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Abstract

In this paper, we examine how patterns of scientific collaboration contribute to
knowledge creation. Recent studies have shown that scientists can benefit from
their position within collaborative networks by being able to receive more infor-
mation of better quality in a timely fashion, and by presiding over communication
between collaborators. Here we focus on the tendency of scientists to cluster into
tightly-knit communities, and discuss the implications of this tendency for scien-
tific performance. We begin by reviewing a new method for finding communities,
and we then assess its benefits in terms of computation time and accuracy. While
communities often serve as a taxonomic scheme to map knowledge domains, they
also affect how successfully scientists engage in the creation of new knowledge. By
drawing on the longstanding debate on the relative benefits of social cohesion and
brokerage, we discuss the conditions that facilitate collaborations among scientists
within or across communities. We show that successful scientific production occurs
within communities when scientists have cohesive collaborations with others from
the same knowledge domain, and across communities when scientists intermediate
among otherwise disconnected collaborators from different knowledge domains. We
also discuss the implications of communities for information diffusion, and show
how traditional epidemiological approaches need to be refined to take knowledge
heterogeneity into account and preserve the system’s ability to promote creative
processes of novel recombinations of ideas.
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1 Introduction

The recent development of online libraries and efficient search engines allows
us to have a quantitative description of a number of scientific collaboration
networks based on a large amount of scientific papers, with precise details
about the identity of the authors, the subject of the papers (keyword analy-
sis) as well as the relations between these papers (citations). This development
offers exciting new perspectives and opportunities for understanding how the
process of scientific production is organized and evolves over time. This re-
quires not only the mapping of the intellectual contributions and the scientists
that make them, but also the study of how information flows among scien-
tists and how they interact with one another. Electronic databases enable us
precisely to trace the way scientists exchange, discover and create new infor-
mation over time, which may help uncover the conditions and mechanisms
underpinning successful transfer and sharing of knowledge, scientific produc-
tivity and creativity, such as the development of new areas of investigations
and research topics. One way to study how scientists exchange and share in-
formation is through the construction of co-authorship networks (Newman,
2003). When analyzing these networks, one may reasonably assume that the
authors collaborating on a paper know each other (at least in relatively small
collaborations) and have put their expertise in common in order to carry out
joint research and co-write the paper. Similarly, citation analysis (Garfield,
1972, 1995; Leydesdorff, 1998) is a tool for evaluating how the ideas and con-
cepts of a paper are used in subsequent works, leading to cascades of influence.
In both co-authorship and citation networks, scientific collaboration is typi-
cally described in terms of a very large network, usually composed of tens of
thousands of nodes, thereby lending itself to statistical description and mo-
tivating an analysis that combines the social sciences with complex network
theory.

Some of the statistical quantities typically used to describe these networks
are purely local and may be employed in order to give a measure of the
quality of a paper depending on its topological properties. The best-known
example is certainly the in-degree of a paper, which is the number of its ci-
tations, and represents a standard way for quantifying its impact (Garfield,
1972; Wuchty et al., 2007). The corresponding global description is the degree
distribution, which is well-known to have a long tail for a wide range of dif-
ferent networks (Barabási et al., 2000). For example, this tail is well fitted by
a power-law function in the case of citation networks (Redner, 2005) and of
co-authorship networks (Newman, 2001). Other local measures of the topol-
ogy of the networks include the clustering coefficient, correlations between the
degrees of adjacent nodes, etc.

The previous quantities give information about the local properties of the
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network around nodes. However, they do not help uncover the highly clus-
tered nature of scientific production, namely the fact that co-authorship net-
works and citation networks are made of several dense groups of nodes, also
called communities, such that there are many links between nodes of the
same community and only few links between nodes of different communities
(Girvan & Newman, 2002). Such a modular structure is often associated with
the high specialization needed to perform research, and with the emergence
of disciplines, their own jargon, interests and techniques (Whitley, 2000). A
thorough understanding of this modular structure is important as it helps
uncover the organization of scientific production. In this paper, we will first
take a structural viewpoint and discuss how a collaboration network can be
partitioned into communities by looking at the ties connecting two or more sci-
entists when they co-write a paper. While these communities represent groups
of nodes connected through dense overlapping ties, they may also suggest a
possible organization of the network into clusters of nodes that are homo-
geneous with respect to some non-relational attribute. In particular, when
communities of connected scientists also represent the set of individuals work-
ing in the same scientific disciplines, they may be used as a taxonomic scheme
to map knowledge domains (Börner et al., 2003; Boyack et al., 2005; Chen,
2003; Leydesdorff & Rafols, forthcoming) and to track the changing frontiers
of science.

