warped throat models of inflation, motion in the angular directions is

assumed stabilized before inflation begins, with inflation occurring along a radial path. But

the Baumann-McAllister (BM) bound implies a stringent upper bound on the scalar-to-

tensor ratio r for motion along the radial path [31]. In this work we instead look to inflate

along the angular direction θ2, where the BM bound no longer restricts r, as pointed out

in [49].

Indeed, contrary to the WSC and WDC, the simplest form of the warp factor for the

WRC has dependence on both ρ and θ2, so for the WRC one might expect interesting

motion in the ρ and θ2 directions. More general models can be considered where the

brane also moves in the other directions - we defer this more complicated study to future

investigation.

Brane motion in both the radial and one angular direction of the WDC was considered

in [43, 50–53], however, the majority of the trajectory was in the radial direction. This

was done in the DBI limit, where the brane motion is ultrarelativstic. Studies of brane

inflation with multiple fields were considered more generally in [49, 54, 55].

In this work, we will instead show that for a suitable choice of coefficients in the

homogeneous solution Φh in (2.26), ρ rapidly approaches a minimum value near the tip of

the WRC. The brane then follows a path in the angular direction θ2 down to the minimum

of the potential.5 It is the latter motion which will generate the 50-60 e-folds of inflation.

We can set the initial conditions to be such that we begin at the minimum in the radial

direction and just off to the side of the maximum of the potential in the θ2 direction, which

we now relabel as θ2 ≡ θ, without ambiguity.

Using this setup we will construct an explicit original model of Natural Inflation [5–8]

i.e. an inflationary model for the inflaton σ, with the potential

V (σ) = Λ4

[
1 + cos

(
σ

f

)]
. (3.1)

The observationally favoured values for the number of e-foldings N , the scalar spectral

tilt ns, together with an observably large tensor-to-scalar ratio r [8] are given by the

parameter choice of energy scale Λ = MGUT ≈ 1016GeV and decay constant f ∼ mp ∼
5Mp ≈ 1.2× 1019GeV, for mp the Planck mass, and Mp the reduced Planck Mass.

We will derive a potential of the form (3.1) by considering brane potentials of the

general form

V =
M2
p

4

{
ϕ(y) + λ

[
Φ−(y) + Φh(y)

] }
(3.2)

where ϕ(y), λ, Φ−(y) and Φh(y) depend on the choice of probe D-brane. The term ϕ(y)

arises from the noncancellation of DBI and CS terms in the slow roll limit, and also includes

5We shall see that with this choice of coefficients, the potential is flat along the other 4 angular directions

and so we can choose to set these anglular fields to zero.
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any constants independent of the brane position which contribute to the 4D energy density.

The Φh(y) term is the nonconstant solution to the homogeneous Laplace equation on the

RC. The Φ−(y) term is the inhomogeneous part of the solution to the Poisson equation,

present only when considering corrections from the Ricci scalar. This is explained in more

detail in appendix B. The factor of λ is a constant which depends on the choice of probe

D-brane.

The Φh(y) term is independent of the choice of probe brane, and one can freely choose

the coefficients of independent solutions of the Laplace equation. We choose to keep two

independent solutions to the Laplace equation, but this is by no means a unique choice.

It is motivated only by our aim of reaching a potential related to the Natural Inflation

potential.

One solution we keep is non-normalizable for large ρ, with charges

L = (l1,m1, l2,m2, R) = (0, 0, 1, 0, 0) (3.3)

which is present for the choice of non-zero b1, and takes the form

HB
1 =

3

2
(3ρ2 + 2) cos θ. (3.4)

This term is desirable because of its cosine term. Our model will take the inflaton field σ to

be the canonical scalar field Θ, proportional to the angular coordinate θ. The normalisation

of Θ in terms of θ will determine f in (3.1), and depends on the choice of probe D-brane.

We will also keep one mode which is normalizable for large ρ, with charges

L = (l1,m1, l2,m2, R) = (0, 0, 0, 0, 0) (3.5)

which is present for nonzero a0, and takes the form

HA
0 =

1

ρ2
− log

(
1

ρ2
+ 1

)
. (3.6)

Taking a0 > 0 gives a large positive contribution near ρ = 0. Thus, our choice of coefficients

leads to the homogeneous solution to the Laplace equation on the RC, Φh, given by

Φh =
a0

ρ2
− a0 log

(
1

ρ2
+ 1

)
+

3

2
b1
(
3ρ2 + 2

)
cos

(
Θ

5Mp

)
. (3.7)

In subsection 3.2, we consider a probe D3-brane. This has λ = 4T3/M
2
p , and a constant

ϕ(ρ) = V0. This is because the DBI and CS terms exactly cancel in the slow roll limit for

a D3, but other sources contribute to the 4D energy density to give the constant V0. This

constant sources a mass term, Φ− ∼ m2ρ2 at leading order in small ρ, when one includes

the R4 contribution [35]. This mass term, when combined with the large positive wall from

the HA
0 term will give a radial minimum at small ρ.

In subsection 3.3, we consider a probe wrapped D5-brane with electric flux turned on in

the wrapped directions. In this case, ϕ(ρ) is not constant, and depends on ρ quadratically,

ϕ(ρ) ∼ ρ2. This arises from the non-cancellation of the DBI and CS terms in the slow
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roll expansion of the action. This ρ2 term will again give a radial minimum at small ρ

when combined with the large positive contribution for small ρ from the HA
0 term. In

appendix B we show that ϕ(ρ) ∼ ρ2 sources a quartic term in Φ−, with a large positive

coefficient. However, this quartic term is subleading in the small ρ limit.

Our work differs from previous works deriving Natural Inflation from closed string

axions in string theory, which arise from integration of a p-form over a p-cycle in the

compact space. For these closed string axions, a periodic potential can arise in the 4D

effective theory when the continuous axion shift symmetry is spontaneously broken to a

discrete shift symmetry, due to nonperturbative effects arising from worldsheet instantons

or Euclidean D-brane instantons. The decay constant for each closed string axion is set by

the kinetic terms, which depend on the type of axion used. However, these decay constants

turn out to be generically sub-Planckian, by looking at the kinetic terms for these axions

and relating them to the compactification volume, and hence the Planck mass, together

with the validity of the α′ expansion [56–58].

It should be noted that although one can’t generically obtain a Planckian decay con-

stant for a single closed string axion from a controlled string theory, there may be additional

structure which allows one to obtain a Planckian effective decay constant. For example,

in Aligned Natural Inflation [59, 60], the extra structure involves two interacting closed

string axions with sub-Planckian decay constants, which after a suitable amount of fine

tuning aligns to produce a direction in axion field space which has a Planckian effective

decay constant. Further extensions to more than two axions were investigated in [61].

Embedding axion alignment in string theory was recently explored in [62], using gaugino

condensation on magnetized or multiply-wound D7-branes, however closed string moduli

stabilization was not addressed in this model. In [63], moduli stabilization was included

in both KKLT and LVS regimes, with non perturbative effects in the superpotential used

to produce the alignment, or the alternative Hierarchical Axion Inflation [64]. Another

embedding of Aligned Natural Inflation in IIB orientifolds was discussed in [65], using C0

and C2 R-R axions in the LVS regime.

A separate model, N-flation [66], motivated by Assisted Inflation [67], and similar

proposals [68–70], use many light non-interacting closed string axions which contribute to

one effective axion direction with a Planckian effective decay constant. The masses of the

axions can be made hierarchically lighter than the Kähler moduli [71]. However, the large

number of axions requried [72] can renormalize the Planck mass, spoiling the achievement

of a Planckian decay constant. N-flation and Aligned Natural Inflation can be combined

as in [73–75].

