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Abstract 

 

Gc variants of vitamin D binding protein differ in their affinity for vitamin D 

metabolites that modulate antimycobacterial immunity. We conducted studies to 

determine whether Gc genotype associates with susceptibility to tuberculosis. 

 

123 adult tuberculosis patients and 140 controls of Gujarati Asian ethnic origin in the 

United Kingdom, 130 adult tuberculosis patients and 78 controls in Brazil, and 281 

children with tuberculosis and 182 controls in South Africa were recruited to case-

control studies. Gc genotypes were determined and their frequency was compared 

between cases vs. controls. Serum 25-hydroxyvitamin D (25[OH]D) concentrations 

were obtained retrospectively for 139 Gujarati Asians, and case-control analysis was 

stratified by vitamin D status. Interferon-γ release assays were also performed on 36 

Gujarati tuberculosis contacts.  

 

The Gc2/2 genotype was strongly associated with susceptibility to active tuberculosis 

in Gujarati Asians, compared with Gc1/1 genotype (OR 2.81, 95% CI 1.19 to 6.66, 

P=0.009). This association was preserved if serum 25(OH)D was <20 nmol/l 

(P=0.01), but not if serum 25(OH)D was ≥20 nmol/l (P=0.36). Carriage of the Gc2 

allele associated with increased PPD-stimulated Interferon-γ release in Gujarati Asian 

tuberculosis contacts (P = 0.02). No association between Gc genotype and 

susceptibility to tuberculosis was observed in other ethnic groups studied. 
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Introduction 

 

Tuberculosis (TB) is a leading global cause of death. Vitamin D deficiency associates 

with susceptibility to active TB in numerous settings [1] and vitamin D 

supplementation enhances antimycobacterial immunity [2]. Vitamin D is synthesized 

in the skin during exposure to ultra-violet light and is metabolized by the liver to form 

25-hydroxyvitamin D (25(OH)D), the major circulating vitamin D metabolite and 

accepted measure of vitamin D status. 25(OH)D then undergoes a further 

hydroxylation step to form 1,25-dihydroxyvitamin D (1,25(OH)2D), the 

immunomodulatory metabolite which enhances antimycobacterial activity by 

pleiotropic mechanisms including the induction of antimicrobial peptides with 

antituberculous activity [3, 4] and the suppression of matrix metalloproteinase 

enzymes implicated in degradation of pulmonary extracellular matrix [5]. 

 

Vitamin D metabolites in the circulation are bound to vitamin D binding protein 

(DBP), a highly expressed multifunctional 58 kDa serum glycoprotein encoded on 

chromosome 4. The DBP locus is among the most polymorphic known [6]. Two 

common polymorphisms at codons 416 (GAT→GAG, Asp→Glu) and 420 

(ACG→AAG, Thr→Lys) of exon 11 of the DBP gene (defined by the presence of 

restriction endonuclease sites for HaeIII and StyI, respectively) give rise to the three 

major electrophoretic variants of DBP, termed group-specific component 1 fast 

(Gc1F), Gc1 slow (Gc1S) and Gc2.  These variants differ in their functional 

characteristics: the Gc1F and Gc1S variants have been reported to have greater 

affinity for 25(OH)D than the Gc2 variant [7], potentially leading to more efficient 

delivery of 25(OH)D to the target tissues, while the Gc2 variant is associated with 
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decreased circulating concentrations of 25(OH)D, 1,25(OH)2D and DBP [8, 9]. We 

therefore reasoned that possession of the Gc2 variant of DBP might associate with 

susceptibility to TB, and conducted case control studies in three different settings to 

test this hypothesis. We also conducted functional studies to determine whether 

antigen-stimulated release of interferon-gamma (IFN-γ) from whole blood of healthy 

TB contacts varied according to Gc genotype. 