The partitioning of scientific collaboration networks into communities that
overlap with the organization of the network into distinct disciplines or re-
search areas has important implications in terms of the performance of the
scientists working within or across communities. Research in the social sci-
ence has long been concerned with this issue, and has been marked by a
sharp debate between two apparently opposed views. One view stresses the
benefits of “closed”, dense, or cohesive networks for performance (Coleman,
1988), while the other emphasizes the value derived from “open”, sparse, or
brokered networks, rich in structural holes (Burt, 1992; Granovetter, 1973).
We build on, and extend, this debate on the trade-off between social cohesion
and brokerage by investigating the conditions under which scientists can un-
dertake successful work by collaborating with others within or outside their
own communities. Moreover, the partitioning of the network into communi-
ties may have important implications in terms of information diffusion, es-
pecially as a result of the sporadic interactions between nodes in different
communities. A related well-known example is that of the synchronization
of oscillators on a modular network, in which synchronization takes place
very fast within modules, but at a much slower time scale at the global level
(Arenas et al., 2006; Barahona & Pecora, 2002). The presence of communities
is also known to have a profound impact on the emergence and survival of co-
operation (Lozano et al., 2008), and on the possibility for heterogeneous ideas
to co-exist in the system (Lambiotte et al., 2007a).
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The goal of this paper is to study the role of communities in knowledge creation
from different angles. We will first focus in section 2 on the methods that
have been developed in order to uncover communities in large networks, and
propose a method that allows us to study networks of unprecedented size. This
section will take a structural perspective and will be dedicated to a description
of the network topology. In section 3, we will extend our structural analysis
of communities by discussing whether and the extent to which they facilitate
scientific production. In section 4, we will focus on the diffusion of information
and examine how communities affect the creation and spreading of new ideas.
The last section is dedicated to a discussion and summary of our main findings.

2 Community Detection

The way we access, use and analyze scientific knowledge has radically changed
in the last few years due to the availability of a large amount of research
databases on the Web, providing us with accurate and complete informa-
tion about the content of scientific papers, their authors and their relations.
As more information on scientific production continues to grow, new tools
are needed in order to extract and organize knowledge, in the same way as
Google helps us to find our way on the Internet. There are several, often com-
plementary, areas of investigation that require suitable methods of analysis.
Among these areas are, for instance, the identification of major researchers
or keystone articles (Chen et al., 2007), the discovery of new articles based
on readers’ previous search behavior and interests (Kautz et al., 1997), and
the analysis of emerging trends and the relations between different disciplines.
In general, the aim of all these areas of study is to offer readable maps of
knowledge domains.

There are several ways to investigate the organization of scientific production.
This can be done at the level of the papers themselves, by imposing a classi-
fication scheme, such as the PACS classifications in the physics literature, or
by organizing databases in terms of the semantic similarity of their contents
(Landauer et al., 2004). Another approach consists in representing scientific
production in terms of a complex network, where different kinds of nodes (au-
thors and articles) and different kinds of links (who writes with who, what
cites what) are present. This method has the advantage of being flexible, as it
does not require a centralized organization into PACS classifications, thereby
allowing for tracking the self-organization of science and the emergence of
fields before a new specific journal has been created or before it has been rec-
ognized as a new category. This flexibility has a cost, however, as such network
representations are still very complex, and require careful analysis in order to
decompose the multitude of nodes and links into meaningful modules, and
highlight the underlying structures and the relationships between them.

4



Fig. 1. Some of the partitions of a simple network made of 6 nodes and 9 links. The
partition with the highest modularity Q divides the system into 2 communities.
In this case, the problem of finding the best partition is trivial, due to symmetry
reasons, but it is much more complicated when the system is larger and less regular.