Axion Monodromy Inflation encompasses a related class of models which achieve large

field inflation from closed string axions in specific brane backgrounds from string theory

and F-theory. The brane backgrounds explicitly break the axionic shift symmetry of the

potential, giving rise to monodromy [56, 76–81]. Inflation can continue through many

cycles of the axion field space, with an effective field range which is much larger than the

original period of the axion, giving large field inflation. However, the axion monodromy

models generically suffer from a large backreaction problem, coming from a large D3-brane

charge and/or backreaction from the branes themselves [82]. These backreaction difficulties
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are alleviated when the monodromy mechanism is combined with the idea of alignment,

in a model known as Dante’s Inferno, where the inflaton takes a gradual spiral path in

2D axion field space [83]. Alternative monodromy models use D7-brane position moduli

with a shift symmetry broken by a flux superpotential [84], or the Ignoble Approach of [85]

where the axion mixes with a topological 4-form field strength to produce the monodromy.

Possible embeddings of Natural Inflation in supergravity were investigated recently in [86].

A review of axion inflation in the Planck era is given in [87].

Our Natural Inflation model doesn’t use any of the above closed string axions as the

inflaton, and so a Planckian decay constant is not ruled out a priori. Our inflaton is instead

an open string modulus, identified with the position of the brane in an angular direction

on the RC. It has a discrete shift symmetry, which is set by the internal geometry, with

the decay constant set by the normalization of the kinetic term. Thus, our model shares

more similarity to models of spinflation [43]. However, we also differ from the setup of [43],

because we explore the use of the RC rather than the DC geometry. Also, we use a probe

wrapped D5-brane with flux, rather than a probe D3-brane without flux, and we probe the

tip rather than the mid-throat region. The combination of these choices allows us to select

a Planckian decay constant, which we then check is suitable for a controlled supergravity

approximation, and doesn’t produce a large backreaction.

In previous work, inflation from a brane moving in an angular direction was found to

be rather ineffective [43, 44, 51]. In these models the initial conditions were such that the

brane starts far from the tip and where the major contribution to the number of e-folds

was from the radial motion towards the tip. However, in our model we make a different

choice of initial conditions, such that the brane begins at the tip and due to the steep

potential in the radial direction, experiences no motion in the radial direction. All of the

inflationary e-folds occur along the angular direction. The flatness in the angular direction

is a result of the choices of initial radial position (bringing a large warp factor), the use

of a wrapped D5-brane (rather than a D3-brane) and turning on 2-form flux through the

wrapped dimensions of the brane (allowing for a nonzero CS potential from the gluing to

a bulk Calabi-Yau).

3.2 D3-brane in the WRC

To begin, we review how the potential, V , felt by a single slowly moving probe D3-brane

in a warped throat geometry is related to Φ− via V = V0 + T3Φ− [32].

Consider a probe D3-brane, with worlvolume coordinates χa extended along the four

noncompact directions, M4. The action has contributions from the DBI term and the

Chern-Simons term

SD3 = −T3

∫
M4

d4χ
√
−det(P4[gMN +BMN + 2πα′FMN ]) + T3

∫
M4

P4[C4] (3.8)

where P4 is the pullback of the brane worldvolume to M4. We assume 4D isotropy

and homogeneity, relevant for cosmological spacetimes, meaning we should consider time-

dependent internal coordinates ym(t). Substituting a general warped 10D metric gMN of
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the form (2.3)

ds2 = H−1/2(y)gFRW
µν dxµdxν +H1/2(y)g̃mndy

mdyn (3.9)

together with the ansatz (2.4) for C4 and taking B2 = 0 = F2 gives the effective 4D

Lagrangian density

L = −T3H−1(y)
√

1−H(y)g̃mnẏmẏn + T3α(y). (3.10)

For slowly rolling fields, we can expand the square root in (3.10), to give

L ≈ 1

2
T3 g̃mnẏ

mẏn − V (y) (3.11)

where the D3-brane potential V (y) will be

V (y) = V0 + T3(H−1(y)− α(y)) = V0 + T3Φ−. (3.12)

Here V0 is a constant extracted from Φ−, since Φ− as defined in (2.9) is invariant under

constant shifts, so that now Φ− doesn’t include a constant term. For an exact ISD solution,

Φ− = 0, and so the D3-brane feels no potential in this slow roll limit. The leading order

potential then comes from the O(δ) corrections to Φ− coming from the gluing of the warped

throat to the bulk Calabi-Yau.

The other regime, in which the brane is moving relativistically, is called DBI inflation.

In this case, the motion is constrained by the causal speed limit, set by the positivity inside

the square root in (3.10). This can lead to inflation, even if the potential is steep, because

of the noncanonical kinetic terms. In this work we only consider the slowly rolling regime,

and defer investigation of the DBI limit to a future investigation.

3.2.1 Natural inflation from a D3-brane?

In this section we show our first attempt at realising Natural Inflation using a slow rolling

D3-brane probe. We will find that we can’t have a Planckian decay constant in a consistent

manner. In subsection 3.3 where we consider a probe wrapped D5-brane with flux, we’ll

find instead that we can consistently choose a Planckian decay constant.

Consider the WRC metric restricted to the (ρ, θ) subspace

ds2 = u2

[
9

(
ρ2 + 2/3

ρ2 + 1

)
dρ2 +

(
3

2
ρ2 + 1

)
dθ2

]
. (3.13)

Now we make a coordinate transformation to canonical coordinates (Z,Θ), so that the

kinetic terms appearing in the D3-brane slow roll Lagrangian (3.10) will be canonical

1

2
T3 g̃mnẏ

mẏn ≈ 1

2
T3u

2

[
9

(
ρ2 + 2/3

ρ2 + 1

)
ρ̇2 +

(
3

2
ρ2 + 1

)
θ̇2

]
(3.14)

=
1

2
Ż2 +

1

2
Θ̇2. (3.15)
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In the small ρ limit, near the tip, the desired coordinates are given by

ρ =
1

u
√

6T3
Z (3.16)

θ =
1

u
√
T3

Θ. (3.17)

We now examine the potential (3.2) for the D3-brane, with our choice of homoegenous

solutions to the Laplace equation, in terms of these canonical coordinates. It is

V (Z,Θ) = V0 + T3

[
m2Z2

6u2T3
+

2a0u
2T3

3Z2
− a0 log

(
1 +

2u2T3

3Z2

)
+

3b1
4

(
4 +

9Z2

u2T3

)
cos

(
Θ

u
√
T3

)]
.

(3.18)

This will have a stable minimum in Z at Zmin. If inflation begins at Z close to Zmin and

sufficiently off to the side of the ridge along the Θ direction, the motion will be mostly in

the Θ direction. We then identify f = u
√
T3 for a D3-brane.

We now investigate whether one can arrange for the decay constant f = u
√
T3 to be

of order 5Mp. Note that in our conventions, T3 = [(2π)3gsl
4
s ]
−1, and κ10 = 1

2(2π)4gsl
4
s . We

require

25M2
p = u2T3 =

u2

(2π)3gsl4s
, (3.19)

but we also have that the reduced Planck mass is related to the warped volume of the

Calabi-Yau by M2
p = V w

6 κ
−2
10 . We take the throat length to be rUV � rmin. Throughout

the region rmin � r < rUV, the space is approximately AdS5×T 1,1 and the warp factor goes

like H ∼ L4
T 1,1/ρ

4, where L4
T 1,1 = (27/4)πgsNl

4
s . Under the assumption that V w

throat
>∼V

w
bulk,

we get

M2
p
>∼ κ−2

10 vol(T 1,1)

∫ rUV

rmin

y5H(y)dy ≈
Nr2

UV

2(2π)4gsl4s
. (3.20)

Near the tip of the WRC the Planck mass receives a contribution

Nr2
min

gsl4s
, (3.21)

which will only contribute to (3.20) by multiplication of an order one factor for

rmin
<∼ rUV/50. This is because in the small ρ part of the WRC throat, where we are near

to the N D3-branes, the space is locally AdS5 × S5 and the warp factor is H ∼ L4
S5/y

4,

now with y the distance to the North Pole, where the N D3’s are located.