 

Methods 

 

Populations studied 

Case-control study participants were recruited at 3 sites (Table 1). One hundred and 

twenty-three adult TB patients and 140 healthy adult TB contacts, all of Gujarati 

ethnic origin, were recruited at Northwick Park Hospital, London, UK from 1993 to 

2004; 281 children with TB (210 Xhosa, 71 of Cape Coloured ethnic origin) and 182 

healthy child TB contacts (163 Xhosa, 19 Cape Coloured ethnic origin) were recruited 

at Red Cross Children’s Hospital, Cape Town, South Africa, from 2000 to 2003; and 

130 adult TB patients (55 white, 44 mixed, 31 black) and 78 healthy adult controls (49 

white, 18 mixed and 11 black) were recruited in Instituto de Pesquisa Clínica Evandro 

Chagas (IPEC) at Fiocruz and in Municipal Health Centres, Rio de Janeiro, Brazil, 

from 2004 to 2007. Diagnosis of TB was established on the basis of smear positive for 

acid-fast bacilli and/or culture positive for M. tuberculosis in all adult cases and in 

33% of paediatric cases; for remaining paediatric cases, diagnosis was based on WHO 

criteria for diagnosis of TB in children [10] with 42% classified as having probable 

TB, and 25% classified as having possible TB. Patients with known HIV infection or 

taking immunosuppressant drugs were excluded. Adult TB contacts were recruited at 
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participating TB clinics and health centres in London and Rio de Janeiro on the basis 

of a history of household contact with a TB patient, absence of symptoms of active 

TB and genetic unrelatedness to any patient recruited as a TB case in the study. Child 

TB contacts were recruited by locating children living three houses adjacent to a 

household in which a childhood TB case was identified. Where possible, it was 

ensured that controls were unrelated to TB cases. All adult participants gave informed 

consent for inclusion, as did parents of child participants. Permission to conduct the 

case-control study was obtained from research ethics committees in the UK (Harrow 

REC ref. 1646), South Africa (University of Cape Town REC ref. 013/2000) and 

Brazil (IPEC REC ref.  0008.0.009.000-04 and Rio de Janeiro Municipal Health 

Centre REC ref. S/CRH/DRH/DIC3). 

 

Functional studies were also conducted in a group of 36 healthy TB contacts recruited 

to a clinical trial of vitamin D supplementation at Northwick Park Hospital (n=26) 

and Newham Chest Clinic (n=8), London, UK from 2002 to 2005. Characteristics of 

the whole study population have been reported elsewhere [11]. The sub-group of 36 

participants whose results are presented here was selected on the basis of self-

assigned Gujarati ethnicity and availability of a result of a whole blood IFN-γ release 

assay (IGRA) performed prior to randomisation. The study was approved by the 

research ethics committees of North East London and Harrow (REC refs. P/02/146 

and EC 2759, respectively) with written, informed consent to take part in the study 

obtained from all participants. 

 

Genotyping 
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Genomic DNA was extracted from peripheral blood samples using the DNA Midi kit 

(Qiagen, Lewes). A 483-bp fragment of exon 11 of the Gc gene was amplified by 

polymerase chain reaction (PCR). Reaction mix included 2 µl DNA at 50 µl/ml,  11.1 

µl H2O, 2 µl 10X PCR buffer, 0.4 µl 25 mM MgCl2, 0.4 µl 10 mM deoxynucleotide 

triphosphates (dNTP), 0.1 µl HotStar Taq polymerase (Qiagen) and 2 µl of 20 µM 

primers. Primer sequences were 5’- AAATAATGAGCAAATGAAAGAAGAC-3’ 

(forward) and 5’- CAATAACAGCAAAGAAATGAGTAGA-3’ (reverse). Cycling 

conditions were 95°C for 15 minutes, followed by 35 cycles at 94°C for 45 seconds, 

51°C for 45 seconds, 72°C for 45 seconds, then a final 7 minutes at 72°C. PCR 

products were digested separately with restriction enzymes HaeIII (for 4h at 37ºC) 

and Sty I (overnight at 37ºC) (New England Biolabs, Mississauga, Ontario). Digestion 

with HaeIII produces 297- and 186-bp fragments in the presence of the h allele and 

digestion with StyI produces 305- and 178-bp fragments in the presence of the s 

allele. Digested products were visualised on 2% agarose gels stained with ethidium 

bromide. The presence of restriction sites was assigned by the lower case (h for 

HaeIII, s for StyI), and absence was assigned by the upper case (H for HaeIII and S 

for StyI). Gc genotype was assigned as per Table 2. 