This problem is not specific to the mapping of knowledge domains as it
occurs for almost any complex system that can be represented as a net-
work, e.g., friendship networks, metabolic networks, and food-web networks
(Girvan & Newman, 2002; Newman, 2003). In general, a way to extract infor-
mation from these very complicated multi-dimensional systems consists in un-
covering their “community structure” (Roswall & Bergstrom, 2008), namely
in dividing the network into groups such as most of the links are concentrated
within the groups, while there are only few links between nodes of different
groups. In other words, this approach consists in finding a meaningful parti-
tion of the network into communities or sub-units. This partition may then
be used in order to produce a coarse-grained description of the full network,
by assuming that the nodes belonging to the same community are equivalent,
and by considering a higher-level meta-network where the nodes are now the
communities. The resulting meta-network whose nodes are the communities
may then be used to visualize the original network structure. The identifica-
tion of these communities is therefore of crucial importance, especially because
they may overlap with (often unknown) functional modules such as topics in
information networks, disciplines in citation networks, or cyber-communities
in online social networks.

In the last few years, there has been a concerted interdisciplinary effort to de-
velop mathematical tools and computer algorithms to detect community struc-
ture in large networks (Newman, 2004; Newman & Girvan, 2004; Newman,
2006). Such a problem is often computationally intractable and therefore re-
quires approximation methods in order to find reasonably good partitions in
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a reasonably fast way. The rapidity of the algorithm has become a crucial
factor due to the increasing size of the networks to be analyzed. A large
variety of methods have been developed in order to address this problem
(Fortunato & Castellano, 2009). In this paper, we will focus on a type of ap-
proach which has proven particularly effective and which is based on the opti-
mization of a quality function, the so-called modularity 1 (Newman & Girvan,
2004). The modularity of a partition is a scalar value between -1 and 1 that
measures the density of links inside communities as compared to links between
communities (see Figure 1). The exact optimization of modularity is a problem
that is computationally hard (Brandes et al., 2006). A number of algorithms
have been recently introduced in order to deal with this problem. For a com-
parison of the accuracy and computational cost of different methods, we refer
to the excellent review by Danon et al. (2005). The first method proposed to
optimize modularity was the divisive algorithm of Girvan & Newman (2002).
However, this method is very slow and has been outperformed by more recent
methods (Newman, 2006). The best method in terms of accuracy is certainly
Simulated Annealing; however, its applicability is limited to systems of rela-
tively small size (Guimerà et al., 2004). Up to recently, the fastest algorithms
were the greedy algorithm of Clauset et al. (2004) and its generalization by
Wakita & Tsurumi (2007), which allowed researchers to analyze systems in-
cluding up to a few million nodes.

In this paper, we will use a method which was introduced very recently and
which outperforms previous methods in terms of computation time, while hav-
ing an excellent accuracy (Blondel et al., 2008). This method takes advantage
of the self-similar nature of complex networks (Song et al., 2005), namely the
fact that many networks observed in the real world are composed of sev-
eral natural levels of organization, i.e., the networks are organized into com-
munities that divide themselves into sub-communities (Arenas et al., 2008;
Sales-Pardo et al., 2007). This Multi-Level Aggregation Method (that we call
“Louvain method” since now on) incorporates such a multi-level organization
and consists of two phases that are repeated iteratively 2 . First, the algo-
rithm looks for “small” communities by optimizing modularity in a greedy,
local way. Second, the algorithm aggregates nodes of the same community

1 The modularity of the partition of a network is given by Q = 1

2m

∑

i,j

[

Aij −

kikj

2m

]

