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Abstract/Summary 26 

The landscape of cancer genetics in gynaecological oncology is rapidly changing. The traditional 27 

family-history based approach has limitations and misses >50% mutation carrier. This is now being 28 

replaced by population-based approaches. The need for changing the clinical paradigm from family-29 

history based to population based BRCA1/BRCA2 testing in Ashkenazi Jews is supported by data that 30 

demonstrates population-based BRCA1/BRCA2 testing does not cause psychological harm and is cost 31 

effective. This article covers various genetic testing strategies for gynaecological cancers, including 32 

population-based approaches, panel and direct-to-consumer testing as well the need for innovative 33 

approaches to genetic counselling. Advances in genetic-testing technology and computational 34 

analytics have facilitated an integrated systems medicine approach, providing increasing potential 35 

for population-based genetic testing, risk stratification and cancer prevention. Genomic information 36 

along-with biological/computational tools will be used to deliver predictive, preventive, personalized 37 

and participatory (P4) and Precision medicine in the future. 38 

 39 

 40 
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Introduction  46 

 47 

The traditional approach to genetic testing for high penetrance ovarian, breast and endometrial 48 

cancer gene mutations has involved testing affected individuals from high risk families through high 49 

risk cancer genetic clinics following intensive face to face genetic counselling. This family-history (FH) 50 

driven approach requires individuals and general practitioner’s to recognise and act on a significant 51 

FH. Mutation carriers, who are unaware of their FH, who do not appreciate the risk/significance of 52 

their FH, who are not proactive in seeking advice, and those who lack a strong FH (eg. from small 53 

families) get excluded from this process. It is not surprising that FH based prediction models are only 54 

moderately effective at predicting the presence of a BRCA1/BRCA2 mutation and have poor negative 55 

likelihood ratios for predicting their absence.[1] Their performance of these models falls further in 56 

population based cohorts when comparing BRCA1/2 carrier mutation rates to those in high risk 57 

families.[2] We[2] and others[3, 4] have shown that the FH based approach misses over half the at 58 

risk mutation carriers. Similar findings where significantly large proportion of identified mutation 59 

carriers lack a strong FH of cancer have been reported in testing of breast cancer (BC), ovarian 60 

cancer (OC) and endometrial cancer (EC) case series unselected for FH.[5-11] Furthermore, our 61 

analysis of data from London genetic testing laboratories indicates that only 12% of the identifiable 62 

BRCA1/BRCA2 carriers in the Ashkenazi Jewish (AJ) population have been identified over 10 years by 63 

the current family history based approach. Modelling of the current rates of detection in the NHS 64 

(National Health Service) indicates that it will take around 45 years to identify the carriers in the 65 

London Jewish population who are detectable on the basis of a family history, and that this will still 66 

miss half the people at risk. Identified BRCA1/2 and mismatch repair mutation carriers can opt for 67 

risk reducing salpingo-oophorectomy (RRSO) to reduce their ovarian cancer risk;[12, 13] 68 

MRI/mammography screening, risk-reducing mastectomy (RRM) [14], or chemoprevention with 69 

selective estrogen receptor modulators (SERM) to reduce their breast cancer risk;[15] preventive 70 

hysterectomy to reduce endometrial cancer risk;[16] as well as pre-implantation genetic diagnosis 71 



4 
 

(PGD).[17] Given the effective options available for ovarian, endometrial and breast cancer risk 72 

management and prevention in these high risk women, the points above raise serious questions 73 

about the adequacy of the current FH-based approach and suggest that a move towards new 74 

approaches for risk prediction and case identification are justified. All of the limitations described 75 

above can be overcome by a population based approach to genetic testing. 76 

 77 

Principles of Population Testing for Genetic Cancer 78 

The original 10 principles for population screening were proposed by Wilson and Jungner in 79 

1968.[18] The criteria proposed by the United Kingdom National Screening committee (UKNSC)[19] 80 

for ‘screening for late onset genetic disorders: breast and ovarian cancer’ are based on these 81 

principles. The Wilson and Jungner criteria have been modified over the years by a number of 82 

others[20-22] and adapted to genetic susceptibility for disease. Khoury et al[23] and Andermann et 83 

al[24] have presented a synthesis of emerging criteria. Table-1 summarises the published criteria 84 

into three relevant categories (a) The condition and the population, (b) the screening test and (c) the 85 

screening programme. Common and unique features of UKNSC breast and ovarian cancer[19], 86 