 

Determination of 25(OH)D concentrations 

Serum 25(OH)D concentrations of Gujarati participants recruited in London were 

determined by radio-immunoassay (DiaSorin, Stillwater, MN) in a clinical 

biochemistry laboratory that participates in the international Vitamin D external 

quality assessment program (http://www.deqas.org/). For participants with active TB, 

serum 25(OH)D concentrations were determined at diagnosis. Vitamin D deficiency 

was defined as serum 25(OH)D < 20 nmol/l.[12]  
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Interferon-gamma Release Assay (IGRA) 

The IGRA used in this study has been described elsewhere [13]. Triplicate samples of 

venous blood diluted 1:10 with RPMI-1640 (Life Technologies, Paisley, UK) were 

cultured with 1000 U/ml PPD (Statens Serum Institute, Denmark), 2.5 µg/ml 

recombinant ESAT-6 or 5 µg/ml CFP-10 (Lionex, Braunschweig, Germany) at 37ºC 

in 5% CO2. Supernatants were aspirated at 96 hours for determination of IFN-

γ concentration by ELISA.  

 

Statistical analysis 

Due to similar functional characteristics [7] Gc1F and Gc1S allele carriers were 

combined to produce a total of 3 genotypes: Gc1/1, Gc2/1 and Gc2/2. Contingency 

tables were analyzed using chi-square tests, unless more than 20% of cells in a table 

had an expected frequency of <5, when Fisher’s exact tests were employed. Linkage 

disequilibrium was evaluated by calculating estimating predicted haplotypes 

frequencies based on random assortment of HaeIII and StyI alleles, and comparing 

these with observed frequencies by a chi square test; D’ was calculated using 

Lewontin’s equation [14]. Mean ages were compared between groups using unpaired 

t-tests and one-way ANOVA, and median serum 25(OH)D concentrations were 

compared between different groups using Kruskal-Wallis tests. Chi square tests were 

performed to test for association between genotype and susceptibility to TB, and 

binary logistic regression analysis was conducted to adjust odds ratios (OR) for age 

and sex. Data were analyzed using SPSS (version 12.0.1, 2003) and GraphPad Prism 

(version 4.03, 2005) software packages. 
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Results 

 

Participant characteristics: case-control study 

 

The characteristics of case-control study participants are presented in Table 3. 

Gujarati Asian cases and controls did not differ with respect to age or sex distribution. 

Males were over-represented in cases vs. controls among participants recruited in 

Cape Town (Xhosa: 55.2% vs. 41.1% male, P = 0.007; Cape Coloured: 47.9% vs. 

21.1% male, P = 0.04) and Rio (black: 61.3% vs. 27.3% male, P = 0.01; mixed: 

63.6% vs. 38.9% male, P = 0.02). The mean age of cases was lower than that of 

controls among Xhosa participants in Cape Town (5.2 years vs. 6.1 years, P=0.002) 

and higher than that of controls among white participants in Rio (38.7 years vs. 29.6 

years, P < 0.001). 