In order to match (3.19) to (3.20) we must take the throat length rUV to be

r2
UV ≈

4πu2

25N
� u2, for large N � 1. (3.22)

But u is the natural length scale of the RC. To have the length of the throat rUV hier-

archically smaller than u seems unnatural, since we assumed a very long throat for the
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noncompact limit, and also for the Mp approximation coming mainly from the throat. It

seems we can’t consistently choose f = 5Mp for a D3-brane.

Finally, for a later comparison with the D5-brane case, we note that turning on a

constant electric flux of ε < 1 on the D3-brane gives a factor (1 − ε2)1/2 in front of the

DBI part of the action, with the CS part of the D3 action left unchanged. This leads to a

non-cancellation of the inverse warp factor, and so the following potential term appears

V = T3

[
(1− ε2)1/2 − 1

]
H−1. (3.23)

But we note that this comes with a negative sign, and so acts to destabilize the overall

potential, making it unsuitable for achieving a stable minimum in Z. In the D5-brane case,

this non-cancellation will come with the opposite sign, as then the flux appears in the CS

action.

3.3 Wrapped D5-brane in the WRC

In this section we’ll find that for the probe wrapped D5-brane with flux, we can obtain

f ≈ 5Mp within the long throat approximation. In this case the non-cancellation of the

DBI and CS terms works to our advantage, giving a quadratic term in the potential with

a positive coefficient.

We consider the same WRC background but this time we place a probe D5-brane in

it, with 4 of it’s dimensions extended along the 4 noncompact spacetime directions and

wrap the remaining two spatial dimensions around a 2-cycle Σ2 inside the compact space

p times. We also turn on an F2 flux on the D5-brane through Σ2.

The action for the p-wrapped D5-brane with worldvolume coordinates ξα and world-

volume W5 is

SD5 =SDBI−D5 + SCS−D5 (3.24)

=− T5

∫
W5

d6ξ
√
−det(P6[gMN +BMN + 2πα′FMN ])

+ T5

∫
W5

P6

[
C6 + C4 ∧ (B2 + 2πα′F2)

]
(3.25)

where P6 is the pullback of a 10D tensor to the 6D brane worldvolume, and T5 =

[(2π)5gsl
6
s ]
−1.

It’s important to distinguish between the embedding of the D5-brane in the 10D space-

time, and the wrapping of the D5 on a 2-cycle Σ2 in the 6D internal space.

The embedding is a relation between the brane worldvolume coordinates ξα and the

10D spacetime coordinates xM , given as ξα = kα(xM ), α = 0, ..., 5 for some function kα.

Similarly to [88], we choose the simple embedding

ξα = (x0, x1, x2, x3, θ1, φ1). (3.26)

We specify the wrapping on the 2-cycle Σ2 in the 6D internal space by taking 6−2 = 4

relations on the internal ym coordinates

r = constant θ2 = f(θ1) = −θ1 (3.27)

ψ = constant φ2 = g(φ1) = −φ1. (3.28)
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With this choice of embedding and wrapping, the pullback of the 10D metric gMN to the

6D D5-brane worldvolume is

P6[g]αβ =
∂XM

∂ξα
∂XN

∂ξβ
gMN , (3.29)

which takes the following diagonal form

P6[g]00 = −H−1/2(1−Hv2) (3.30)

P6[g]ii = a2H−1/2 (3.31)

P6[g]θ1θ1 =
1

3
H1/2(r2 + 3u2) (3.32)

P6[g]φ1φ1 =
1

3
sin2 θ1H1/2(r2 + 3u2), (3.33)

where there’s no summation implied on the ii component, and we restrict to only have

motion in the r, θ2 directions, so that the speed squared of the brane is

v2 =

(
r2 + 6u2

r2 + 9u2

)
ṙ2 +

1

6

(
r2 + 6u2

)
θ̇2

2. (3.34)

We choose to turn on a worldvolume flux F2, of strength q along the wrapped 2-cycle, so

that its pullback has the following non-zero components

P6[2πα′F2]θ1φ1 = 2πα′
q

2
sin θ1 = −P6[2πα′F2]φ1θ1 . (3.35)

As an aside, we note that we have chosen to turn on an F2 worldvolume flux, but we

could also have turned on a B2 worldvolume flux, as discussed in appendix C. The wrapped

D5-brane would lead to a potential for the b-axion associated with integrating this B2 over

the wrapped 2-cycle. This b-axion was used to inflate from in models of axion monodromy

inflation [76]. However, for suitable initial conditions on the size of b, this term will not

affect our inflationary dynamics from the position modulus of the wrapped D5-brane.

Now we have the following term in the DBI part of the action

SDBI−D5 = −pT5

∫
M4×Σ2

d4xdθ1dφ1

√
−det(P6[g + 2πα′F2]) (3.36)

= −pT5

∫
M4

d4xa34πH−1F(r, θ2)1/2
√

1−Hv2 (3.37)

where F(r, θ2) ≡ H
9

(r2 + 3u2)2 + (πα′q)2. (3.38)

Now we need to do a slow roll expansion, and check what terms multiply the kinetic

terms, and then define new coordinates which have canonical kinetic terms. In the 4D

Lagrangian density, (with a3 absorbed into the integration measure) the coefficient of
1

2
v2

in the expansion of the square root is

4πpT5F(r, θ2)1/2. (3.39)
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Since the open string modulus has mass dimensions, we expect this modulus to be

affected by the warping. In the case of the D3-brane, the warp factors exactly cancelled

in (3.10) to give (3.11) with 4D canonical fields with no powers of the warp factor. How-

ever, in the case of a wrapped D5-brane, we see this cancellation no longer occurs, with

dependence on the warp factor to the power of 1/2 as set by F1/2 in (3.37).

If we neglect O(α′2q2) and take the AdS limit of the throat, we would get F ∼ R4/9

giving the same result as found in [88]. However, we are interested in the small r region

of the throat, near the stack, where we will fix r = rmin � rUV.

In contrast to the D3-brane case, we can now take rUV ∼ u, so that the length of

the throat is of order the resolution parameter, which is the natural lengthscale of the

WRC geometry. This is because we have more freedom in the model from the wrapping

number p.

For the moment let’s take the following assumption on the size of the flux q

q <∼
1

π

(
u

rmin

)2√
4πgsN, (3.40)

which means that to leading order in u/rmin, F has behaviour

F(r, θ2)1/2 ≈
u2L2

S5

r2
min

≈
(

u

rmin

)2

l2s
√

4πgsN (3.41)

with the q2 term possibly contributing only an O(1) numerical factor in front of this. Here

L4
S5 = 4πgsNl

4
s is the fourth power of the AdS5 × S5 radius, which is the near stack

geometry created by the N D3’s.

3.3.1 Decay constant f

The canonical kinetic coordinate Θ is

Θ ≡ u2

rmin
(4πpT5L

2
S5)1/2θ2. (3.42)

The dominant contribution to the Planck mass from a long warped throat of length

rUV ∼ u is

M2
p
>∼ κ−2

10 vol(T 1,1)

∫ u

0
y5H(y) ≈ Nu2

2(2π)4gsl4s
. (3.43)

We want the decay constant f to be 5Mp for observable tensor modes, which occurs

for the canonical field Θ in (3.42) when we set the coefficient of θ2
2 to be equal to 25M2

p .