Khoury[23] and Andermann[24] criteria are highlighted in Table-1. Maximum overlap between the 3 87 

criteria relate to the condition and the population. Andermann criteria do not cover issues related to 88 

the screening test per se but provide more details on requirements for programme implementation. 89 

UKNSC breast and ovarian cancer criteria do not adequately cover performance of the screening 90 

test, prevalence, acceptability, cost effectiveness and evaluation of programme implementation. 91 

Criteria by Khoury et al appear most comprehensive and overlap both UKNSC breast & ovarian 92 

cancer and Andermann criteria.  93 

 94 

The above published criteria do not address some key issues for population screening of cancer gene 95 

mutations . It is essential that the penetrance of the gene be well established through validated 96 

studies before being incorporated into a screening programme. Initial data on risk estimates for new 97 
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genetic discoveries may be based on small numbers with wide confidence intervals and at times do 98 

not get confirmed in validation studies. Another important issue is understanding the impact of 99 

genetic testing on psychological health and quality of life, particularly on a population basis. While 100 

there is adequate data for high risk populations, data on this in a low-risk non-Ashkenazi Jewish 101 

population are lacking. This is needed to make an appropriate assessment balancing both risks and 102 

benefits of screening. It is important for prospective well designed implementation studies on 103 

population-based genetic testing to be undertaken prior to implementing a screening programme. 104 

Downstream management pathways should be established for at risk individuals before programme 105 

implementation. As one gene may affect more than once cancer, these should also include links to 106 

management options for other cancers at risk from one mutation, for e.g., colorectal cancer in 107 

mismatch repair mutations/ Lynch Syndrome. A population based genetic-screening programme 108 

needs to also establish and outline guidelines covering ethical and legal responsibilities such as 109 

discrimination, data protection, reporting requirements, disclosure or information sharing with 110 

family and health care providers,  sample and data storage and ownership as well as licensing/patent 111 

issues that may arise. In Table-2 we present an amalgamation of published criteria as well as some 112 

additional criteria adapted for population-based genetic testing for gynaecological cancer gene 113 

mutations. The additional criteria address some of the lacunae in previously published criteria 114 

described above.  115 

 116 

Testing in high-prevalence populations: The Ashkenazi Jewish Model 117 

The Ashkenazi Jewish (AJ) population has been used as a ‘population model’ and BRCA1/BRCA2 118 

founder mutations as a ‘disease model’, to investigate the pros and cons of a population based 119 

approach for testing for high penetrance dominant cancer gene mutations. BRCA1/BRCA2 mutations 120 

are 10-20 times more common in the AJ population (1 in 40 prevalence rate)[2, 3, 25, 26] compared 121 

to the general non-AJ population. Three BRCA1/BRCA2 mutations are commonly found in the 122 

Ashkenazi Jewish population and are called founder mutations:  in BRCA1 exons 1 and 20  123 
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(185delAG(c.68_69delAG), 5382insC(c.5266dupC)) and a segment of BRCA2 exon 11 124 

(6174delT(c.5946delT). In addition almost all the BRCA1/BRCA2 associated risk is explained by three 125 

founder mutations making testing easier and cheaper. We compared ‘population’ and ‘FH based’ 126 

approaches for BRCA1/BRCA2 testing in the Genetic Cancer Prediction through Population Screening 127 

(GCaPPS) randomised trial in the North London AJ community.[2] Participants were randomised to 128 

FH based (only individuals fulfilling strict family history criteria used in clinical genetics underwent 129 

genetic testing) and population based (all individuals irrespective of FH underwent genetic testing) 130 

testing arms. We found no difference in anxiety, depression, quality-of-life, health anxiety, distress, 131 

uncertainty and overall experience of genetic testing between FH and population-based arms. This 132 

indicates that genetic testing in a low risk population does not harm quality-of-life or psychological 133 

well-being, or cause excessive health concerns and outcomes are similar to those found in high risk 134 

populations seen in cancer genetics clinics.[27-29] Population based BRCA1/BRCA2 testing also leads 135 

to an overall reduction in anxiety, distress, and uncertainty,[2, 30, 31] though higher levels of cancer 136 

related distress in those testing positive has been reported in a single arm study.[30] While pre-test 137 

and post-test counselling was provided to all participants in the GCaPPS study, mutation carriers 138 

identified in the Israeli and Canadian studies received only post-test counselling. Data from the 139 