  

DBP allele frequency varies between ethnic groups 

 

DBP allele frequency varied significantly between different ethnic groups (Table 4, 

P<0.0001). Frequency of the Gc2 allele was highest among Gujarati participants in 

London and white participants in Rio (35.9% and 33.2% respectively) and lowest 

among black participants in Rio and Xhosa participants in Cape Town (11.9% and 

4.6% respectively). A similar ethnic distribution was observed for the 1S allele 

(47.9% in London Gujaratis, 41.8% in Rio whites, 19% in Rio blacks and 7.9% in 

Cape Town Xhosa). The opposite ethnic distribution was observed for the 1F allele, 

which was most common among Xhosa participants in Cape Town and black 

participants in Rio (87.5% and 69.0% respectively), and least common among white 
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participants in Rio and Gujarati participants in London (25.0% and 16.2% 

respectively).  Intermediate frequencies of all three alleles were found among 

ethnically admixed participants recruited in Rio and Cape Town. Both loci were in 

Hardy-Weinberg equilibrium in all populations studied. The loci were in linkage 

disequilibrium in Gujaratis (D’=0.52, P < 0.0001), in white participants in Rio 

(D’=0.36, P < 0.0001) and in ethnically admixed populations in Rio (D’=0.15, P < 

0.0001) and Cape Town (D’=0.06, P=0.0002), but not in Xhosa participants in Cape 

Town (P=0.08) or black participants in Rio (P=0.10). 

  

Carriage of the Gc2 allele associates with susceptibility to active TB in Gujarati 

Asians  

 

Given that the allele frequency varied by ethnic group, case-control analysis of DBP 

variant frequency was stratified by ethnic group. Among Gujarati Asian participants, 

the Gc genotype was associated with active TB (Table 5; P=0.04). The unadjusted OR 

for Gc2/2 compared with Gc1/1 was 2.81 (95% CI 1.19 to 6.66, P=0.009), while the 

unadjusted OR for Gc2/1 compared with Gc1/1 was 1.69 (95% CI 0.96 to 2.96, 

P=0.052). The unadjusted OR for genotypes Gc2/1 and Gc2/2 combined vs. Gc1/1 

was 1.89 (95% CI 1.11 to 3.22, P=0.012). These associations were unaltered by 

adjustment for age and sex (adjusted OR for Gc2/2 vs. Gc1/1 was 2.83, 95% CI 1.27 

to 6.31, P=0.01; adjusted OR for Gc2/1 vs. Gc1/1 was 1.73, 95% CI 1.01 to 2.96, P = 

0.045; adjusted OR for Gc2/1 and Gc2/2 combined vs. Gc1/1 was 1.94, 95% CI 1.17 

to 3.23, P=0.01). No statistically significant variation in frequency of DBP genotype 

was observed between cases and controls among any of the populations studied in 

Cape Town or Rio, either before or after adjustment for age and sex. 
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Vitamin D status does not vary with DBP variant in Gujarati Asians  

 

We have previously shown that vitamin D deficiency associates with susceptibility to 

TB in Gujarati Asians [15]. Since then, others have reported that serum 25(OH)D 

concentrations vary with Gc genotype, being lowest in carriers of the Gc-2 allele [8, 

9]. We were interested to determine whether serum 25(OH)D concentrations varied 

according to Gc genotype in Gujarati Asians. Since serum samples were not collected 

prospectively for this purpose, we conducted a retrospective search for results of 

routinely performed assays of serum 25(OH)D concentration for all Gujarati Asian 

participants. Results were available for 84/123 cases and 55/140 controls. Vitamin D 

deficiency (serum 25(OH)D < 20 nmol/l) was more common among TB cases vs. 

controls (affecting 60/84 vs. 31/55) but this difference did not attain statistical 

significance (P=0.07). No significant differences in median serum 25(OH)D 

concentration or prevalence of vitamin D deficiency were observed between 

individuals with different genotype (median serum 25(OH)D, 17.0 vs. 12.0 vs. 10.0 

nmol/l for Gc1/1, Gc1/2 and Gc2/2 genotypes respectively, P=0.28; prevalence of 

vitamin D deficiency, 35/58 vs. 43/63 vs. 13/18 deficient for Gc1/1, Gc1/2 and Gc2/2 

genotypes respectively, P=0.53).  