δ(ci, cj), where the sum is performed over all pairs of nodes belonging to the

same community, m is the total number of links, ki the degree of node i and A

is the adjacency matrix of the network. From a physics perspective, modularity
can be interpreted as the Hamiltonian of a q-Potts model with nearest neighbours
interactions (Reichardt & Bornholdt, 2005).
2 For a detailed description of the Louvain method and its properties, we refer
to the original paper by Blondel et al. (2008). C++ and matlab versions of the
program are freely available at http://findcommunities.googlepages.com
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and builds a new network whose nodes are the communities. These phases
are repeated iteratively until a maximum of modularity is attained and an
optimal partition of the network into communities is found. The choice of this
community detection method is motivated by its excellent accuracy and its
rapidity which allows to uncover networks of unprecedented size (for example,
in Blondel et al. (2008), a network of more than 100 million nodes is analyzed
in around 2 hours). The rapidity of the algorithm therefore opens exciting
opportunities, as it allows us to analyze networks made of millions of nodes,
and therefore to study whole datasets, instead of dividing them into sub-parts
due to limitations of computation time. This rapidity also enables us to study
the evolution of large networks (and therefore the birth, death, merging, etc.
of communities), by focusing on several snapshots taken at different points in
time (Palla et al., 2007).

We now apply this algorithm to the co-authorship network of the scientists
that posted preprints on the Condensed Matter E-Print Archive. To construct
the network, we have included all preprints posted between Jan 1, 1995 and
March 31, 2005. This network, whose statistical properties have been described
in Newman (2001), exhibits typical features of social networks, such as a high
clustering coefficient and a fat-tailed degree distribution. It is composed of N=
40421 scientists and of L=175693 links. The Louvain method finds a partition
of modularity Q = 0.729 (made of 1032 communities) in less than 1 second.
For the sake of comparison, the method of Clauset et al. (2004) finds a worse
partition of modularity Q = 0.654 in more than 4 minutes. It is also interest-
ing to note that the difference in accuracy and in computation time decreases
for a random network where the links between the nodes have been randomly
redistributed. In this case, it takes 8 seconds to the Louvain method to find a
modularity of Q = 0.283 (as expected, this value of modularity is smaller than
in the case of the original network), while the method by Clauset et al. (2004)
finds a modularity of Q = 0.277 in 80 seconds. The fact that the Louvain
method is slower for a random network arises from the absence of internal
structure in the random network, which makes the multi-level approach less
efficient. It is interesting to note, however, that also in the case of a random
network the Louvain method is still more rapid and accurate than the alter-
native method. One should note that the Louvain method has been recently
applied to co-citation networks (Wallace et al., 2008) where it was shown that
the uncovered communities correspond to coherent groups of research and are
indeed representative of the structure of a given scientific discipline.

The visualization of the co-authorship network by using standard programs
such as Visone or Pajek would not be very helpful, as the network would
resemble a cloud with too many links and nodes to be distinguished. By con-
trast, by agglomerating nodes into communities, with an obvious reduction of
the size of the system (from 40000 nodes to 1000 communities in the above
example), and by highlighting the relations between these groups of nodes,
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Fig. 2. By optimising modularity, one uncovers sets of topologically equivalent nodes
and the relations between them, thereby allowing to represent the network in a
coarse-grained manner.

the community detection method makes such a visualization possible. Let us
illustrate this coarse-graining process by focusing on a smaller collaboration
network of scientists working on network theory and experiment, which has
been studied in detail in Newman (2006). This network is made of 1589 scien-
tists, 379 of which belong to the largest component. As shown in figure 2, the
Louvain method partitions this largest component into 10 communities and
allows to clarify the network representation.

3 Social Structure and Knowledge Creation

In the previous section, we have taken a structural perspective, and have shown
how a scientific co-authorship network can be portioned into communities of
tightly-knit scientists by looking at the links among scientists. In this section,
we will explore the implications of network structure and its partition into
communities in terms of the performance of the scientists. More generally, by
having an impact on the degree to which nodes are exposed to the information
flowing in a network, structure affects how successfully nodes undertake their
tasks (Smith-Doerr & Powell, 2005). Among these tasks, we will concentrate
on knowledge creation and scientific production, that here we broadly define to
include all creative intuitions and combinatorial processes leading to scientific
and technological advances through novel rearrangements of ideas, theories,
methods, processes, strategies, and so on (Burt, 2004; Fleming et al., 2007).