GCaPPS trial[2] as well as single arm Canadian[4, 30] and Israeli[3] studies confirm high acceptability 140 

as well as satisfaction with population testing amongst both men and women in the Jewish 141 

population. 142 

 143 

A key issue of concern raised by many has been that mutation penetrance with population 144 

ascertainment may be less than the penetrance estimates obtained from families attending cancer 145 

genetics clinics, which can range from 81-88% for BC and 21-65% for OC.[5, 32-34] This has been 146 

addressed by:  147 

(a) Penetrance estimates (56-64% for BC and 16% for OC) obtained from the population based 148 

Washington-Ashkenazi-Study which have been corrected for ascertainment.[35-38]  149 
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(b) Published meta-analysis integrating population and cases series based data reporting risks of 43-150 

67% for BC and 14-33% for OC.[39]  151 

(c) More recently high penetrance estimates (40-60% for BC and 53-62% for OC) irrespective of FH 152 

obtained in a large Israeli population study which corrected for previous potential biases in 153 

estimates as well as ascertainment through female carriers.[3]  154 

These data indicate that breast/ovarian cancer penetrance for AJ BRCA1/BRCA2 carriers identified 155 

through population testing and those without a strong FH are also ‘high’, though as expected these 156 

estimates are a bit lower than those obtained from individuals attending cancer genetic clinics.  157 

 158 

A health-economic evaluation is essential to balance costs and benefits in the context of setting 159 

public health policy for genetic testing for BRCA1/BRCA2 mutations. Our cost-effectiveness analysis 160 

suggests that population testing for BRCA1/BRCA2 mutations in AJ women >30 years reduces breast 161 

and ovarian cancer incidence by 0.34% and 0.62% and saves 0.101 more Quality adjusted life-years 162 

(QALYs) leading to 33 days gain in life-expectancy. We found population-based testing is extremely 163 

cost-effective compared to traditional FH based approach, with a discounted incremental cos-164 

effectiveness ratio (ICER) of ‘-£2079/QALY’.[40] This is well below the cost-effectiveness threshold 165 

used by NICE of £20,000/QALY.[41] The overall impact of such a strategy in the UK would be a 166 

reduction in ovarian cancer cases by 276 and breast cancer cases by 508, at a discounted cost saving 167 

of £3.7 million. A strength of this study is the extensive sensitivity analyses to explore model 168 

uncertainty. This included a deterministic sensitivity analysis in which all model parameters were 169 

varied widely at the extremes of their confidence intervals or range as well as a probabilistic 170 

sensitivity analysis in which all variables are varied simultaneously across their distributions. Despite 171 

a wide range of scenarios, both deterministic and 94% of simulations on probabilistic sensitivity 172 

analysis suggested that population-screening is highly cost-effective compared with the current FH 173 

based testing.[40] It’s noteworthy that a cost-saving is obtained after implementing population-174 

screening among UK AJ women over 30 years old. There are not many health care interventions that 175 
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save both lives and money! This has important implications for clinical care, population/public 176 

health, as well as providers/commissioners of health care.  177 

 178 

Successful population based mass screening strategies for logistics, costs and acceptability are best 179 

delivered outside a hospital setting. Genetic testing in a population screening programme should 180 

also be implemented outside the hospital setting. In addition, some sections/groups of the 181 

population for reasons of confidentiality do not wish to be seen going to a hospital. We have 182 

demonstrated successful recruitment to such a program using a community/high-street based 183 

model[2] and Gabai-Kapara et al[3] have successfully undertaken testing through health screening 184 

centres/ national blood banks.  185 

 186 

Implications of the AJ Model 187 

There is now good evidence to show that population testing for BRCA1/BRCA2 mutations in 188 