 

The association between Gc genotype and susceptibility to TB in Gujarati Asians 

varies according to vitamin D status 

 

We next investigated whether association between Gc genotype and susceptibility to 

TB in Gujarati Asians varied by vitamin D status by performing separate contingency 
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analyses for vitamin D deficient participants and non-deficient participants (Table 6). 

Among vitamin D deficient Gujarati Asians we found that Gc genotype was strongly 

associated with susceptibility to TB, with genotype 2/2 present in 13/60 vitamin D 

deficient cases vs. 0/31 vitamin D deficient controls (P=0.01). In contrast, no 

association between Gc genotype and susceptibility to TB was seen among Gujarati 

Asians with serum 25(OH)D ≥ 20 nmol/l (P=0.36). Statistical analysis to determine 

whether Gc genotype and vitamin D status interact to influence susceptibility to TB 

was indeterminate, as the zero value for vitamin D deficient controls with Gc2/2 

genotype in the contingency table (Table 6) resulted in an undefined odds ratio. 

  

Carriage of the Gc2 allele associates with increased IFN-γ release from PPD-

stimulated whole blood of Gujarati Asian TB contacts 

 

Finally we investigated whether IFN-γ responses to mycobacterial antigens varied 

according to Gc genotype in a group of 36 Gujarati Asian TB contacts whose 

characteristics are presented in Table 7.  No significant differences in sex ratio, BCG 

status, tuberculin skin test reactivity, site of exposure or vitamin D status were 

observed between participants of different Gc genotype, although a statistically 

significant difference in mean age was observed between participants of different 

genotype (55.3 yr vs. 41.3 yr vs. 34.9 yr for genotypes Gc2/2, Gc2/1 and Gc1/1 

respectively, P = 0.03). Median PPD-stimulated IFN-γ concentration was higher 

among TB contacts of Gc2/2 and Gc2/1 genotype vs. those of Gc1/1 genotype (790.8 

pg/ml vs. 663.5 pg/ml vs. 60.5 pg/ml respectively, P=0.02; Figure); no difference in 

ESAT-6 or CFP-10-stimulated IFN-γ concentration was observed between TB 

contacts of different genotype (Table 7). 
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Discussion 

 

We have demonstrated an association between the Gc genotype of vitamin D binding 

protein and susceptibility to TB in Gujarati Asians living in London. Stratification of 

this analysis by vitamin D status revealed that this association was restricted to 

participants with profound vitamin D deficiency. 

  

No association between carriage of the Gc2 allele and susceptibility to TB was 

observed among populations studied in Rio and Cape Town. Gc2 allele frequency in 

these populations was lower than in Gujarati Asians, and absolute numbers of Gc2 

carriers were therefore small (Table 4); our study may have been underpowered to 

detect an association in these populations. An alternative explanation for the lack of 

association seen in Rio and Cape Town is that populations in Rio (latitude 22ºS) and 

Cape Town (latitude 33ºS) are likely to have significantly more exposure to UVB than 

those living in London (latitude 51ºN). Profound vitamin D deficiency is therefore 

likely to be much less common in these settings. If the association between Gc2 allele 

and susceptibility to TB is restricted to individuals with profound vitamin D 

deficiency, as we postulate, then low prevalence of vitamin D deficiency in Rio and 

Cape Town may explain non-replication of the association in these settings. This 

explanation may also account for lack of association between Gc genotype and 

susceptibility to TB in other populations previously studied in Kuwait[16] and India 

[17].  
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Individuals carrying the Gc2 allele have previously been reported to have lower 

circulating concentrations of both DBP and 25(OH)D [8, 9, 18], phenomena that have 

been attributed to the fact that the gene product of Gc2 allele is metabolized faster 

than that of Gc1 alleles [19]. Vitamin D deficient carriers of the Gc2 allele may 

therefore have particularly low circulating concentrations of 25(OH)D-DBP complex.  