Using the reduced Planck mass from the volume of the throat (3.43), we find that this

requires

p ∼ 25

4π

(rmin

u

)2

√
Nπ3

4π2gs
. (3.44)

Note that there is dependence on the ratio (rmin/u)2, which is small for rmin near the

tip. This will be helpful for keeping the backreaction under control, as we will show in

appendix A.

– 21 –



J
H
E
P
0
2
(
2
0
1
5
)
1
2
7

3.3.2 Scale of inflation

We now wish to set the scale of inflation to be MGUT. Writing the action for the D5-brane

minimally coupled to gravity in an FRW spacetime and expanding in slow roll fields gives

SD5 =

∫
M4

d4x
√
gFRW

[
M2
p

2
R4 +

1

2
Ż2 +

1

2
Θ̇2 − V

]
(3.45)

where V =
M2
p

4
[ϕ(y) + λΦ−] (3.46)

and

Φ− = Φ− + Φh (3.47)

ϕ(y) =
4

M2
p

4πpT5H−1
(
F1/2 − l2sπq

)
(3.48)

λ =
4

M2
p

4π2l2sT5pq. (3.49)

We are aiming for a Natural Inflation type potential, which we derive from the homo-

geneous solution (3.7). We want the cosine term to be

V = M4
GUT cos

(
Θ

5Mp

)
. (3.50)

We now ask what value of q is required to match the coefficient of cos(Θ/5Mp) in (3.46)

to be M4
GUT , in the small ρ limit. From (3.46), (3.49) and (3.7), this requires

4π2l2sT5pq3b1 = M4
GUT . (3.51)

Taking b1 = δB, with B = O(1), the l.h.s. becomes

4π2l2sT5pq3b1 ≈ 2.1× 10−2 N
1/2

g
3/2
s l4s

(rmin

u

)2
δBq. (3.52)

The GUT scale is MGUT = 1016GeV ≈ 4 × 10−3Mp and using the reduced Planck mass

from (3.43) gives

M4
GUT ≈ 2.6× 10−17N

2u4

g2
s l

8
s

, (3.53)

meaning we need to take q of order

q ≈ 1.2× 10−15 N3/2

g
1/2
s δB

(
u

ls

)4( u

rmin

)2

(3.54)

to get the desired GUT scale.
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Parameter B gs N u δ rmin sin θ2

Data 1 10−1 104 50ls 10−2 ls 10−2

Table 1. Compactification data for our model

3.3.3 Backreaction of a wrapped D5-brane

Unlike the D3-brane, the D5-brane can backreact on both the warp factor and the internal

geometry. The backreaction on the internal geometry is possibly lethal to the assumption

that the leading order terms in the potential are small, coming from the gluing of the

warped throat to the CY. We should check that our chosen values for p, in (3.44), and q,

in (3.54), are small enough so that backreaction effects are negligable.

Table 1 summarizes the data we take for various parameters. The model is fairly robust

to small changes in these values.

Before we check that the backreaction from the wrapped D5-brane is under control,

we can first check the value of q, given in (3.54) for the scale of inflation to be the GUT

scale, against the constraint we already imposed on it in (3.40) for the approximation of

F1/2 in (3.41). We require

1.2× 10−15 N3/2

g
1/2
s δB

(
u

ls

)4( u

rmin

)2
<∼

1

π

(
u

rmin

)2√
4πgsN (3.55)

⇔ N

Bgsδ

(
u

ls

)4
<∼ 9.4× 1014 (3.56)

independent of the value of rmin. For the data in table 1, we have

N

Bgsδ

(
u

ls

)4

∼ 6.25× 1013 <∼ 9.4× 1014 (3.57)

as required.

In appendix A we show further that for this choice of data, the backreaction is under

control. We calculate the size of the backreaction on the warp factor and on the internal

geometry, and find that they are small compared to what is produced by the stack.

3.3.4 The stable radial minimum

We now confirm that we can find a stable radial minimum in ρ for our potential. Using

our chosen p in (3.44) and q in (3.54), and the data in table 1 we get

ϕ(y) =
4

M2
p

4πu2pT5H−1/2 ≈ 180

u2
ρ2 (3.58)

λ =
4

M2
p

4π2l2sT5pq ≈ 4
M4

GUT

δM2
p

≈ 0.2

δu2
≈ 20

u2
(3.59)

where we’ve used that MGUT = 4× 10−3Mp, and

M2
p =

Nu2

2(2π)4gsl4s
≈ 2× 108

u2
(3.60)
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Figure 1. Natural Inflation potential for the D5-brane

for our data. Then we have

λM2
p /4 ≈ 100M4

GUT. (3.61)

We note that in the potential there is the term

M2
p

4
ϕ(ρ) ≈M4

GUT880ρ2 (3.62)

coming from the non-cancellation of DBI and CS terms. The leading order behaviour of

the potential for small ρ is then

V ≈M4
GUT

[
880ρ2 +

A0

ρ2
+ 2A0 log ρ+ 3B1 cos

(
Θ

5Mp

)]
. (3.63)

where we have kept the ρ2 term from ϕ(y), since it comes with a large coefficient, but

neglected positive powers of ρ from Φh in the small ρ limit.

We now look for a minimum ρmin small enough that our selected data rmin ∼ u/50 is

valid. This means that we require ρmin ∼ 1/150 ≈ 7× 10−3.

This requires us taking A0 ≈ 10−5, which gives us ρmin ≈ 10−2. This is a bit of fine-

tuning, but the only restriction we have on the ai is that they are less than O(δ) = 10−2.

The fact that we’ve taken all the other ai as zero is at least consistent with having a very

small a0.

Once we have stabilized in the ρ direction at ρmin, the effective potential is only in the

Θ direction, and has the form of the Natural Inflation potential. A plot of the potential,

with this value of A0 and B = 1 is shown in figure 1.

We could include the correction from the Ricci scalar, calculated in appendix B, which

contributes at leading order with a quartic term in ρ with a large coefficient. This changes

the potential to

V ≈M4
GUT

[
880ρ2 + 4500ρ4 +

A0

ρ2
+ 2A0 log ρ+ 3B1 cos

(
Θ

5Mp

)]
. (3.64)
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However, the position of the minimum is highly insensitive to the addition of this term in

the small ρ limit. A priori, one might have expected corrections to contribute towards the

position of the minimum, but it seems the dominant feature is the small value of A0.

4 Conclusion

In this paper we have investigated D-brane potentials in the background of the warped

resolved conifold (WRC) and applied this to give a model of Natural Inflation. The po-

tentials arise as perturbations to the ISD solution from the gluing of the warped throat

to a bulk Calabi-Yau. These perturbations are the solutions to the Laplace equation on

the unwarped resolved conifold (RC). We know the exact solutions to this equation, valid

anywhere within the throat, in particular at the tip. This is not the case for the warped de-

formed conifold geometry, in which the solutions to the Laplace equation on the deformed

conifold are only valid in the mid-throat region, far from the tip.

This allowed us to exploit the effect of the warping, which is strongest at the tip. We

inflated using a periodic angular coordinate which had a potential involving a cosine of this

coordinate, giving us a model of Natural Inflation. We now summarise how we achieved a

Planckian decay constant for our Natural Inflation potential, given the difficulty this has

posed in previous attempts at embedding natural inflation in string theory.

A crucial ingredient in this respect is the choice of inflating with a D5-brane rather

than a D3-brane. Using first a D3-brane, we found that we couldn’t obtain a Planckian

decay constant. Increasing the number of D3’s increases the decay constant but the amount

required has been shown to yield a large backreaction [37].