Ashkenazi Jews fulfils the necessary principles for population screening for genetic susceptibility of 189 

disease listed above (Table-2). Hence, there is a pressing need to change the current clinical 190 

paradigm of FH based testing for BRCA1/BRCA2 founder mutations in the Jewish population to a 191 

systematic population based approach. This has recently been advocated by us and other health 192 

professionals[40, 42] as well as charity and patient groups.[43] Such a strategy if implemented can 193 

save both lives and money. The issues that remain to be addressed are related to logistics and 194 

control which may vary by country and/or health care systems. Well defined downstream 195 

management pathways involving general practitioners, clinical genetics teams, breast surgeons and 196 

gynaecologists need to be further expanded or if necessary developed in countries where these are 197 

not yet established. 198 

 199 

Findings from the AJ model, while of direct importance for the AJ population, cannot be directly 200 

extrapolated to the rest of the general (non-Jewish) population. These may however, have 201 
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implications and be of relevance for other populations with founder mutations[44] across the world. 202 

With the falling cost of testing, as well as rising awareness, understanding, acceptance and demand 203 

for genetic testing in society, this is becoming an increasingly important area of study and 204 

investigation. Khoury et al highlighted a framework with four phases of translational research to 205 

guide the applicability of genomic  discoveries for prevention in health care,[45] and estimated that 206 

only 3% of research has been directed at downstream clinical implementation. Clearly, a lot more 207 

research is needed to assess feasibility, acceptability, impact on psychological health, cost 208 

effectiveness and applicability of such an approach in lower prevalence general populations.  209 

 210 

Testing of Population based Cancer Case Series 211 

UK[46] and other international guidelines[31, 47-49] recommend that BRCA1/2 testing should be 212 

offered at a ≥10% carrier probability/risk threshold. Recently published case series data indicate that 213 

BRCA1/BRCA2 mutations are present in 11%-23% of non-mucinous epithelial OC.[50-56] 214 

Identification of carriers has prognostic implications, and offers opportunities to access new 215 

treatment options like PARP inhibitors and enter novel clinical trials,[57, 58] as well as having 216 

implications for predictive testing and cancer prevention for family members. Hence, a number of 217 

guidelines now recommend testing for all non-mucinous epithelial OC as well as triple negative 218 

breast cancers,[48] and a number of centres in North America and some in Europe have adopted this 219 

practice. However, despite growing demand from patient groups and charities it is not yet uniformly 220 

available in clinical practice, including across most parts of England and Europe.  221 

Another example of population based case series ascertainment is the identification of Lynch 222 

Syndrome (LS). 1.6-5.9% patients with endometrial cancer (EC)[11, 59-61]  and 1.8-3.7%[62] with 223 

colorectal cancer (CRC) have mismatch repair (MMR) gene (MLH1/MSH2/MSH6/PMS2) 224 

mutations/LS. Currently Amsterdam-II[63] & Bethesda Criteria[64] are widely used to identify LS 225 

individuals.  Molecular immuno histochemistry (IHC) & microsatellite instability (MSI) analysis for ‘all’ 226 

EC and CRC cases is more effective at identifying MMR carriers/LS than Amsterdam-II/Bethesda or 227 
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modified age linked criteria alone.[62, 65-67] Reflex testing of tumour tissue is followed by pre-test 228 

counselling/ informed consent for those selected for genetic testing following IHC/MSI analysis. Such 229 

an approach would also benefit non serous epithelial OC, 20% of which are MMR deficient.[68]  230 

Despite publication of guidelines and policy recognition,[49, 69] lack of funding is currently 231 

preventing harmonised implementation of the population based cancer case series approach. This is 232 

greatly compounded by limited awareness and knowledge of these issues amongst treating 233 

clinicians, pathologists, general practitioners and the population at large. Implementation also has 234 

significant implications for expansion in cancer genetics services and downstream management 235 

pathways.  Nevertheless, as logistics for delivery get ironed out and awareness and acceptance 236 

increases, its applicability will increase and become widespread. This approach is here to stay and 237 

will expand to other relevant cancers and gene mutations.   238 

Panel Testing and Potential for Population based Risk Stratification 239 

The genomic era has heralded a rapidly changing landscape in cancer genetics. Advances in genetic 240 

testing technology with massive parallel sequencing, and big strides in computational analytics 241 

enabling synthesis of complex, large volume, cross disciplinary data has facilitated an integrated 242 

systems medicine approach, which in turn is transforming diagnostic, therapeutic and preventive 243 

healthcare strategies. In addition to the traditional high penetrance genes (e.g. BRCA1, BRCA2 and 244 

MMR genes), a number of newer intermediate/ moderate penetrance genes have been recently 245 

identified for ovarian (e.g. RAD51C, RAD51D, BRIP1),[70-72] breast (e.g. PTEN, ATM, TP53, PALB2, 246 