Receptor-mediated endocytosis of 25(OH)D-DBP complex has previously been 

shown to be essential for induction of vitamin D-mediated biological activity in both 

renal and mammary cells [20, 21]. If 25(OH)D-DBP complex is similarly required for 

initiation of vitamin D-inducible antimycobacterial responses then reduced circulating 

concentrations of this complex in vitamin D deficient carriers of the Gc2 allele could 

explain the association that we report. Further studies are required to establish 

whether circulating concentrations of 25(OH)D-DBP complex vary according to Gc 

allele, and to investigate whether receptor-mediated endocytosis of 25(OH)D-DBP 

complex is essential for induction of vitamin D-inducible antimycobacterial 

responses. 

 

Our finding of striking ethnic variation in Gc allele frequency is in keeping with 

published literature reporting that populations with deeply pigmented skin have higher 

frequencies of the 1F allele [22]. Reports that cutaneous penetration of UVB is 

decreased in individuals with pigmented skin [23] and that the Gc1 variants of DBP 

have greater affinity for 25-hydroxyvitamin D than the Gc2 variant [24] raise the 

possibility that Gc1 variants may carry a survival advantage in persons with 

pigmented skin due to their superior delivery of 25(OH)D to the target tissues. If this 

is the case, then the observation of increasing frequency of the Gc2 allele in 

Caucasian populations implies that possession of this allele confers a survival benefit 
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in conditions where solar radiation is limited. Consistent with this hypothesis, 

possession of the Gc2 allele has been associated with decreased risk of  several other 

pathologies including breast cancer [9], chronic obstructive pulmonary disease [25] 

and fractures [26]. We also observed that alleles of the loci at codons 416 and 420 

were in linkage disequilibrium in Gujaratis, whites and ethnically admixed 

populations, but not in Xhosa or black participants. This phenomenon has been 

demonstrated for other coding single nucleotide polymorphisms in multiethnic 

populations, and may be attributed to a ‘bottleneck’ experienced by Asian and 

European populations migrating from Africa 800 to 1,600 generations ago [27]. 

 

Our functional study revealed that TB contacts carrying the Gc2 allele had 

significantly higher PPD-stimulated IFN-γ responses than Gc1 homozygotes, who 

demonstrated low or undetectable IFN-γ responses to PPD; all TB contacts had low or 

undetectable IFN-γ responses to RD-1-encoded antigens. ESAT-6 and CFP-10 are 

secreted early in infection, and reversion of IFN-γ responses to these antigens with 

persistence of tuberculin reactivity has been previously reported in longitudinal 

studies of TB contacts, and may represent latent TB infection [28]. Our data may 

therefore indicate that Gc1 homozygotes are relatively resistant to acquisition of latent 

TB infection, and that Gc2 allele carriers are more susceptible. 

  

Our study has some limitations. Gujarati Asian ethnicity was self-assigned, and 

although the community is genetically homogenous [15] the possibility of ethnic 

admixture cannot be excluded. Serum 25(OH)D concentrations were only available 

for 68% of Gujarati cases vs. 39% of Gujarati controls. This difference presumably 

arose because clinicians had a lower threshold for testing vitamin D status in TB cases 
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than in TB contacts. Since the Gc2/2 genotype was less common among controls than 

cases, the absolute number of Gc2/2 controls with known vitamin D status was small 

(n=2). However, the proportion of participants for whom 25(OH)D was available did 

not differ by Gc genotype, and the results of this analysis cannot therefore be 

attributed to selection bias. Larger studies with prospective evaluation of circulating 

concentrations of 25(OH)D should be performed in populations at risk of vitamin D 

deficiency to determine whether profound vitamin D deficiency and Gc2 genotype 

interact to increase susceptibility to TB.  
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Table 1: Study populations 
 
City, Country Ethnic group Cases Controls 
London, UK Gujarati Asian Adults (n=123) Adults (n=140) 
Cape Town, South Africa Xhosa Children (n=210) Children (n=163)
 Cape Coloured Children (n=71) Children (n=19) 
Rio de Janeiro, Brazil White Adults (n=55) Adults (n=49) 
 Mixed Adults (n=44) Adults (n=18) 
 Black Adults (n=31) Adults (n=11) 
 