The network foundations of knowledge creation have long been documented
in the social sciences (Allen, 1977; Tushman, 1978). Recent empirical stud-
ies have uncovered the positive effects of multi-authorship on research perfor-
mance, suggesting that teams typically produce more frequently cited research
than individuals do (Wuchty et al., 2007). Moreover, researchers have been

8



concerned with the mechanisms that underpin the influence of collaborative
structures on human creativity not only within the domain of scientific endeav-
ors, but also in the context of artistic production. For example, Uzzi & Spiro
(2005) focused on a network of creative artists who made Broadway musicals,
and found a nonlinear association between the “small-world” properties 3 of
the collaborative network and the production of financially and artistically
successful shows. In particular, they showed that when the clustering coeffi-
cient ratio is low or high, the financial and artistic success of the shows is low,
while an intermediate level of clustering is associated with successful shows.

While uncovering the “small-world” network effects on creativity, these results
help shed light on a fundamental network mechanism that has long been inves-
tigated in the social sciences: social cohesion. Building on Coleman’s (1988)
conception of social capital, scholars have studied the benefits of cohesive
social structures organized into well-defined tightly knit communities of con-
nected individuals. In particular, the tendency of individuals to forge links
locally within groups has often been associated with an increase in one’s so-
cial capital, in that it engenders a sense of belonging, fosters trust, facilitates
the enforcement of social norms, and enables the creation of a common culture
(Reagans & McEvily, 2003; Uzzi, 1997; Uzzi & Spiro, 2005). For example, if
individual A has links with individuals B and C, a link between B and C would
enable the three individuals to detect and punish one another’s undesirable
behavior more easily, increasing the expected costs of opportunistic behavior
with respect to the case in which a link between B and C is absent. Mutual
monitoring abilities will in turn engender trust among connected individuals
and sustain the generation of group norms more easily and to a greater extent
than would be the case if individuals did not have dense and overlapping links
with one another.

By fostering trust and promoting the enforcement of social norms, social cohe-
sion that occurs within communities offers the facilitating conditions for coor-
dination and collaborative endeavors. For example, an abundance of empirical
evidence supports the idea that links embedded in social relationships reduce
competition and increase the motivation to transfer information. If people
who trust one another are more likely to exchange information, cohesion will
then enhance information sharing. Individuals in cohesive communities will
be able to obtain information in a timely fashion, and will also benefit from
the exchange of complex, tacit and proprietary information (Hansen, 1999;
Uzzi, 1997). More complete information that can be obtained more easily will
in turn facilitate innovation and knowledge creation (Ahuja, 2000; Obstfeld,

3 “Small-world” networks are built from a regular lattice where a fraction of the
links is replaced by random links. By changing this fraction, one interpolates be-
tween a regular lattice and a random network (Watts & Strogatz, 1998). Such a
model exhibits a high density of triangles as well as a small diameter.
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2005). Moreover, by engendering a supportive social context, trust sustains
risk-taking and learning, with further positive effects on scientific creative en-
deavors (Amabile et al., 2000; Edmonson, 1999).

Despite all the benefits associated with social cohesion, nonetheless the ten-
dency of individuals to cluster into tightly knit communities also bears a cost:
local redundancy. From a dynamic perspective, the more an individual’s addi-
tional contacts are already connected to the individual’s current ones, the less
likely they are to take the individual closer to new people he or she does not
know already. Lack of connections with new social circles may create isolation
and eventually degrade performance. Building on the seminal arguments of
Granovetter (1973) and Burt (1992), proponents of the benefits of brokerage
point out that in cohesive networks organized into communities links tend to
be strong as people invest a disproportionately large amount of their time
and resources in relationships with few others. Cohesive networks thus make
links with dissimilar others and exposure to new information less likely. By
contrast, in networks that are rich in structural holes, where individuals bro-
ker between otherwise disconnected contacts, links tend to be weak and more
likely to connect people with different ideas, interests and perspectives (Burt,
2004). If scientific production requires prompt access to novel information,
then people embedded in brokered structures will be more creative and suc-
cessful in their endeavors. From this perspective, brokers between communities
occupy the most advantageous boundary position as they lie at the confluence
of fresh and heterogeneous ideas that they can creatively integrate into novel
recombinations (Brass, 1995; Burt, 2004).