NBN, RAD51B, and CHEK2) and other cancers. The availability of high throughput technologies has 247 

led to multiplex panel testing becoming available in clinics. This enables testing for a number of 248 

genes leading to increased efficiency in time and costs of testing. The Office of Public Health 249 

Genomics (OPHG), Centers for Disease Control and Prevention (CDC), has described the ‘ACCE’ 250 

model/process for evaluating genetic tests, which incorporates four key components: analytic 251 

validity; clinical validity; clinical utility; and associated ethical, legal and social implications.[73, 74] 252 
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Burke and Zimmerman proposed an enhanced scheme for evaluation of genetic tests with significant 253 

emphasis on ‘clinical utility’.[75] Concern has been expressed at the lack of precise cancer risk 254 

estimates for a number of the genes which are part of these gene testing panels.[76] This lack of 255 

adequate clinical validation before regulatory approval or clinical implementation has been 256 

construed by some as being tantamount to technological misuse.  257 

 258 

Large multi-centre international collaborations (e.g. Breast Cancer Action Consortium (BCAC),[77] 259 

Ovarian Cancer Action Consortium (OCAC),[78] Consortium of Investigators of Modifiers of BRCA1/2 260 

(CIMBA),[79] Collaborative Oncological Gene-environment Study (COGS)),[80] have enabled genome 261 

wide association studies (GWAS) and large-scale genotyping efforts resulting in the discovery of 262 

numerous common genetic variants associated with cancer risk.[81, 82] Around 17 such variants 263 

have been identified for OC and 100 for BC.[76, 83] Each individual variant is associated with only a 264 

small increase in risk. However, the risk estimate for individuals who carry multiple risk alleles is 2-3 265 

fold higher than those with a low polygenic load.[83] OC and BC risk prediction algorithms 266 

incorporating a polygenic risk score (PRS) based on both the known common variants and the total 267 

hypothesised polygenotype in addition to BRCA1, BRCA2 and other familial effects have been 268 

developed to improve risk prediction.[83-85] For example, the lifetime OC risk for a BRCA1/BRCA2 269 

negative woman, with two affected first degree relatives is >5% if she is at the top 50% of the PRS 270 

distribution. In addition, a number of lifestyle, medical and personal factors such as contraceptive 271 

pill use, tubal ligation, parity, endometriosis, subfertility, age, family-history (first degree relative(s) 272 

with OC),[85] aspirin[86] and hormone replacement therapy (HRT)[87] have been shown to be 273 

associated with OC risk. Recently the population distribution of lifetime risks of OC was quantified by 274 

adding common genetic (SNP) risk factors to the known epidemiologic ones.[85] Eight combinations 275 

of risk factors gave a life time OC risk ≥5% and 2% of the US population were found to have a lifetime 276 

risk ≥5%.[85] Development and validation of new models for OC risk prediction and population 277 

stratification is also the subject of ongoing research in the PROMISE (Predicting Risk of Ovarian 278 
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Malignancy Improved Screening and Early detection) programme.[88] Such an approach 279 

incorporating polygenic risk information has also been suggested for BC, where it is estimated that 280 

11% of the population representing 34% of cases can be identified[84] for targeted 281 

chemoprevention.[89] 282 

 283 

Rising health care costs and ever increasing price of new cancer treatments/drug therapies in a 284 

challenging economic environment further magnify the importance of newer cost-effective 285 

preventive strategies. Development of such models provides hope for the principle of using risk 286 

stratification for the purpose of targeted primary prevention and early detection.  Currently the 287 

most effective method of preventing OC is risk reducing salpingo-oophorectomy (RRSO), with a 288 

reported hazard ratio (HR) for the procedure of 0.06 (CI:0.02,0.17) in a low-risk population[90] and 289 

0.21 (CI:0.12,0.39) in high-risk BRCA1/BRCA2 carriers.[13] However, surgical prevention in current 290 

clinical practice (RRSO) is usually only available as a primary prevention strategy to high risk women 291 