 
Table 2: Deduction of DBP genotype from HaeIII and StyI genotypes 
 
HaeIII/StyI 
Genotype 

Potential HaeIII/StyI 
haplotypes 

Deduced HaeIII/StyI 
haplotypes 

Corresponding DBP 
genotype 

HH SS HS/HS HS/HS Gc1F/ Gc1F 
HH Ss HS/Hs HS/Hs Gc1F/Gc2 
HH ss Hs/Hs Hs/Hs Gc2/Gc2 
Hh SS HS/hS HS/hS Gc1F/Gc1S 
Hh Ss Hs/hS or HS/hs* Hs/hS Gc2/Gc1S 
hh SS hS/hS hS/hS Gc1S/Gc1S 
hh Ss hS/hs* Gc1s/Not deduced Not assigned 
 
* frequency of the hs haplotype is extremely low due to linkage disequilibrium 
between loci; therefore subjects heterozygous at both loci were assumed to carry 
Hs/hS haplotypes, and subjects with potential haplotype hs were not assigned a DBP 
genotype. 
 
 
Table 3: Characteristics of TB cases and controls 
 
Ethnic group, City  Cases Controls P 
Gujarati, London Mean age, yr, (s.d.) 43.8 (16.2) 41.9 (13.3) 0.3
 Male sex, n (%) 47 (38.2) 67 (47.9) 0.12
Xhosa, Cape Town Mean age, yr, (s.d.) 5.2  (3.9) 6.1 (3.6) 0.002
 Male sex, n (%) 116 (55.2) 67 (41.1) 0.007
Cape Coloured, Cape Town Mean age, yr, (s.d.) 4.4 (3.9) 5.5 (4.1) 0.16
 Male sex, n (%) 34 (47.9) 4 (21.1) 0.04
White, Rio Mean age, yr, (s.d.) 38.7 (13.8) 29.6 (10.3) <0.001
 Male sex, n (%) 37 (67.3) 16 (32.7) 0.2
Mixed, Rio Mean age, yr, (s.d.) 36.6 (11.9) 34.9 (13.6) 0.63
 Male sex, n (%) 28 (63.6) 7 (38.9) 0.02
Black, Rio Mean age, yr, (s.d.) 38.0 (13.7) 33.6 (14.8) 0.37
 Male sex, n (%) 19 (61.3) 3 (27.3) 0.01
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Table 4: Frequency of DBP alleles by ethnic group 
 
Ethnic group, City DBP allele, n (%) P 
 Gc2 Gc1F Gc1S  
Gujarati, London 189 (35.9) 85 (16.2) 252 (47.9) <0.0001 
Xhosa, Cape Town 34 (4.6) 653 (87.5) 59 (7.9)  
Cape Coloured, Cape Town 24 (13.3) 108 (60.0) 48 (26.7)  
White, Rio 69 (33.2) 52 (25.0) 87 (41.8)  
Mixed, Rio* 26 (21.3) 52 (42.6) 45 (36.3)  
Black, Rio 10 (11.9) 58 (69.0) 16 (19.0)  

 
* Allele not assigned for one individual (haplotype hs) 
 
 
Table 5: Frequency of DBP genotypes: TB cases vs. controls 
 

DBP genotype, n (%) Ethnic group, City Cases / Controls 
Gc2/2 Gc2/1 Gc1/1 

P 

Cases (n=123) 22 (17.9) 60 (48.7) 41 (33.3) Gujarati, London 
Controls (n=140) 13 (9.3) 59 (42.1) 68 (48.5) 

0.04 

Cases (n=210) 0 (0) 20 (9.5) 190 (90.5) Xhosa, Cape Town 
Controls (n=163) 0 (0) 14 (8.6) 149 (91.4) 