While scholars in the social sciences agree on the importance of social struc-
ture for information diffusion and performance, there is still controversy over
the optimal structure and, more specifically, over the relative benefits of social
cohesion within communities on the one hand, and brokerage between commu-
nities on the other. A number of empirical studies have suggested that an ap-
propriate combination of density and sparseness can provide individuals with
the necessary redundant trusted relationships and access to non-redundant
external contacts that will enable them to successfully perform their tasks
(Burt, 2005; Podolny & Baron, 1997). A more recent line of investigation has
examined the apparent trade-off between social cohesion and brokerage by
focusing on the interactions between network structure and the attributes of
the interacting individuals (Perry-Smith, 2006; Reagans & Zuckerman, 2006;
Rodan & Galunic, 2004). For example, Fleming et al. (2007) have empirically
examined the mitigating effects exerted by individuals’ attributes on the ben-
efits associated with brokerage. Their study suggests that, while brokerage be-
tween otherwise disconnected collaborators makes all individuals more likely
to create new ideas, at the same there are marginal contingent positive effects
of social cohesion on generative creativity when individuals and their collab-
orators bring broad experience, have worked for multiple organizations, and
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have connections with external contacts.

A combined study of network structure and nodes’ attributes becomes es-
pecially relevant in the context of knowledge creation, scientific production
and innovation, where the benefits of social relationships crucially depend on
the information scientists already possess as well as on the heterogeneity and
breadth of the information they can obtain from their contacts. More generally,
there is little consensus on the effects of access to heterogeneous knowledge on
performance. On the one hand, recent work has examined the benefits that
scientists can gain from specializing, in terms of research productivity, promo-
tion, tenure standards and academic earnings (Leahey, 2007). On the other,
there is also evidence that access to novel heterogeneous information is ben-
eficial for creativity and innovation (Burt, 2004; Hargadon & Sutton, 1997).
For example, Rodan & Galunic (2004) have found that the variety of knowl-
edge to which managers are exposed positively affects not only their overall
performance, but also their ability to accomplish complex tasks, create and
implement novel ideas.

With only few exceptions (Guimerà et al., 2005), and despite the importance
of knowledge heterogeneity and inter-disciplinarity for scientific production,
scanty attention has been devoted to the way collaborative structures combine
with scientists’ degree of specialization and access to pools of diverse knowl-
edge to affect their research performance. Scientists can vary the breadth of
access to knowledge by carefully building their networks and selecting their
collaborators either within their own specialty area or in different areas that
enable them to obtain knowledge without having to acquire it personally.
On the one hand, scientists can reduce access to heterogeneous knowledge
by selecting their collaborators within their own specialty area. In so doing,
they enhance scientific consensus, and facilitate scientific production through
the generation of shared norms of research practice (Moody, 2004). On the
other, scientists can expand access to heterogeneous knowledge by engaging
in collaborations with other scientists from different specialty areas. While
scientists typically rely on their collaborators to obtain the knowledge and
expertise they do not have already (Laband & Tollison, 2000), research has
largely overlooked the various collaboration patterns through which scientists
control their access to heterogeneous knowledge pools, and how these patterns
ultimately affect knowledge creation and research performance.

Recent empirical work has investigated the extent to which the interplay be-
tween knowledge heterogeneity and the structure of the collaboration network
affects a scientist’s ability to produce research of high impact (Panzarasa & Opsahl,
2007). Drawing on the collaboration network of the social scientists that au-
thored or coauthored the publications submitted to the 2001 Research Assess-
ment Exercise in business and management in the UK, this work shows that
scientists bridging two otherwise disconnected contacts with heterogeneous
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knowledge have a better performance than scientists with no such brokerage
opportunities. At the same time, highly cited scientists also tend to be so-
cially embedded within communities in which knowledge is homogeneously
distributed across members. In this case, when scientists and their collabo-
rators are not diverse in knowledge, collaborations are beneficial when they
occur with contacts that are already collaborating themselves.