(life time risk >10%). The precise risk threshold at which RRSO should be undertaken for OC 292 

prevention needs review in the context of evaluating and implementing a population based OC risk 293 

stratification strategy. We speculate that it is likely this will lie well below the current accepted 294 

practice of 10% risk. Although Screening for OC has not yet been shown to reduce mortality,[91] 295 

incidence screening results from the UKCTOCS study published recently indicate that screening using 296 

the risk of ovarian cancer algorithm (ROCA) doubled the number of screen-detected epithelial OC 297 

compared with a fixed Ca125 cut-off[92]. Mortality outcome results from the trial are expected to be 298 

published at the end of 2015. Should a mortality effect be demonstrated, a risk based appropriately 299 

targeted OC screening programme would become feasible. Evaluation of any population strategy 300 

needs to incorporate chemoprevention options such as use of the pill[93] and other factors like 301 

aspirin[86] being identified through pooled analyses for OC, as well as Tamoxifen for BC.[89] 302 

Although current models offer limited discrimination, they do permit identification of a higher risk 303 

sub-group, towards whom effective clinical interventions may be targeted. This can contribute 304 
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towards reducing the burden of disease in the population. The falling cost of genetic testing coupled 305 

with sophisticated modelling and emergence of better defined cost-effective therapeutic 306 

interventions will enable implementation of such a strategy for OC and other cancers, including BC in 307 

the near future. However, further research confirming ‘clinical validity’ and ‘clinical utility’ of this 308 

approach is needed before widespread implementation of such a population screening and 309 

stratification strategy.  310 

 311 

Genetic Counselling  312 

Pre-test genetic counselling reduces distress, improves patients’ risk perception[31] and remains 313 

part of international guidelines prior to genetic testing.[47] All participants in the GCaPPS population 314 

study received pre-test and post-test counselling. Unlike GCaPPS,[2] the Israeli[3] and Canadian[4] 315 

studies did not provide pre-test counselling but reported high satisfaction with the population 316 

testing process. ‘Pre-test counselling’ has not yet been directly compared to an approach of ‘no pre-317 

test counselling’ or only ‘post-test counselling’ in a randomised trial. Newer approaches like 318 

telephone counselling,[94, 95] DVD based counselling[96] have been found to be non-inferior and 319 

cost-efficient compared to standard face to face counselling. There is widespread recognition that 320 

successful implementation of case series testing requires a move away from the standard face-to-321 

face genetic counselling approach. Informed consent and pre-test counselling needs to be delivered 322 

by the non-cancer genetics professional community. Different models being explored for this 323 

purpose include mainstreaming[97] and use of dedicated trained nurse specialists co-ordinated 324 

through a regional genetics service.[98] However, data comparing outcomes of these approaches 325 

are lacking. Efficient, acceptable, and cost-effective ways of delivering information on genetic risk 326 

will be needed for the successful implementation of any population-based testing program and this 327 

area requires more research. 328 

 329 
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Specific attention also needs to be paid to pre-test counselling and post-test counselling of results in 330 

the context of panel testing. This is more complicated given the large number of genes, some 331 

without precise risk estimates or interventions of proven clinical benefit for identified carriers. In 332 

addition uncertainty exists on how to deal with variants of uncertain significance (VUS)/ incidental 333 

findings, the identification of which will increase with the number of genes tested. Results of 334 

clinically significant mutations of sufficient risk need to be returned to participants and it is 335 

important for the possibility of incidental findings as well as plans for disclosure/non-disclosure to be 336 

discussed with participants at the outset. New approach(es) to counselling for informed consent 337 

such as a ‘tiered and binned’ approach are being explored.[99] Information is organised into 338 

clinically relevant ‘bins’ and levels (‘tiers’) of detail given out are dependent on an individual’s needs 339 

to make an informed decision. Given the potential complexity and interpretation of results, pros and 340 

cons need to be carefully discussed with patients by experienced and well-informed health 341 

professionals.[100] Specific tools/decision aids to facilitate understanding of risk and informed 342 

consent need to be developed for panel testing and any population testing strategy. In addition, the 343 

use of adjuncts like DVDs, helplines and telephone counselling approaches are yet to be evaluated 344 

outside a single gene setting. 345 

 346 

Direct to Consumer (DTC) genetic testing 347 

 348 

Technological and scientific developments over the last few years have led to a number of 349 

companies offering a range of genetic testing services for common genetic variants as well as rare 350 

and high penetrance single gene disorders. These services are sold directly to consumers through 351 

avenues outside the traditional health system such as via the internet, television or other means. 352 