We then considered instead a wrapped D5-brane probe, with electric flux turned on

along the wrapped directions. We found it was possible to get a Planckian decay constant

for this probe and simultaneously set the energy scale of inflation to be the GUT scale,

whilst maintaining control over the backreaction and supergravity approximation. This is

because the pullback of the DBI action to the D5-brane worldvolume produces a dependence

on the warp factor through the term F1/2, which is not present in the case of the D3-brane.

The term F is proportional to the warp factor and by setting the initial conditions

such that the D5-brane begins at a small radial displacement compared to the lengthscale

u, allows for F1/2 to be large, as emphasised in (3.41). Since the decay constant f is

proportional to pF1/2, as shown in (3.39), one can achieve a Planckian value for the decay

constant by either a large p or a large F1/2. In our case we choose F1/2 to be large, as it has

already been shown that choosing a large p would lead to a large backreaction as the brane

would become very heavy. Having some moderate wrapping p > 1 is helpful however, since

in the case of no wrapping a Planckian decay constant can only be achieved for an extreme

hierarchy of rmin � u, which would be difficult to achieve. The choice of moderate p and

the initial radial position of the D5-brane near the tip allows for a Planckian f .

The presence of 2-form flux q is not crucial for the Planckian f , as it does not enter

directly into the expression for f , as long as we use the AdS5×S5 approximation valid near

the stack of branes at the tip. However, q does appear in the CS action for the D5-brane,

and so a non-zero q is crucial in order to get a cosine potential term in the first place,
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coming from the solution to the Laplace equation on the resolved conifold. By (3.49), this

potential is proportional to q and so this can be chosen to set the overall energy scale of

the natural inflation potential to be MGUT .

We found that we could tune one coefficient of a solution to the Laplace equation to

arrange for a stable minimum in the radial direction which is very close to the tip. The

slope of the potential was found to be much greater in the radial direction than in the

angular direction. We can arrange for inflation to begin once the brane has stabilized in

the radial direction, with inflation solely along the angular direction. Enough e-folds are

produced if inflation begins near the top of the potential in the angular direction.

Estimates of the backreaction for the case of a wrapped D5-brane were presented in

appendix A where it was shown that there is a choice of stringy parameters for which the

supergravity and probe brane approximations are valid. In appendix B, we investigated

corrections to the potential when the noncompact limit approximation is relaxed, to include

the effects of a nonzero 4D Ricci scalar. This involved solving the Poisson equation on the

RC, using the Green’s function method outlined in [32]. The leading order term only

contributed at fourth order in the small radial coordinate, subleading to other terms in the

potential. It had a very small effect on the value of the radial coordinate at the minimum.

Future work could explore more general motion in both the radial and the other angular

directions in the WRC. We focussed in this paper on slow roll inflation in an angular

direction near the tip of the WRC. This could also be extended to the case of relativistic

branes and to a DBI spinflation scenario on the WRC. Given that one knows the explicit

form of the solutions of the Laplace equation and the Green’s function on the whole of the

RC, one could easily broaden this study to explore other regions of the RC throat.

We have not presented how to stabilize the closed string moduli within the RC throat,

as it can’t support non-trivial (2,1)-form flux, required to stabilize the bulk complex struc-

ture moduli and the axiodilaton, whilst preserving N = 1 supersymmetry. Future work

could investigate complex structure moduli stabilization in the RC - in particular, super-

symmetry breaking (3,0)-fluxes may present a way forward, and may lead to supersymmetry

broken at a high scale. One could also ask how Kähler moduli stabilization is affected, and

its cosmological implications. This could also impact on the stabilization of the axiodilaton

as well. In addition, the idea of the decoupling of closed string moduli from open string

moduli could be pursued.

Finally, an interesting broad question arising from this work is whether observable

values of r can be achieved in general from D3-brane inflation and to what extent one is

forced to consider objects such as wrapped D5-branes or other brane constructions in order

to produce a large value of r within a warped throat setup.
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A Backreaction for the D5-brane

The D5-brane can backreact on both the warp factor and the internal geometry, so we need

to estimate the size of each. Our strategy will be to first assume the backreaction on the

internal geometry is small, so that we have an ISD solution with warp factor H. We then

compute the backreaction on this warp factor. In finding that this is small, we use the

non-backreaction of the warp factor to compute the possible backreaction on the internal

geometry. We will find that this is small too, making our approach self-consistent.

We should begin with the full action for the SUGRA background and include terms in

the action for all localized sources, which include the stack of N D3-branes located at the

north pole of the finite S2, with no fluxes turned on, as well as the mobile probe wrapped

D5-brane with flux. The full action is then

S =
1

2κ2
10

S̃ −NT3

∫
M4

d4χ
√
−det(P4[gMN ]) +NT3

∫
M4

P4[C4]

− T5

∫
M4×Σ2

d6ξ
√
−det(P6[gMN + FMN ]) + T5

∫
M4×Σ2

P6 [C6 + C4 ∧ F2]

(A.1)

where S̃ is given by (2.1). In our WRC geometry, C6 = 0, B2 = 0 and we’ve turned on the

flux F2 = q
2 sin θ1dθ1 ∧ dφ1 on the D5-brane.

We now need to promote the worldvolume integrals to integrals over the full M10 space,

in order to vary this action and get the equations of motion. To do this we introduce the

following D3 charge densities

ρND3
3 =

N
√
g6
δ(r)δ(ψ)δ(θ2)δ(φ2)δ(θ1)δ(φ1) (A.2)

ρpD5
3 =

p√
h4
δ(r − r∗)δ(ψ − ψ∗)δ(θ2 − θ∗2)δ(φ2 − φ∗2) (A.3)

ρpqD5
3 =

p
√
g6

(2πα′)
(q

2
sin θ1

)
δ(r − r∗)δ(ψ − ψ∗)δ(θ2 − θ∗2)δ(φ2 − φ∗2) (A.4)

so that the stack of N D3’s are at the tip, y = 0, and the p-wrapped probe D5 is at

(r∗, ψ∗, θ∗2, φ
∗
2). The metric h4 is the warped metric on the 4D space transverse to the brane

in the extra 6 dimensions. We then define the 6D unwarped densities (with a tilde) via

ρ̃ND3
3 = H3/2ρND3

3 ρ̃pqD5
3 = H3/2ρpqD5

3 . since
√
g6 = H3/2

√
g̃6. (A.5)

For the 4D density, we have

ρ̃pD5
3 = HρpD5

3 since
√
h4 = H

√
h̃4. (A.6)

Note that the Hodge dual ?6 of the warped 6D metric g6 acts on a 6D warped density ρ as

?6ρ = ρ
√
g6 dr ∧ dψ ∧ dθ1 ∧ dφ1 ∧ dθ2 ∧ dφ2. (A.7)

We then have the full 10D action

S =
1

2κ2
10

S̃ − T3

∫
M10

d10x
√
−det(P4[gMN ])

√
g6ρ

ND3
3 + T3

∫
M10

C4 ∧ ?6ρ
ND3
3

− T5

∫
M10

d10x
√
−det(P6[gMN + FMN ])

√
h4ρ

pD5
3 + T5

∫
M10

C4 ∧ ?6ρ
pqD5
3 .