This work adds a new dimension to the relevance of communities for knowledge
creation and scientific performance, and more generally to the debate on the
relative benefits of social cohesion and brokerage. On the one hand, when sci-
entists seek collaborators within their own knowledge pool, they can enhance
their research performance by generating structurally cohesive communities.
Thus, while communities often serve as a taxonomic scheme to map knowledge
domains (Börner et al., 2003; Boyack et al., 2005; Chen, 2003), they also offer
the supportive structural conditions for the successful performance of collabo-
rative scientific work that remains confined within the boundaries of a knowl-
edge domain. On the other, when collaborative scientific work spans across
knowledge domains, scientific performance increases when scientists interme-
diate between their collaborators. Bridging structural holes between otherwise
disconnected knowledge pools creates linkages across distinct scientific com-
munities that offer knowledge brokerage opportunities for novel recombination
of ideas.

4 Information diffusion and knowledge heterogeneity

From a modeling point of view, innovation and knowledge creation can be seen
as a catalytic process (Bruckner & Scharnhorst, 1986, 1990; Hanel et al., 2005;
Lambiotte et al., 2007b). The juxtaposition of ideas in the mind of an indi-
vidual may lead to syntheses and to the emergence of new ideas that can then
diffuse and reach other individuals and cascade through the social network.
This propagation may in turn result in further syntheses and in the emer-
gence of other new ideas which are then diffused and so on, thereby leading to
a sequence of self-reproducing flows of new ideas. In principle, a good model
for innovation and knowledge creation should therefore incorporate these two
types of ingredients: synthesis and diffusion. Diffusion has been studied ex-
tensively (Bettencourt et al., 2006; Goffman & Newill, 1964; Goffman, 1966;
Rogers, 2003), especially because of its parallel with the dynamics of an epi-
demic. Like a disease and its propagation, a new idea typically spreads among
people that communicate directly (e.g., by talking, or via telephone and e-
mail) or indirectly (e.g., by reading the same journals) 4 . This parallel has

4 In this paper, we focus on models where a process diffuses on a static network.
This limitation can be overcome by looking at the co-evolution of diffusion and of
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motivated the modeling of the evolution of scientific fields as epidemiologi-
cal contact processes such as the Susceptible-Infected-Recovered (SIR) model
or the discrete-time Independent Cascade Models 5 (Goldenberg et al., 2001;
Kempe et al., 2003).

Mathematical epidemiologists have long emphasized the important role played
by the network topology in determining properties of disease invasion, spread
and persistence (May & Lloyd, 2001). Several general results have been de-
rived, such as the fact that epidemics spread without a threshold on a scale-free
network due to the presence of hubs 6 , which accelerate the diffusion by reach-
ing an unusually high proportion of other nodes (Pastor-Satorras & Vespignani,
2001). Another important result is that diffusion is more efficient in random
networks than in clustered networks, and that the presence of random links is
fundamental for promoting diffusion (Huang & Li, 2007; Vazquez & Moreno,
2003). This result, which supports the Granovetter’s (1973) hypothesis of the
strength of weak ties, is due to the fact that random links minimize the accu-
mulation of several contacts around the same nodes, thereby reducing redun-
dant links and accelerating diffusion across different parts of the network.

This result, however, needs to be critically re-assessed in the light of our pre-
vious discussion about social cohesion. In section III, we noted that cohesive
structures are likely to foster trust and facilitate knowledge transfer and shar-
ing. Unlike the above mentioned results on disease spread, our analysis thus
suggested that dense networks clustered into communities may accelerate,
at the very least locally, information diffusion. This observation, therefore,
cautions against a direct application of epidemiological models to a knowl-
edge diffusion context. In order to explore this issue, researchers have recently
modified the above models of disease spread in order to preserve and enhance
the role of social cohesion (Watts, 2002). For instance, threshold models are
based on the fact that infection requires simultaneous exposure to multiple ac-
tive neighbors (Granovetter, 1978; Kempe et al., 2003). Similarly, generalized
cascade models are based on the fact that the probability for a node to get
“activated” depends on the number of times it has been in contact with an idea
(Dodds & Watts, 2004; Kleinberg, 2007). Within the context of “small-world”
networks, research has shown that different types of links (random vs. regular)
play very different roles in the propagation of ideas (de Kerchove et al., 2008).