Driven by aggressive advertising and increasing awareness, the commercial market for this has been 353 

growing at a rapid rate. Proponents of DTC testing point to increased consumer access, consumer 354 

autonomy and empowerment as advantages. A number of professional bodies, authorities, scientists 355 
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and individuals have highlighted concerns regarding this. These concerns relate to the quality, 356 

analytic utility, clinical utility and validity of the scientific data that forms the basis of a number of 357 

reports provided by DTC companies.[101, 102] The European Society of Human Genetics (ESHG), 358 

American Society of Clinical Oncology (ASCO) and American Society of Human Genetics (ASHG) 359 

published formal policy guidelines regarding DTC testing and advertising.[102-104] Some argue that 360 

regulation and laws cannot guarantee responsible use. However a voluntary international product 361 

quality assurance certificate along the lines of ISO could control for compliance with ethical 362 

standards, counselling, scientific validity, provide commercial advantages to DTC companies and be a 363 

better option.[105] Nevertheless, there remains widespread concern in the professional community 364 

regarding overstatement of effectiveness, minimization of risks, lack of ‘informed’ consent, data 365 

protection issues and overselling of tests by DTC companies. There is also uneasiness and 366 

apprehension about the lack of adequate pre-test information and post-test counselling, leading to 367 

inappropriate health outcomes/ detrimental consequences. Although smaller market players 368 

remain, three of the larger players have stopped offering it. Navigenics and deCODEme stopped 369 

when they were sold and 23andMe discontinued marketing of their personal genome service under 370 

FDA orders in November 2013.[106] While a number of scientists and clinicians welcomed this 371 

step,[107, 108] some critics deemed it to be paternalistic, over-cautious, damaging to commercial 372 

free-speech and patient empowerment.[109] The debate will continue. 373 

 374 

Future Perspectives 375 

 376 

Going forward, further validation studies will provide more precise risk estimates for a number of 377 

the newer gene mutations. Absolute risk values derived from relative risk estimates will be made 378 

available for the purpose of counselling/informed consent for genes for which they are yet 379 

unavailable. We speculate that redefined thresholds for interventions like RRSO will enable 380 

implementation of cost effective surgical prevention strategies for moderate penetrance OC genes. 381 
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Emergence of validated data in the not too distant future will lead to widespread clinical 382 

implementation of panel testing for genes like RAD51C, RAD51D, BRIP1, PALB2, CHEK2, ATM, etc. in 383 

women with strong FH of cancer and cancer case series. Although some have suggested that 384 

population based testing for BRCA1/BRCA2 genes could now be introduced into the general non-385 

Jewish population,[110] this is still premature as data on acceptability, clinical validity and cost-386 

effectiveness are lacking and implementation studies have not been undertaken. However, this will 387 

happen in the future once these studies are undertaken. Validated models incorporating 388 

combination(s) of a range of genetic (high, moderate and low penetrant) and epidemiologic/ 389 

environmental factors will become available for clinical implementation. As new risk variants are 390 

discovered, the performance of risk prediction models will get refined and improve. It is important 391 

for epigenomic data to also be incorporated into risk prediction models and the large data sets 392 

needed to facilitate this require developing. With the declining costs of sequencing, the use of gene-393 

panel testing, as well as whole-exome and whole-genome sequencing, will become more 394 

widespread. Large scale prospective studies of general population based testing for a panel of cancer 395 

genes/genetic variants as well as epidemiologic factors incorporated into risk prediction algorithms 396 

will need to be undertaken to evaluate clinical utility, acceptability, impact on psychological health 397 

and quality of life, uptake of preventive strategies, as well as cost-effectiveness, delivery pathways, 398 

and long term health outcomes. An initial small pilot study for OC is proposed to commence along 399 

these lines in 2016 within the PROMISE grant.[88]  400 

 401 

Integration into P4 Medicine and Precision Medicine 402 

 403 

‘P4 medicine’ consists of Predictive, Preventive, Personalized, and Participatory medicine.[111] 404 

‘Precision medicine’ includes development of prevention and treatment strategies that take 405 

individual variability into account.[112] Systems medicine driven approaches incorporating genomic 406 

information (genomic medicine) along with appropriate biological and computational tools for data 407 
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interpretation will be used to deliver P4 and Precision medicine in the future. This will enable 408 

introduction of individualised tailored prevention and/or treatment strategies. Integration and 409 

implementation of a population screening strategy for collecting genomic and epidemiologic 410 

information will be essential for the application of P4/Precision medicine approaches for cancer 411 

prevention and treatment. Our current health care systems are concentrated primarily on treatment 412 

of disease. They are not focused on prediction /prevention and maintaining ‘wellness’. Delivery of a 413 