(A.8)
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We obtain the stress tensors from the DBI part of each local brane action. For the

stack of N D3-branes we get the following non-zero components for the stress-energy tensor

T 0
0 = T 1

1 = T 2
2 = T 3

3 = −T3ρ
ND3
3 , (A.9)

so that (
Tmm − Tµµ

)
ND3

= 4T3ρ
ND3
3 (A.10)

where we’ve used the shorthand

Tmm − Tµµ ≡
9∑

M=4

TM
M −

3∑
M=0

TM
M . (A.11)

Now we do a similar calculation for the p-wrapped D5-brane. Neglecting the O(α′2q2) flux

contribution, we get the following non-zero components for the stress-energy tensor

T 0
0 = T 1

1 = T 2
2 = T 3

3 = T θ1θ1 = T φ1φ1 = −T5ρ
pD5
3 (A.12)

so that
(
Tmm − Tµµ

)
pD5

= 2T5ρ
pD5
3 . (A.13)

Varying the full 10D action with respect to C4 gives the Bianchi identity

dF̃5 = H3 ∧ F3 + 2κ2
10

(
T3 ?6 ρ

ND3
3 + T5 ?6 ρ

pqD5
3

)
. (A.14)

Using the warped background ansatz, this becomes

∇̃2α = ie2AGmnp ?6 G
mnp

12Imτ
+ 2e−6A∂mα∂

me4A + 2κ2
10e

2A
(
T3ρ

ND3
3 + T5ρ

pqD5
3

)
. (A.15)

The trace of the Einstein equations can be written [10]

∇̃2e4A =
κ2

10

2
e2A

[
1

4
(Tmm − Tµµ )ND3 +

1

4
(Tmm − Tµµ )pD5

]
+ e2AGmnpG

mnp

12Imτ
+ e−6A(∂mα∂

mα+ ∂me
4A∂me4A).

(A.16)

Combining (A.15) and (A.16) gives

∇̃2(e4A − α) =
e2A

24Imτ
|iG3 − ?6G3|2 + e−6A|∂(e4A − α)|2

+ 2κ2
10e

2A

(
1

4
(Tmm − Tµµ )ND3 − T3ρ

ND3
3

)
+ 2κ2

10e
2A

(
1

4
(Tmm − Tµµ )pD5 − T5ρ

pqD5
3

)
.

(A.17)

The first two terms on the r.h.s. are non-negative. The third term actually vanishes

by (A.9), but note that this is a special result for D3-branes. The fourth term for the
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D5-brane doesn’t vanish, so we need to work out its size. It can be written in terms of the

warp factor as

2κ2
10H−1/2

(
1

4
(Tmm − Tµµ )pD5 − T5ρ

pqD5
3

)
. (A.18)

In order to estimate its size we need the warp factor. For the moment let’s assume (A.18)

is small so that we can ignore it. We’ll come back to the size of this term after we have

computed the backreaction on the warp factor. This allows us to begin with the usual ISD

solution G− = 0 = Φ−.

Backreaction on the warp factor. We now compute the backreaction on the warp

factor. We write the trace of Einstein’s equations (A.16) in the form

−∇̃2e−4A = 2κ2
10T3ρ̃

ND3
3 + κ2

10T5H1/2ρ̃pD5
3 . (A.19)

We begin with the warp factor arising as the Green’s function on the WRC for a stack of

N D3’s placed at the north pole θ2 = 0 of the S2 at r = 0 to get H. The result near the

tip r = rmin, but away from the north pole, is given by

H =
4πgsNl

4
s

r4
min

. (A.20)

We now consider corrections to this from modifying the Green’s function equation to (A.19).

We will compute the size of each term on the r.h.s. of (A.19), and find that the dominant

one is from the stack.

We want to compare factors in front of dimensionless delta functions, and since r has

dimensions of length, we should look at dimensionless ρ, and use the scaling property of

delta functions δ(r) = 1
3uδ(ρ). Let’s define the following combinations of dimensionless

delta functions

δ(M6) ≡ δ(ρ)δ(ψ)δ(θ2)δ(φ2)δ(θ1)δ(φ1) (A.21)

δ(M∗4 ) ≡ δ(ρ− ρ∗)δ(ψ − ψ∗)δ(θ2 − θ∗2)δ(φ2 − φ∗2). (A.22)

Then the first term on the r.h.s. of (A.19) coming from the stack is

2κ2
10T3ρ̃

ND3
3 = 3(2π)5 Ngsl

4
s

r3
minu

3 sin θ1 sin θ2
δ(M6). (A.23)

The second term in (A.19) coming from the p-wrapped D5-brane probe, evaluated at

r ≈ rmin � u is

κ2
10T5H1/2ρ̃pD5

3 =
(2π)3

16

25Ngsl
4
s

rminu5 sin θ2
δ(M∗4 ), (A.24)

using T5 = [(2π)5gsl
6
s ]
−1. We see that the probe D5-brane source term for the warp factor

is much smaller than that sourced by the stack of N D3-branes, as long as(rmin

u

)2
� 48

25
(2π)2 1

sin θ1
≈ 76

sin θ1
, (A.25)

and since sin θ1 ≤ 1, the r.h.s. of (A.25) is greater than 76. So our p-wrapped D5-brane

can be neglected in the warp factor equation since we have rmin � u.
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Backreaction on the internal geometry. Now that we’ve shown that the probe ap-

proximation for the warp factor is self-consistent, we can go back to the equation for the

internal geometry to check the validity of assuming (A.18) is small.

Using the trace of the energy momentum tensor for the D5-brane given in (A.13) and

the unwarped density in (A.5) gives (A.18) to be

2κ2
10T5H−1/2

(
1

2
H−1ρ̃pD5

3 −H−3/2ρ̃pqD5
3

)
. (A.26)

Now that we have the warp factor, we can now check the size of each term individually, and

check that they are small relative to the l.h.s. of (A.17), which scales as ∇̃2Φ− = O(δ/r2
min)

in the small r region, and with Φ− = e4A−α = δ which is small. The first part of (A.26) is

κ2
10T5H−3/2ρ̃pD5

3 =
25π

32

1

Ngsl4s

r7
min

u5 sin θ2
δ(M∗4 ). (A.27)

For this term to be negligable, we need to impose

γ � 1 (A.28)

where γ ≡ β

δ
, β ≡ 25π

32

1

Ngsl4s

r9
min

u5 sin θ2
. (A.29)

This may be possible to arrange for given values of rmin � u in the SUGRA limit of

large N . Note that ls � u is required for the curvature of the WRC geometry to not be too

large - necessary for the SUGRA approximation. We also work in the perturbative regime

of small gs. There is no restriction on the size of rmin/ls, as rmin isn’t a curvature term,

it’s just a coordinate distance in the WRC, and is set by the minimum of the potential.

We see that as long as we stay away from θ2 = 0, (A.28) can be satisfied for a suitable

potential. Note that this condition (A.28) is more stringent than the condition from the

backreaction on the warp factor.

The data from table 1, together with the values of p in (3.44) and q in (3.54) gives

γ =
25π

32δ

1

Ngsl4s

r9
min

u5 sin θ2
(A.30)

≈ 8× 10−8 � 1 (A.31)

as required.

The second term in (A.26) is

−2κ2
10T5H−2ρ̃pqD5

3 = −25π

32

1

Ngsl4s

r7
min

u5 sin θ2

[
48π1/2 q√

Ngs

]
δ(M∗4 ) (A.32)

which is small compared to δ/r2
min if

q � 10−2γ−1
√
Ngs, (A.33)

which for the q in (3.54) requires

1.2× 10−15 N3/2

g
1/2
s δB

(
u

ls

)4( u

rmin

)2

� 10−2γ−1
√
Ngs. (A.34)
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Substituing γ = β/δ and tidying up means we require

1

Bg2
sδ

2 sin2 θ2

u

ls

(
rmin

ls

)7

� 3.4× 1012 (A.35)

which is independent of N . Putting in the data from table 1 gives

1

Bg2
sδ

2 sin2 θ2

u

ls

(
rmin

ls

)7

∼ 5× 106 � 3.4× 1012. (A.36)

It’s interesting to note that this condition on q from backreaction is less restrictive than

that coming from our approximation for F in (3.40), which we used to get a Planckian

decay constant. This was shown to be satisfied for our data in (3.57). It seems that setting

a Planck scale decay constant together with a hierarchically smaller GUT scale of inflation

is a more delicate procedure than maintaining control over the backreaction from the flux

of a wrapped brane.