network dynamics (Koening et al., 2008; Vazquez et al., 2004).
5 In the Independent Cascade Model, one starts from an initial set of infected
nodes. When a new node becomes infected, it tries one single time to infect each of
its neighbors with independent probability p. The process stops when no new node
has been infected and is available to continue the propagation.
6 In the context of the diffusion of innovations, the importance of the heterogeneity
of the agents is well-known and usually taken into account by categorizing them
into categories, e.g. innovators, early adopters, etc. (Rogers, 2003) or introducing
opinion leaders (Valente & Davis, 1999).
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Random links, which are short-cuts in the network connecting otherwise dis-
tant regions, play an integrative role by connecting different communities, and
therefore enable nodes to be exposed to, and explore, different parts of the
network. Regular links, i.e. links connecting neighbouring nodes, by contrast,
connect nodes within communities, and are likely to increase the number of in-
fected paths available to each node. More interestingly, it was also shown that,
when redundancy is needed to secure infection and adoption of a new idea, the
presence of random links may actually hinder the emergence of cascades, and
that the size of the avalanche depends in a non-trivial way on the modular
structure and on the model parameters (Centola et al., 2007; Centola & Macy,
2007; de Kerchove et al., 2008).

This epidemiological approach typically focuses on the diffusion of one idea.
Starting from one “infected” individual, researchers are interested in the way
an idea propagates among acquaintances in the social network, and try to
estimate the total number of “infected” individuals. This approach, however,
neglects the catalytic nature of knowledge creation, namely the fact that sev-
eral ideas diffuse in the system and at the same time may be creatively re-
combined to produce new ideas. More specifically, what is often ignored is the
role played by heterogeneity between ideas, a property that most epidemio-
logical models forget to take into account by simply assuming homogeneity
throughout the system. It is interesting to note that the catalytic nature of
knowledge creation calls for a critical reassessment of the network implications
for information diffusion. On the one hand, a rapid diffusion of ideas is crucial
as it facilitates knowledge creation by increasing the ideas that individuals can
obtain and recombine. On the other, however, if ideas reach too many people
too quickly, they might generate consensus and lead to convergence toward a
popular, though smaller, set of shared ideas, thereby hindering the capacity of
innovation of the system (Fang et al., 2007). In this sense, the presence of mod-
ules, or niches, is necessary in order to ensure the co-existence of several ideas
and preserve the fundamental diversity of knowledge conducive toward the
production of further new knowledge. This observation has found support, for
instance, in the context of opinion dynamics, where the fragility of consensus
under variations of the network topology was highlighted (Lambiotte et al.,
2007a).

5 Conclusions and discussion

In this paper, we have focused on the role played by communities in knowl-
edge creation. By integrating approaches from graph theory, economics, so-
ciology and physics, we highlighted the relations between network structure,
performance, and information diffusion, in the specific context of scientific
production. In section II, we introduced the concept of community at the
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network level, by focusing on links between authors, regardless of the nodes’
attributes. It was argued that the uncovering of communities is necessary in
order to highlight relations between elements, reduce the dimension of the
system and provide useful maps of knowledge. In section III, we explained
how and to what extent communities can be advantageous for scientific per-
formance. Since scientists can benefit from cohesive collaborations when their
collaborators belong to the same knowledge domain (Panzarasa & Opsahl,
2007), communities at the network level will support scientific performance
when they reflect unique non-overlapping knowledge domains. In this case,
successful science production will therefore be organized into a disproportion-
ately large number of cohesive collaborations among scientists with homo-
geneous knowledge within the same community, and relatively few brokered
collaborations among scientists with heterogeneous knowledge across differ-
ent communities. The interplay betwen communities and knowledge creation
was then discussed from a modelling point of view in section IV, where we
showed that the creation and diffusion of knowledge may be driven by dif-
ferent network mechanisms. On the one hand, random links facilitate rapid
communication of ideas within the network. On the other, when redundancy is
needed for individuals to adopt a new idea, the presence of local structure and
communities not only accelerates diffusion due to the presence of redundant
cohesive relationships, but also promotes diversity of knowledge across com-
munities, thereby supporting the capacity of the system to innovate through
creative recombinations of different ideas.
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