0.86 

Cases (n=71) 3 (4.2) 14 (19.7) 54 (76.1) Cape Coloured, 
Cape Town Controls (n=19) 0 (0) 4 (21.1) 15 (78.9) 

>0.99

Cases (n=55) 8 (14.5) 20 (36.4) 27 (49.1) White, Rio 
Controls (n=49) 5 (10.2) 23 (46.9) 21 (42.9) 

0.56 

Cases (n=44)* 2 (4.5) 12 (27.3) 29 (65.9) Mixed, Rio 
Controls (n=18) 2 (11.1) 6 (33.3) 10 (55.6) 

0.64 

Cases (n=31) 1 (3.2) 5 (16.1) 25 (80.6) Black, Rio 
Controls (n=11) 0 (0) 3 (27.3) 8 (72.7) 

0.75 

 
* DBP genotype not assigned for one case (Hae III genotype hh, Sty I genotype Ss) 
 
 
Table 6: Frequency of DBP genotypes, Gujarati TB cases vs. controls, stratified 
by vitamin D status 
 
Serum 25(OH)D  DBP genotype, n (%) P 
  Gc2/2 Gc2/1 Gc1/1  
<20 nmol/l Cases (n=60) 13 (21.7) 26 (43.3) 21 (35.0) 0.01 
 Controls (n=31) 0 (0) 17 (54.8) 14 (45.2)  
≥20 nmol/l Cases (n=24) 3 (12.5) 12 (50) 9 (37.5) 0.36 
 Controls (n=24) 2 (8.3) 8 (33.3) 14 (58.3)  
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Table 7: Characteristics of functional study participants by Gc genotype 
 
Variable Gc2/2 (n=7) Gc2/1 (n=20) Gc1/1 (n=9) P 
Mean age, years (s.d.) 55.3 (7.8) 41.3 (15.0) 34.9 (16.7) 0.03 
Male sex, no. (%) 3 (42.9) 11 (55.0) 3 (33.3) 0.54 
BCG scar present, no. (%) 6 (85.7) 15 (75.0) 8 (88.9) 0.63 
UK born, no. (%) 3 (42.9) 6 (30.0) 3 (33.3) 0.35 
Tuberculin skin test reactive, 
proportion (%)* 

0/5 (0) 5/13 (38.5) 0/5 (0) 0.06 

Household exposure, no. (%) 4 (57.1) 17 (85.0) 6 (66.6) 0.27 
25(OH)D < 20 nmol/L, no. (%) 3 (42.9) 12 (60.0) 5 (55.6) 0.73 
Median serum 25(OH)D, nmol/l 
(IQ range) 

25.0 (13.2 to 
43.0) 

18.4 (9.5 to 
27.9) 

17.5 (7.1 to 
37.0) 

0.63 

Median PPD-stimulated IFN-γ, 
pg/ml (IQ range) 

790.8 (118.6 to 
1311.0) 

663.5 (208.3 to 
2162.0) 

60.5 (22.7 to 
170.4) 

0.02 

Median ESAT-6-stimulated 
IFN-γ, pg/ml (IQ range) 

16.6 (0.0 to 
324.9) 

53.2 (20.7 to 
233.7) 

52.9 (0.0 to 
154.3) 

0.60 

Median CFP-10-stimulated IFN-
γ, pg/ml (IQ range) 

0.0 (0.0 to 23.6) 53.1 (0.0 to 
263.1) 

0.0 (0.0 to 
62.8) 

0.29 

 
* Reactive tuberculin status defined as Heaf grade 3 or 4, or Heaf grade 2 in the 
absence of a BCG scar; negative tuberculin status defined as Heaf grade 0 or 1, or 
Heaf grade 2 in the presence of a BCG scar. Tuberculin skin test results were 
available for 5/7 Gc2/2, 13/20 Gc2/1 and 5/9 Gc1/1 participants. 
 
 
Figure: PPD-stimulated Interferon-γ release in functional study participants by 
Gc genotype 
 

 