B Corrections from the 4D Ricci scalar

We now consider the effect of a non-negligible 4D Ricci scalar R4. The solution to the full

Poisson equation (2.21) is denoted Φ−. For a 4D quasi-de Sitter spacetime, we have that

∇̃2Φ− = R4 ≈ 12H2 ≈ 4V

M2
p

≈ ϕ(y) + λΦ−. (B.1)

By the Friedmann equation, H2 = V/(3M2
p ), where we have seperated the Φ− dependence

from the rest of the potential. The potential V , and hence ϕ(y) and λ, depend on the

choice of probe D-brane.

For a probe D3-brane, we have ϕ(y) = V0, a constant and λ = 4T3/M
2
p . This can be

solved exactly, in the region rmin � r � rUV, in which case the geometry of the SC is

relevant [35]. The solutions are modified Bessel functions with argument x ≡
√
λr. When

these are expanded for small x, a mass term appears as the leading curvature correction,

leading to the eta problem as seen from the 10D supergravity perspective.

Note that in [43] the Ricci scalar term was omitted from the equation of motion for

Φ−. However, it was argued that a mass term should be added to the final potential. The

origin of this mass term is this curvature.

We now consider the case of a probe D5-brane moving in the WRC throat, in which case

ϕ(y) is not constant. The solution to (B.1) in this case can be derived using the expansion

method developed in [35], which was originally used for the case where the perturbations

to Φ− come from fluxes and curvature at leading order. The expansion takes the form

Φ− =
∞∑
n=0

Φ
[n]
− (B.2)

where Φ
[0]
− (y) = Φ−(y) + Φh(y) (B.3)

and Φ
[n]
− (y) = λ

∫ √
g̃′6d

6y′G(y; y′)Φ
[n−1]
− (y′), (B.4)
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where Φh(y) is the solution to the homogeneous Laplace equation, and Φ−(y) is sourced

by ϕ(y) via

Φ−(y) ≡
∫ √

g̃′6d
6y′G(y; y′)ϕ(y′). (B.5)

In the above, G is the Green’s function satisfying

∇̃2
yG(y; y′) =

δ(y − y′)√
g̃′6

. (B.6)

The expansion (B.2) can be truncated if λr2 < 1, in which case the leading order term

is from Φ
[0]
− . We will now calculate the Φ−(y) term for a D5-brane in the WRC. We will

find that the leading correction from the Ricci scalar is subdominant to ϕ(y) in the small

ρ limit, contributing a term of only at order ρ4, which is small.

Using our chosen p and q we get

ϕ(y) =
4

M2
p

4πu2pT5H−1/2 ≈ 180

u2
ρ2 (B.7)

λ =
4

M2
p

4π2l2sT5pq ≈ 4
M4

GUT

δM2
p

≈ 0.2

δu2
≈ 20

u2
(B.8)

where we’ve used that MGUT = 4× 10−3Mp, and

M2
p =

Nu2

2(2π)4gsl4s
≈ 2× 108

u2
(B.9)

for our data. Then we have

λM2
p /4 ≈ 100M4

GUT. (B.10)

We note that in the potential there is the term

M2
p

4
ϕ(ρ) ≈M4

GUT880ρ2 (B.11)

coming from the non-cancellation of DBI and CS terms.

The expansion of Φ−(y) in (B.2) can be truncated if λr2 � 1. In our case, we are

interested in probing the r ∼ rmin ∼ u/50 region, in which case λr2 ≈ 20/2500 ≈ 8×10−3 �
1. Then the leading order term is Φ

[0]
− . We have chosen Φh, and so now we need to calculate

Φ−. To compute this we need to calculate the Green’s function and integrate (B.5) to find

the leading order small ρ behaviour of Φ−.

We can calculate the Green’s function using the eigenfunctions, YL(Z), of the Laplacian

on T 1,1. The delta function on the RC splits into a radial delta function and the delta

function on T 1,1,

δ(y − y′) = δ(r − r′)
i=5∏
i=1

δ(Zi − Z ′i). (B.12)
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The delta function on the angular parts can be expanded in the YL(Z)∏i=5
i=1 δ(Zi − Z ′i)√

g̃5
=
∑
L

YL(Zi)Y
∗
L (Z ′i) (B.13)

which have the conventional normalisation∫
d5Zi

√
g̃5Y

∗
L (Zi)YL′(Zi) = δLL′ (B.14)

where √
g̃5 ≡

√
g̃6√
g̃r

=
r3(r2 + 6u2)√

g̃r

sin θ1 sin θ2

108
=

sin θ1 sin θ2

108
. (B.15)

The YL are given by

YL(Zi) = Jl1,m1,R(θ1)Jl2,m2,R(θ2)ei(m1φ1+m2φ2+Rψ/2) (B.16)

where JΥ
li,mi,R

(θi) = NΥ(sin θi)
mi

(
cot

(
θi
2

))R/2
×

2F1

(
−li +mi, 1 + li +mi; 1 +mi −R/2; sin2

(
θi
2

)) (B.17)

and JΩ
li,mi,R

(θi) = NΩ(sin θi)
R/2

(
cot

(
θi
2

))mi

×

2F1

(
−li +R/2, 1 + li +R/2; 1 +R/2−mi; sin2

(
θi
2

))
.

(B.18)

The Υ solution is regular for mi ≥ R/2, while Ω is regular for mi ≤ R/2. NΥ and NΩ

impose the normalisation (B.14).

In order to obtain single-valued regular functions, the charges must satisfy

• l1 & l2 both integers or both half-integers

• m1 ∈ {−l1, ..., l1} and m2 ∈ {−l2, ..., l2}

• R ∈ Z and
R

2
∈ {−l1, ..., l1} and

R

2
∈ {−l2, ..., l2}.

The Green’s function can be expanded in these YL, as

G(y; y′) =
∑
L

GL(r; r′)YL(Zi)Y
∗
L (Z ′i). (B.19)

Then the Φ−(y) term is

Φ−(y) =
∑
L

YL(Zi)

∫
d5Z ′i

sin θ′1 sin θ′2
108

Y ∗L (Z ′i)

∫ √
g̃r
′dr′GL(r; r′)ϕ(r′). (B.20)

We now prove that if ϕ(y) has no angular dependence, then Φ−(y) only has a contribution

from the singlet L = (0, 0, 0, 0, 0), due to the vanishing of the angular integral∫
d5Z ′i

sin θ′1 sin θ′2
108

Y ∗L (Z ′i) (B.21)
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for other L.

To see this, note that because 0 ≤ ψ < 4π, we must have R = 0, for
∫ 4π

0 eiRψ/2 6= 0.

For R = 0, we must have that l1, l2 are both integers. Hence m1,m2 must both be integers.

Similarly, in order for
∫ 2π

0 eimiφi 6= 0, for mi integers, we must have m1 = 0 = m2. For

mi = R = 0, the Υ and Ω solutions coincide, so we drop these labels. The form of the θi
dependence will simplify to the Legendre polynomials Pli

Jli,0,0 = N2F1

(
−li, 1 + li; 1; sin2

(
θi
2

))
(B.22)

= NPli(cos θi). (B.23)

To see this, note that the Jacobi Polynomials P
(α,β)
n (x) are defined in terms of the

hypergeometric function by

P (α,β)
n (z) =

(α+ 1)n
n!