P4/Precision medicine approach incorporating population based testing will require a big change in 414 

focus. While precision medicine delivered treatment strategies for those with cancer are likely to 415 

remain hospital led, approaches for prediction and prevention will require a move away from 416 

hospitals and clinics to the community/high-street and/or home environment. It will involve use of 417 

new and innovative information tools, resources, devices, apps and health information systems for 418 

individuals to proactively participate in managing their health. It will also require the development of 419 

new care pathways and relationships between participating individuals and healthcare providers. 420 

Providers need to deliver predictive information as well as develop downstream management 421 

pathways for delivering effective risk-reducing clinical interventions for the at-risk population and 422 

monitoring long term health outcomes. Different solutions are likely to emerge for different 423 

countries and commercial companies offering newer DTC models with built in safeguards. In 424 

addition appropriate oversight/regulatory framework will need to be integrated into this process to 425 

maximise possible impact for population benefit. Education of the public/ consumers as well as 426 

general practitioners, genetic clinicians, gynaecologists, health care providers and stake holders 427 

involved in management of these women remains a massive challenge which also needs addressing. 428 

In January 2015, President Obama announced a precision medicine initiative with cancer as an 429 

important component within the scheme.[113] Many more such initiatives and funding streams 430 

driven innovative research studies are needed to fulfil its potential.  431 

 432 

EXECUTIVE SUMMARY 433 
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• The traditional family-history based approach for genetic testing has limitations and misses 434 

>50% mutation carriers. It is being replaced by population-based approaches for genetic testing.  435 

• Population-based BRCA1/BRCA2 testing in Ashkenazi Jews does not cause psychological harm 436 

and identifies more people at risk, reduces breast and ovarian cancer incidence and is extremely 437 

cost effective. This supports a change in the clinical paradigm in this population.  438 

• Population-based testing of cancer case series is becoming more widespread. However, lack of 439 

funding and awareness amongst clinicians is preventing harmonised implementation. Its 440 

successful application requires counselling with new approaches like mainstreaming, involving 441 

the non cancer genetics clinical community.  442 

• The availability of high throughput technologies has led to multiplex panel testing becoming 443 

available in clinics. However, a number of genes being tested in these panels lack precise cancer 444 

risk estimates and uncertainty exists on how to deal with VUS and incidental findings. Pros and 445 

cons need to be carefully discussed with patients by experienced and well-informed health 446 

professionals. 447 

• A number of newer intermediate/ moderate penetrance genes and common genetic variants 448 

have recently been identified for ovarian, breast and other cancers. Development of 449 

sophisticated risk models incorporating genomic and epidemiologic information coupled with 450 

availability of high throughput technology for genetic testing and falling costs provides 451 

opportunity for using risk stratification for the purpose of targeted primary prevention and early 452 

detection.  453 

• There has been widespread concern in the professional community regarding overstatement of 454 

effectiveness, minimization of risks, lack of ‘informed’ consent, data protection issues and 455 

overselling of tests by DTC companies. The appropriateness of DTC and need for proper 456 

regulation and safe-guards remains a matter of ongoing debate.  457 
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• In the near future, emergence of validated data will lead to widespread clinical implementation 458 

of panel testing for moderate penetrance genes like RAD51C, RAD51D, BRIP1, PALB2, CHEK2, 459 

ATM, etc. in women with strong FH of cancer and OC/BC cancer case series. 460 

• Large scale prospective studies of general population based testing for a panel of cancer 461 

genes/genetic variants as well as epidemiologic factors incorporated into risk prediction 462 

algorithms need to be undertaken to  evaluate clinical utility, acceptability, impact on 463 

psychological health/ quality of life, cost-effectiveness and long term health outcomes. 464 

• Systems medicine driven approaches incorporating genomic information (genomic medicine) 465 

along with appropriate biological and computational tools for data interpretation will be used to 466 

deliver P4 and Precision medicine in the future. This will enable introduction of individualised 467 

tailored prevention and/or treatment strategies. 468 

 469 

  470 

 471 

 472 

 473 

  474 
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