2F1

(
−n, 1 + n+ α+ β; 1 + α;

1

2
(1− z)

)
(B.24)

where (α+ 1)n is the rising Pochhammer symbol. We have the special case n = li, α = 0 =

β, and z = cos θi, for which the Jacobi polynmials reduce to the Legendre polynomials

P (0,0)
n (z) = Pn(z) (B.25)

and the Pochhammer symbol is (1)n = n!, so that

Jli,0,0 = NPli(cos θi). (B.26)

We then evaluate the integral using the orthogonality of Legendre polynomials, noting that

P0(z) = 1, and making the substitution z = cos θi∫ π

0
dθi sin θiPli(cos θi) =

∫ 1

−1
Pli(z)dz (B.27)

= δ0li (B.28)

which vanishes unless li = 0. Thus the only contribution to (B.21) is from the singlet

L = (0, 0, 0, 0, 0). This has a constant eigenfunction Y{0}(Zi) = α, where α is set by the

normalization (B.14), giving∫
d5Zi

sin θ1 sin θ2

108
|α|2 = 1 (B.29)

⇒ |α| =
√

27

16π3
. (B.30)

Now looking at (B.20), the only non-vanishing contribution comes from the L = {0} term,

which has angular part

Y{0}(Zi)

∫
d5Z ′i

sin θ′1 sin θ′2
108

Y ∗{0}(Z
′
i) = |α|2 ∗ |α|−2 = 1. (B.31)
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We then just need to work out the radial integral

Φ−(y) =

∫ √
g̃r
′dr′G{0}(r; r

′)ϕ(r′). (B.32)

= (3u)6

∫ √
g̃ρ
′dρ′G{0}(ρ; ρ′)ϕ(ρ′). (B.33)

For each GL(r; r′) in (B.19), we have the radial equation on the RC

1

r3(r2 + 6u2)
∂r(r

3(r2 + 9u2)∂rGL)

−
[

6(l1(l1 + 1)−R2/4)

r2
+

6(l2(l2 + 1)−R2/4)

r2 + 6u2
+

9R2/4

κr2

]
GL =

δ(r − r′)
r3(r2 + 6u2)

(B.34)

which for dimensionless ρ becomes

1

ρ3(ρ2 + 2/3)
∂ρ(ρ

3(ρ2 + 1)∂ρGL)

−
[

6(l1(l1 + 1)−R2/4)

ρ2
+

6(l2(l2 + 1)−R2/4)

ρ2 + 2/3
+

9R2/4

κρ2

]
GL =

δ(ρ− x)

(3u)4ρ3(ρ2 + 2/3)
.

(B.35)

Here we’ve written ρ′ as x, for clarity of variables in the following. The good news

about (B.35) is that we can solve it exactly for L = {0} on the whole of the RC, including

the region of small ρ. For L = {0} we just have

∂2
ρG{0} +

(
5ρ+ 3ρ−1

ρ2 + 1

)
∂ρG{0} =

δ(ρ− x)

(3u)4
. (B.36)

The solution is

G{0}(ρ;x) =
1

(3u)4

{
−(2x2)−1 − log x+ 1

2 log(x2 + 1) if ρ ≤ x
−(2ρ2)−1 − log ρ + 1

2 log(ρ2 + 1) if ρ ≥ x.
(B.37)

Viewed as a function of ρ, the ρ ≤ x part of the solution is just a constant, fixed by

continuity of G{0}, while the ρ ≥ x part is the non-constant solution to the homogeneous

equation, regular at infinity.

Now we do the Green’s function integral for the L = {0} mode. The integral is done

in two pieces, the first is for x ≤ ρ∫ ρ

0
x5

(
x2 +

2

3

)(
− 1

2ρ2
+

1

2
log
(
ρ2 + 1

)
− log ρ

)
dx

= − 1

144
ρ4
(
9ρ2 + 8

) [
2ρ2 log ρ− ρ2 log

(
ρ2 + 1

)
+ 1
] (B.38)

the second is for x ≥ ρ∫ 1/3

ρ
x5

(
x2 +

2

3

)(
− 1

2x2
+

1

2
log
(
x2 + 1

)
− log x

)
dx

=
1

23328

[
162 log

(
9
(
ρ2 + 1

))
+ 162

(
9ρ2 + 8

)
ρ6
(
2 log ρ− log

(
ρ2 + 1

))
+ 81

(
18ρ4 + 25ρ2 − 2

)
ρ2 − 9− 160 log(10)

]
.

(B.39)
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Putting these together gives the exact result

Φ−(y) = (3u)6

∫ √
g̃ρ
′dxG{0}(ρ;x)

180

u2
x2 =

5

72

[
81
(
9ρ2 − 2

)
ρ2 + 162 log

(
9
(
ρ2 + 1

))
− 9− 160 log(10)

]
(B.40)

which, for small ρ has leading order behaviour

Φ−(y) ≈ −1.4905 + 45ρ4 +
15

4
ρ6 +O(ρ8). (B.41)

Using (B.10), we see that in the potential will appear the term 100M4
GUT 45ρ4 =

M4
GUT 4500ρ4, as in (3.64). This doesn’t contribute quantitatively in the small ρ limit.

The result that only the L = {0} mode contributes to Φ−(y) means that Φ−(y) =

Φ−(r) is purely radial. If the homogeneous solution Φh(y) is also purely radial, then

Φ
[0]
− (y) is also purely radial. The results of the above can then be applied so that we would

have all Φ
[n]
− (y) purely radial since the integrals over the YL would vanish for L 6= {0}.

However, in our case, we have angular dependence in Φh(y) for the form of the Natural

Inflation potential, which would induce angular dependence in Φ
[n]
− (y) for higher n.

C Wrapped D5-branes and the b-axion

Wrapped D5-branes can source a potential for the NS-NS axion, b, which arises from the

integral of the 2-form field B2 over a 2-cycle in a type IIB compactification. The application

of this to inflation was investigated in the original axion monodromy models, for example

in [76], where the couplings of the axion are generated just from the DBI part of the D5-

brane action. Our model of natural inflation involves a wrapped D5-brane giving rise to

a potential for this field, and so we should consider whether these b-axions are relevant to

inflation.

In our case, we can choose to turn on a worldvolume B2 flux of strength b along the

wrapped 2-cycle so that its pullback has the following non-zero components P6[B2]θ1φ1 =
b
2 sin θ1. Then a potential for b enters via the function F in (3.25), with 2πα′q shifted to

2πα′q+ b. The same analysis leading to natural inflation with a Planckian decay constant

follows as long as we make the choice b<∼ 2πα′q, together with the upper bound on q coming

from (3.40). In contrast, models of axion monodromy inflation assume that b� l initially,

where l is the size of the wrapped S2. In this way the b-axion acquires a linear potential

effectively from expanding the F term leading to large field inflation. In our model this

would mean taking the 2πα′q + b term to be the dominant factor inside F which is the

opposite of what we have assumed. Ultimately this is a choice of initial condition on the

value of b. Our choice of initial condition is that b ≤ 2πα′q so that 2πα′q + b is still sub-

dominant to the warp factor term in F when the brane is near the tip. As such b will not

play a role in generating significant inflation and we may ignore it.

Finally, in more recent axion monodromy models [48] the monodromy is induced not by

the DBI part of the wrapped D5-brane action, instead through background 3-form fluxes

– 36 –
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coupling to the b-axion associated with B2 in the CS part of the action. However, our

model is constructed using the WRC in which SUSY preserving 3-form fluxes are absent

and so no such monodromy is induced either. Turning on such fluxes may be of interest in

discussing moduli stabilisation mechanisms within the WRC which is something that we

would like to investigate further.

The conclusion of this appendix is that although the inclusion of wrapped D5-branes

in our model could source potentials for b-axions, and hence complicate the inflationary

picture, our assumed initial conditions on the size of b ensure that it will not contribute

towards the inflationary dynamics. However, more complicated models could relax these

initial conditions.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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